Next: About this document ...
Up: Length and Area Functions
Previous: Embeddings with Given Length
-
- 1
-
S. Aanderaa.
A proof of Higman's embedding theorem using Britton extensions of
groups.
In Word Problems, Decision Problems and the Burnside problem
in group theory, pages 1-18, North-Holland, Publ. Corp., Amsterdam, London,
1973.
- 2
-
S. I. Adian.
The Burnside Problem and Identities in Groups.
Springer-Verlag, 1979.
- 3
- J. Alonso, ``Inégalités isopérimétriques
et quasi-isométries", C. R. Acad. Sci. Paris Série 1, 311 (1990), 761-764.
- 4
- G. Baumslag, M. R. Bridson, C. F. Miller III, and H. Short, ``Finitely presented subgroups of automatic groups and their isoperimetric functions", J. London Math. Soc. (2) 56 (1997), no. 2, 292-304.
- 5
- G. Baumslag and J. E. Roseblade, ``Subgroups of direct products of free groups", J. London Math. Soc. (2), 30 (1984), 44-52.
- 6
- J. C. Birget, ``The complexity of the word problem for semigroups
and the Higman embedding theorem'', International J. of Algebra and
Computation, 8 (1998), 235-294.
- 7
- J. C. Birget, A.Yu. Olshanskii, E.Rips, M. Sapir, ``Isoperimetric functions of groups and computational complexity of the word problem", preprint, 1998.
- 8
- M. Bridson, ``Fractional isoperimetric inequalities and subgroup
distortion.'', to appear.
- 9
-
M. G. Brin and C. C. Squier.
``Groups of piecewise linear homeomorphisms of the real line."
Invent. Math., 79:485-498, 1985.
- 10
- Donald J. Collins, Conjugacy and the Higman embedding theorem. Word problems, II (Conf. on
Decision Problems in Algebra, Oxford, 1976), pp.
81-85, Stud. Logic Foundations Math., 95,
North-Holland, Amsterdam-New York, 1980.
- 11
- Epstein, David B. A. et al., Word processing in groups, Jones and Bartlett, Boston, MA, 1992.
- 12
- B.Farb, ``The extrinsic geometry of subgroups and the
generalized word problem", Proc. London Math. Soc. (3) 68(1994) 577-593.
- 13
- S. M. Gersten, ``Dehn functions and l1-norms for finite
presentations'', in
Algorithms and Classification in Combinatorial Group
Theory (G. Baumslag, C. F. Miller, editors), MSRI Publications 23 (1992),
Springer-Verlag.
- 14
- S. M. Gersten, ``Isoperimetric functions of
groups and exotic cohomology", in Combinatorial and Geometric Group
Theory, (A.J. Duncan, N.D.Gilbert, J. Howie, editors),
Edinburgh, 1993, London Mathematical Soc. Lecture Notes
Series, 204, 1995.
- 15
- S.M. Gersten, ``Preservation and distortion of area in finitely presented groups",
GAFA vol 6 (1996) 301-345.
- 16
- S.M.Gersten, ``Isodiametric and isoperimetric functions of finite presentations", in Geometric Group Theory, Volume 1 (G.A.Niblo and A.Roller, eds.), London Math. Soc. Lecture Notes series 181, Cambridge University Press, 1993, 79-96.
- 17
- M. Gromov, ``Hyperbolic manifolds (according to Thurston and
Jorgensen)". Bourbaki Seminar, Vol. 1979/80, pp. 40-53,
Lecture Notes in Math., 842, Springer, Berlin-New York, 1981
- 18
- M. Gromov, ``Hyperbolic groups", in: Essays in group
theory (S.M. Gersten, editor), MSRI Series 8, Springer-Verlag, 1987.
- 19
- M. Gromov, ``Asymptotic invariants of
infinite groups", in: Geometric Group Theory, Volume 2
(G. A. Niblo and M. A. Roller, eds.),
London Mathematical Society Lecture Notes Series 182, 1993.
- 20
-
V. Guba and M. Sapir, Diagram groups, Memoirs of AMS, November 1997, v. 130, # 620.
- 21
-
V. Guba and M. Sapir, The Dehn function of a free product of non-trivial
groups is superadditive, Proc. AMS (1999).
- 22
- Kourovka Notebook. Unsolved Problems in Group Theory. 5th edition, Novosibirsk, 1976.
- 23
- O. Kharlampovich, M. Sapir, Algorithmic problems in
varieties, IJAC, 5 (1995), 4-5, 379-602.
- 24
- E. M. Levich, The representation of two-step-solvable groups by matrices over a field of characteristic zero, Mat. sb, 81, 1970, 352-357.
- 25
- R. Lyndon, P. Schupp, Combinatorial Group Theory,
Springer-Verlag, 1977.
- 26
- K. Madlener, F. Otto, ``Pseudo-natural algorithms for the
word problem for finitely presented monoids and groups'',
J. Symbolic Computation 1 (1985) 383-418.
- 27
- C. F. Miller III, On group-theoretic decision problems and their classification, Ann. of Math. Stud., 68, Princeton University Press,
Princeton, N.J., 1971.
- 28
- A. Yu. Ol'shanskii, The Geometry of Defining Relations in
Groups, Kluwer Academic Publishers, 1991.
- 29
- A. Yu. Ol'shanskii, ``The SQ-universality of
hyperbolic groups", Mat. Sb., 1995, v. 186, N 8, 119-132.
- 30
- A.Yu. Ol'shanskii, ``Distortion functions for subgroups",
Proc. conf. on Geometric Group Theory, Canberra, July 1996, Walter de
Gruyter, 1997 (to appear).
- 31
- A. Yu. Ol'shanskii, ``On distortion of subgroups in finitely
presented groups'', Mat. Sb., 1997, V.188, N 11, 51-98.
- 32
-
A. Yu. Ol'shanskii, M. V. Sapir
``Embeddings of relatively free groups into finitely presented
groups", preprint, 1998.
- 33
-
A. Yu. Ol'shanskii, M. V. Sapir
``Length functions on Subgroups of Finitely Presented Groups",
preprint, 1998.
- 34
- A. Yu. Ol'shanskii, M. V. Sapir
``A Higman embedding preserving the solvablity of the conjugacy problem",
in preparation, 1999.
- 35
- P. Papasoglu ``On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality", J. Differential Geom. 44
(1996), no. 4, 789-806
- 36
- V. N. Remeslennikov, Representation of finitely generated metabelian groups by matrices, Algebra i Logika, 8, 1969, 72-75.
- 37
- J. Rotman, An Introduction to the Theory of Groups,
Allyn & Bacon, 3rd edition, 1984.
- 38
- M. V. Sapir, J. C. Birget, E. Rips, ``Isoperimetric and
isodiametric functions of groups'', submitted.
- 39
- D. Segal, Polycyclic groups, Cambridge Univ. Press, Cambridge, 1983.
- 40
- Bertram A.F. Wehrfritz, On finitely generated soluble linear groups, Math. Z., 170 (1980), 2, 155-167.
Alexander Yu. Olshanskii
Department of Higher Algebra
MEHMAT. Moscow State University
olsh@nw.math.msu.su
Mark V. Sapir
Department of Mathematics
Vanderbilt University
http://www.math.vanderbilt.edu/msapir
Mark Sapir
1999-08-05