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Definition of compression (Guentner-Kaminker)Let X and Y
be two metric spaces and let ¢: X — Y be a 1-Lipschitz map.The
compression of ¢ is the supremum over all & > 0 such that

disty (f(u), f(v)) > distx(u, v)*
for all u, v with large enough distx(u, v).

If £ is a class of metric spaces, then the £—compression of Xis the
supremum over all compressions of 1-Lipschitz maps X — Y,
Y el

In particular, if £ is the class of Hilbert spaces, we get the Hilbert
space compression of X.

The Hilbert space compression of a space is a q.i. invariant.
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Let (X, distx) and (Y,disty) be metric spaces. Let p be an

increasing function p: Ry — R, with limy_o p+ = 00. A map
¢: X — Y is called a p—embedding if

p(diStX(Xla XZ)) < diStY(¢(X1)7 (ZS(XQ)) < diStX(le X2) ) (1)
for all xq, xp with large enough dist(xy, x2).

Definition (compression function). Let (X,dist) be a metric
space, and let £ be a collection of metric spaces. Let p: Ry — R
be an increasing function with limy_,~ p(x) = 0.

(1) We say that the E—compression function of (X, dist) is at
least p if for some a > 0 there exists a p(ax)—embedding of
(X, dist) into a space from £.

(2) We say that the E—compression function of (X, dist) is at
most p if every increasing function p : Ry — R4 with
limyx— 00 p(Xx) = 0o for which there exists a p—embedding of
(X, dist) into a space from & satisfies p(x) < p(ax) for some

a. -
o = - =
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Known results

» (Gromov, Yu, Kasparov-Yu) If a group is coarsely embeddable
into a Hilbert (uniformly convex Banach) space then the
Novikov conjecture holds for that group.

> (Guentner-Kaminker) If the Hilbert compression function is
> \/x (say, if the compression > %) then the group is exact,
so the group satisfies Yu's property A. (Amenability - for the
equivariant compression.)

» (Enflo) L is not coarsely embeddable into a Hilbert space.

» Expander families of graphs are not embeddable into Hilbert
spaces.
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Known results, continued

» (V. Lafforgue) Let I' be a co-compact lattice in SI(3, F) for a
local field F. Let M = (M;) be the sequence of Cayley graphs
of the finite factor-groups of . Then M is not coarsely
embeddable into an uniformly convex Banach space.

» (Gromov) Expanders embed into f.g. groups. So there are
groups that are not coarsely embeddable into Hilbert spaces.
(Uniformly convex Banach spaces?) Their Hilbert space
compression = 0.
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Known results: what is embeddable

> (Yu) Amenable and a-T-menable groups coarsely embed into
Hilbert spaces.

» (Yu) Groups with finite asymptotic dimension are exact, and
embed into Hilbert spaces.

> (Sela) Hyperbolic groups are embeddable into Hilbert spaces.

» Linear groups are embeddable into Hilbert spaces.
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Known results about compression

> (Bourgain, Brodsky-Sonkin) The free group has compression 1
and compression function m. Are there non-virtually
cyclic groups with compression function bigger than that?

» (Campbell-Niblo) Groups acting co-compactly on finite dim.
cubings have compression 1.

> (Tessera) Lattices in semi-simple Lie groups and co-compact
lattices in all Lie groups have compression 1.

> (Bonk-Schrumm, Dranishnikov-Shroeder, Brodsky-Sonkin)
Hyperbolic groups have compression 1 and compression
function as the free groups.

The standard embedding of a tree: map each edge to a separate
element of an orthonormal basis of H,then map each vertex to the
sum of images of the edges on the geodesic going to that vertex
from the origin. Bourgain-... embedding: add coefficients to that
sum.
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The Thompson group and other diagram groups

Theorem. (Arzhantseva-Guba-S.)The R. Thompson group F
has compression % and compression function between /x and

V/x log x. Same for the equivariant compression.

Idea of the proof.Free group acts on a tree, Thompson group
(and other diagram groups) acts of a 2-tree. Then use the idea of
the embedding of a tree. Coefficients don't work! For another

inequality use large cubes with small sides and the “Poincare
inequality” .

