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compression of φ is the supremum over all α ≥ 0 such that

distY (f (u), f (v)) ≥ distX (u, v)α

for all u, v with large enough distX (u, v).

If E is a class of metric spaces, then the E–compression of X is the
supremum over all compressions of 1-Lipschitz maps X → Y ,
Y ∈ E .

In particular, if E is the class of Hilbert spaces, we get the Hilbert

space compression of X .

The Hilbert space compression of a space is a q.i. invariant.
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increasing function ρ : R+ → R+, with limx→∞ ρ± = ∞. A map
φ : X → Y is called a ρ–embedding if
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Definition (compression function). Let (X , dist) be a metric
space, and let E be a collection of metric spaces. Let ρ : R+ → R+

be an increasing function with limx→∞ ρ(x) = ∞.

(1) We say that the E–compression function of (X , dist) is at

least ρ if for some a > 0 there exists a ρ(ax)–embedding of
(X , dist) into a space from E .

(2) We say that the E–compression function of (X , dist) is at

most ρ if every increasing function ρ̄ : R+ → R+ with
limx→∞ ρ̄(x) = ∞ for which there exists a ρ̄–embedding of
(X , dist) into a space from E satisfies ¯ρ(x) ≪ ρ(ax) for some
a.
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◮ (Gromov, Yu, Kasparov-Yu) If a group is coarsely embeddable
into a Hilbert (uniformly convex Banach) space then the
Novikov conjecture holds for that group.

◮ (Guentner-Kaminker) If the Hilbert compression function is
≫ √

x (say, if the compression > 1
2) then the group is exact,

so the group satisfies Yu’s property A. (Amenability - for the
equivariant compression.)

◮ (Enflo) L∞ is not coarsely embeddable into a Hilbert space.

◮ Expander families of graphs are not embeddable into Hilbert
spaces.
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◮ (V. Lafforgue) Let Γ be a co-compact lattice in Sl(3, F ) for a
local field F . Let M = (Mi ) be the sequence of Cayley graphs
of the finite factor-groups of Γ. Then M is not coarsely
embeddable into an uniformly convex Banach space.

◮ (Gromov) Expanders embed into f.g. groups. So there are
groups that are not coarsely embeddable into Hilbert spaces.
(Uniformly convex Banach spaces?) Their Hilbert space
compression = 0.
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Known results: what is embeddable

◮ (Yu) Amenable and a-T-menable groups coarsely embed into
Hilbert spaces.

◮ (Yu) Groups with finite asymptotic dimension are exact, and
embed into Hilbert spaces.

◮ (Sela) Hyperbolic groups are embeddable into Hilbert spaces.

◮ Linear groups are embeddable into Hilbert spaces.
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◮ (Bourgain, Brodsky-Sonkin) The free group has compression 1
and compression function x√

log x log log x
. Are there non-virtually

cyclic groups with compression function bigger than that?

◮ (Campbell-Niblo) Groups acting co-compactly on finite dim.
cubings have compression 1.

◮ (Tessera) Lattices in semi-simple Lie groups and co-compact
lattices in all Lie groups have compression 1.

◮ (Bonk-Schrumm, Dranishnikov-Shroeder, Brodsky-Sonkin)
Hyperbolic groups have compression 1 and compression
function as the free groups.

The standard embedding of a tree: map each edge to a separate
element of an orthonormal basis of H,then map each vertex to the
sum of images of the edges on the geodesic going to that vertex
from the origin. Bourgain-... embedding: add coefficients to that
sum.
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Theorem. (Arzhantseva-Guba-S.)The R. Thompson group F

has compression 1
2 and compression function between

√
x and√

x log x . Same for the equivariant compression.

Idea of the proof.Free group acts on a tree, Thompson group
(and other diagram groups) acts of a 2-tree. Then use the idea of
the embedding of a tree. Coefficients don’t work! For another
inequality use large cubes with small sides and the “Poincare
inequality”.

Problem. Is it true that the compression function of F is ≫ √
x?
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Wreath products

Theorem (Arzhantseva-Guba-Sapir)The Hilbert space
compression of Z ≀ Z is between 1

2 and 3
4 . The Hilbert space

compression of Z ≀ B where B has exponential growth is between 0
and 1

2 .

≥ 1
2 - because the group is a diagram group.

Problem. What is the Hilbert space compression (function) of
Z ≀ Z?Tessera: ≥ 2

3 .
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Theorem. (Arzhantseva-Druţu-S.)For every number α ∈ [0, 1]
there exists a finitely generated group with Hilbert space
compression= uniformly convex Banach space compression = α

and asymptotic dimension ≤ 2.

The first examples of:

◮ A f.g. group that is embeddable into a Hilbert space but with
compression 0.

◮ A f.g. group with finite asdim (exact) and Hilbert space
compression 0.

◮ A f.g. group with uniformly convex Banach space compression
0.
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Arbitrary compression functions

Consider the following class C of functions ρ:

◮ ρ is increasing but ρ(x)
x/ log x

is decreasing, lim ρ(x) = ∞.

◮ ρ is subadditive (ρ(x + y) ≤ ρ(x) + ρ(y) for large enough
x , y).

Theorem. (Arzhantseva-Druţu-S.)For every ρ ∈ C there exists a
f.g. group Gof asdim ≤ 2 and such that the Hilbert space
compression function and the uniformly convex Banach space
compression function of G is

◮ between
√

ρ and ρ;

◮ between ρ(x)
log x

and ρ(x).

So one can find a f.g. group with an arbitrary small but non-zero
compression function.
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Proof

Use Lafforgue expanders.

Start with an arbitrary co-compact lattice Γ in Sl(3, F ) for a local
F .

One can assume that Γ contains non-central involutions. Take a
subgroup of Γ generated by all involutions.

By Margulis theorem, it is a normal subgroup of finite index, so a
co-compact lattice. We can assume that Γ = 〈σ1, ..., σm〉 is such.
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Proof continued

Take the set of finite factor-groups Mi of Γ. They form an
expander family. We can assume that the diameters grow linearly
with i .

Let F be the free product of Mi . Take H = Z2 ∗ Z. Consider the
following graph of groups:

v
w

x

x
F

H1

H2

H3

Hm

〈σt
kj

1 , i = 1, 2, ...〉

Each Mj is generated by 〈σ1(j), ..., σm(j)〉. We identify σi (j) with

σt
kj

of H = 〈σ, t〉.
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