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be two metric spaces and let ¢: X — Y be a 1-Lipschitz map.The
compression of ¢ is the supremum over all & > 0 such that

disty (f(u), f(v)) > distx(u, v)*
for all u, v with large enough distx(u, v).

If £ is a class of metric spaces, then the E—compression of Xis the
supremum over all compressions of 1-Lipschitz maps X — Y,
Y eé€.

In particular, if £ is the class of Hilbert spaces, we get the Hilbert
space compression of X.

The Hilbert space compression of a space is a g.i. invariant.
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Let (X,distx) and (Y,disty) be metric spaces. Let p be an
increasing function p: Ry — Ry, with limy_ o p+ = co. A map
¢: X = Y is called a p—embedding if

p(distx (x1, x2)) < disty (¢(x1), p(x2)) < distx(x1,%2), (1)
for all x1, x> with large enough dist(x1, x2).

Definition (compression function). Let (X,dist) be a metric
space, and let £ be a collection of metric spaces. Let p: Ry — Ry
be an increasing function with limy_ o p(x) = oo.

(1) We say that the E—compression function of (X,dist) is at
least p if for some a > 0 there exists a p(ax)-embedding of
(X, dist) into a space from €£.

(2) We say that the E—compression function of (X,dist) is at
most p if every increasing function p: R, — R with
limyx—00 p(X) = 00 for which there exists a p—embedding of

(X, dist) into a space from & satisfies p(x) < p(ax) for some
a.
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Applications

v

(Gromov, Yu, Kasparov-Yu) If a group is coarsely embeddable
into a Hilbert (uniformly convex Banach) space then the
Novikov conjecture holds for that group.

(Guentner-Kaminker) If the Hilbert compression function is
> \/x (say, if the compression > %) then the group has
property A, (Amenability - for the equivariant compression.)

(Enflo) Lo is not coarsely embeddable into a Hilbert space.

Expander families of graphs are not embeddable into Hilbert
spaces.
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» (V. Lafforgue, see also a recent preprint by de Laat and de la
Salle) Let ' be a co-compact lattice in SI(3, F) for a local
field F. Let M = (M;) be the sequence of Cayley graphs of
the finite factor-groups of I'. Then M is not coarsely
embeddable into an uniformly convex Banach space.

» (Gromov, see also Arzhantseva-Delzant and Coulon)
Expanders embed into infinitely (but recursively) presented
aspherical f.g. groups. So there are groups that are not
coarsely embeddable into Hilbert spaces. Their Hilbert space
compression = 0 and asymptotic dimension is infinite.
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(Yu) a-T-menable groups, groups with G. Yu's property A
coarsely embed into Hilbert spaces.
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(Yu) Groups with finite asymptotic dimension have property
A, and embed into Hilbert spaces.

v

(Sela) Hyperbolic groups are embeddable into Hilbert spaces
(they have property A).

v

Linear groups are embeddable into Hilbert spaces (they have
finite decomposition complexity, hence property A).
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Known results about compression

» (Bourgain, Brodsky-Sonkin) The free group has compression 1
. . X

and compression function at least s xIogTogx Are there

non-virtually cyclic groups with compression function bigger

than that?

» (Bonk-Schramm, Dranishnikov-Shroeder, Brodsky-Sonkin)
Hyperbolic groups have compression 1 and compression
function as the free groups.

The standard embedding of a tree: map each edge to a separate
element of an orthonormal basis of H,then map each vertex to the
sum of images of the edges on the geodesic going to that vertex
from the origin. Bourgain-... embedding: add coefficients to that
sum.
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Theorem. (Arzhantseva-Guba-S.)The R. Thompson group F
has compression % and compression function between /x and

V/x log x. Same for the equivariant compression.

Problem. Is it true that the compression function of F is > /x?.
Is it true that F satisfies property A? How about the group of
piecewise fractional transformations of the circle fixing co (Monod,
Lodha-Moore)?
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Consider the following class C of functions p:

» pis increasing but Xfl(gg);x is decreasing, lim p(x) = oco.
» p is subadditive (p(x + y) < p(x) + p(y) for large enough

X,¥).

Theorem. (Arzhantseva-Drutu-S.)For every p € C there exists a
f.g. group Gof asdim < 2 and such that the Hilbert space
compression function and the uniformly convex Banach space
compression function of G is

> between /p and p;

> between 25 and p(x).

log x

So one can find a f.g. group with an arbitrary small but non-zero
compression function and with arbitrary Hilbert space (or uniformly
convex Banach space) compression.
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Use Lafforgue expanders.

Start with an arbitrary co-compact lattice I in SI(3, F) for a local
F.

One can assume that I contains non-central involutions. Take a
subgroup of I generated by all involutions.

By Margulis theorem, it is a normal subgroup of finite index, so a
co-compact lattice. We can assume that [ = (01, ...,0p,) is such.
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Proof continued

Take the set of finite factor-groups M; of I'. They form an
expander family. We can assume that the diameters grow linearly

with /.
Let F be the free product of M;. Take H = Z; * Z. Consider the
following graph of groups: H

Each M; is generated by (o1()j),...,om(j)). We identify o;(j) with
ot of H = (o, t).
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Theorem. (Austin, Olshanskii-Osin) There exist finitely
generated amenable groups with arbitrary “small” compression
function with respect to uniformly convex Banach spaces.

Take the sequence of finite groups that form an expander. Let G
be the direct product.Then G is countable and amenable. Define a
length function on G as in our proof with Arzhantseva and Drutu.
Then the growth function of G is at most exponential.Use
Neumann-Neumann construction to embed it (without distortion)
into a finitely generated amenable group.
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Theorem (S., Journal of AMS, 2014) There exists a smooth
Riemannian aspherical closed manifold M* whose fundamental
group contains an expander, hence is not coarsely embeddable into
a Hilbert space, has Hilbert space compression 0 and infinite
asymptotic dimension, does not satisfy the Baum-Connes
conjecture with coefficients.

Proof. Take the Gromov group G containing an expander. It is
aspherical and recursively presented. Hence is inside a finitely
presented group H by Higman. Unfortunately H is almost never
aspherical if we use the previously known versions of the proof of
Higman's theorem. So one needs a version preserving asphericity.
Once an aspherical H is constructed one can use the Michael Davis
construction to turn the group into a manifold.
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