Problem. Is it true that the compression function of F is > /x?
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Wreath products

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space

compression of Z ! Z is between % and %. The Hilbert space

compression of Z ! B where B has exponential growth is between 0
and 1.
2

> % - because the group is a diagram group.

Problem. What is the Hilbert space compression (function) of
7.2 ZTessera: > %

n}
o)
1
u
it



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)

DA



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space
compression

DA



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space

compression= uniformly convex Banach space compression = «

DA



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space

compression= uniformly convex Banach space compression = «
and asymptotic dimension < 2.



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space

compression= uniformly convex Banach space compression = «
and asymptotic dimension < 2.

The first examples of:

n}
o)
1
u
it

DA



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space

compression= uniformly convex Banach space compression = «
and asymptotic dimension < 2.

The first examples of:

» A f.g. group that is embeddable into a Hilbert space but with
compression 0.

n}
o)
1
u
it



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number o € [0, 1]
there exists a finitely generated group with Hilbert space
compression= uniformly convex Banach space compression = «
and asymptotic dimension < 2.

The first examples of:

» A f.g. group that is embeddable into a Hilbert space but with
compression 0.

» A f.g. group with finite asdim (exact) and Hilbert space
compression 0.

n}
o)
1
u
it
)
¥
i)



Arbitrary compression

Theorem. (Arzhantseva-Drutu-S.)For every number « € [0, 1]
there exists a finitely generated group with Hilbert space
compression= uniformly convex Banach space compression = «
and asymptotic dimension < 2.

The first examples of:

» A f.g. group that is embeddable into a Hilbert space but with
compression 0.

» A f.g. group with finite asdim (exact) and Hilbert space
compression 0.

» A f.g. group with uniformly convex Banach space compression
0.
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Theorem. (Arzhantseva-Drutu-S.)For every p € C there exists a
f.g. group Gof asdim < 2 and such that the Hilbert space

compression function and the uniformly convex Banach space
compression function of G is

> between /p and p;
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Arbitrary compression functions

Consider the following class C of functions p:

» p is increasing but Xfl(:g)x is decreasing, lim p(x) = oco.

> pis subadditive (p(x + y) < p(x) + p(y) for large enough
X,¥).

Theorem. (Arzhantseva-Drutu-S.)For every p € C there exists a
f.g. group Gof asdim < 2 and such that the Hilbert space
compression function and the uniformly convex Banach space
compression function of G is

> between /p and p;

> between f;(gxl and p(x).

So one can find a f.g. group with an arbitrary small but non-zero
compression function.
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Proof

Use Lafforgue expanders.

Start with an arbitrary co-compact lattice ' in S1(3, F) for a local
F.

One can assume that I' contains non-central involutions. Take a
subgroup of I generated by all involutions.

By Margulis theorem, it is a normal subgroup of finite index, so a
co-compact lattice. We can assume that ' = (01, ...,0m) is such.

n}
o)
1
u
it

DA



Proof continued

Take the set of finite factor-groups M; of T.

DA



Proof continued

Take the set of finite factor-groups M; of T'.
expander family.

They form an

DA



Proof continued

Take the set of finite factor-groups M; of I'. They form an
with /.

expander family. We can assume that the diameters grow linearly

DA



Proof continued

Take the set of finite factor-groups M; of I'. They form an

expander family. We can assume that the diameters grow linearly
with J.

Let F be the free product of M;.



Proof continued

Take the set of finite factor-groups M; of I'. They form an

expander family. We can assume that the diameters grow linearly
with J.

Let F be the free product of M;. Take H = Zy x Z.



Proof continued

Take the set of finite factor-groups M; of I'. They form an
expander family. We can assume that the diameters grow linearly
with .

Let F be the free product of M;. Take H = Zy x Z. Consider the
following graph of groups:
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Proof continued

Take the set of finite factor-groups M; of I'. They form an

expander family. We can assume that the diameters grow linearly
with J.

Let F be the free product of M;. Take H = Zy x Z. Consider the
Ho

following graph of groups:

Each M; is generated by (01(j), ..., om(j)). We identify o;(j) with
ot of H = (o, t).
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