
BOUNDEDNESS AND COMPACTNESS OF
HANKEL OPERATORS ON THE SPHERE

1



1. Introduction

S = {z ∈ Cn : |z| = 1}, the unit sphere in Cn.

σ = the positive, regular Borel measure on S which is
invariant under the orthogonal group O(2n).

Normalization: σ(S) = 1.

The Cauchy projection P is defined by the integral formula

(Pf)(w) =
∫

f(ζ)
(1 − 〈w, ζ〉)n dσ(ζ), |w| < 1.

P is the orthogonal projection from L2(S, dσ) onto
the Hardy space H2(S).

Normalized reproducing kernel for H2(S):

kz(w) =
(1 − |z|2)n/2
(1 − 〈w, z〉)n , |w| ≤ 1, |z| < 1.
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The formula

(1.1) d(ζ, ξ) = |1 − 〈ζ, ξ〉|1/2, ζ, ξ ∈ S,

defines a metric on the sphere (anisotropic metric).

For ζ ∈ S and r > 0, denote

B(ζ, r) = {x ∈ S : |1 − 〈x, ζ〉|1/2 < r}

There is a constant A0 ∈ (2−n,∞) such that

2−nr2n ≤ σ(B(ζ, r)) ≤ A0r
2n

for all ζ ∈ S and 0 < r ≤
√

2.

A function f ∈ L1(S, dσ) is said to have bounded mean
oscillation if

‖f‖BMO = sup
ζ∈S
r>0

1
σ(B(ζ, r))

∫
B(ζ,r)

|f − fB(ζ,r)|dσ <∞,

where fB =
∫
B
fdσ/σ(B), the average of f over B. A function

f ∈ L1(S, dσ) is said to have vanishing mean oscillation if

lim
δ↓0

sup
ζ∈S

0<r≤δ

1
σ(B(ζ, r))

∫
B(ζ,r)

|f − fB(ζ,r)|dσ = 0.

BMO = all functions of bounded mean oscillation on S.

VMO = all functions of vanishing mean oscillation on S.
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The Hankel operator Hf : H2(S) → L2(S, dσ) is defined by

Hf = (1 − P )Mf |H2(S).

Relation between commutator and Hankel operators:

[P,Mf ] = H∗
f̄ −Hf ,

We can think of [P,Mf ] as a matrix with respect to the space
decomposition

L2(S, dσ) = H2(S) ⊕ {H2(S)}⊥.

That is, with respect to this space decomposition,

[P,Mf ] =
[

0 H∗
f̄

−Hf 0

]
.

A fundamental result:

Theorem. (Coifman, Rochberg and Weiss, 1976)
(a) [P,Mf ] is bounded if and only if f ∈ BMO.
(b) [P,Mf ] is compact if and only if f ∈ VMO.
(c) Moreover, ‖[P,Mf ]‖ ≤ C‖f‖BMO.

The “only if” part is easy; it follows from the inequality

‖(f − 〈fkz, kz〉)kz‖2 ≤ ‖Hfkz‖2 + ‖Hf̄kz‖2.

The hard part of this theorem is the “if” part.
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A basic fact: if h ∈ H2(S), then Hh = 0. Therefore

Hf = Hf−Pf .

Also,
f − Pf = Hf1.

Recall that there is a famous T1-Theorem for singular inetgral
operators on L2. In analogy with that, the theorem of Coifman,
Rochberg and Weiss implies what might be called

H1-Theorem.
(a) If f − Pf ∈ BMO, then Hf is bounded.
(b) If f − Pf ∈ VMO, then Hf is compact.

But in the T1-Theorem, the sufficient conditions for bound-
edness are well known to be necessary. So one naturally asks,
what happens in the case of the H1-Theorem ?

This talk is about the various converses to the H1-Theorem
stated above.

In general, there are two kinds of problems in the theory
of Hankel operators, namely “two-sided” problems and “one-
sided” problems. A “two-sided” problem concerns Hf and Hf̄

simultaneously. “Two-sided” problems are equivalent to the
study of the commutator [P,Mf ]. Therefore there is a large
body of literature on “two-sided” problems.
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By contrast, a “one-sided” problem is the study ofHf alone.
Almost invariably, a “one-sided” problem is more difficult than
the corresponding “two-sided” problem. The reason for this is
very simple: for a “one-sided” problem, the inequality

‖(f − 〈fkz, kz〉)kz‖2 ≤ ‖Hfkz‖2 + ‖Hf̄kz‖2

is useless, because one assumes nothing about Hf̄ . To solve
a “one-sided” problem, one must find a way to control mean
oscillation by other methods.

“One-sided” problems are all about these other methods.

In the case n = 1, i.e., on the unit circle, because

(1.3) f − Pf ∈ H2

every “one-sided” problem is actually a “two-sided” problem.
But when n ≥ 2, (1.3) no longer holds, and a difference be-
tween “two-sided” problems and “one-sided” problems appears.
The main difficulty in “one-sided” problems is the fact that the
subspace

(1.4) L2(S, dσ) � {H2(S) +H2(S)}

is huge and intractable when n ≥ 2.
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A good example of a “one-sided” result is the following:

Theorem 1.1. (Dechao Zheng) Let f ∈ BMO. Then the Hankel
operator Hf is compact if and only if

lim
|z|↑1

‖Hfkz‖ = 0.

Although this is the best existing result on the compactness
of Hf , questions still remain. Note that Theorem 1.1 is really a
statement about the FAMILY

{Hf : f ∈ BMO}

as a whole. We know that a necessary condition for any operator
X to be compact is

(1.5) lim
|z|↑1

‖Xkz‖ = 0.

What Theorem 1.1 really says is that if

X ∈ {Hf : f ∈ BMO},

then (1.5) is also a sufficient condition for X to be compact.
This is certainly very nice, but it does not say much about f .

We would like to determine the compactness of Hf in terms
of f , such as the membership of f in some easily-defined function
class.
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As it turns out, the Hankel operator Hf actually tells us a
great deal about the commutator [P,Mf−Pf ]. That is, in many
situations, a “one-sided” problem actually has a “two-sided”
solution! In other words, notwithstanding the size of

L2(S, dσ) � {H2(S) +H2(S)},

the theory of Hankel operators in the case n ≥ 2 resembles the
case n = 1 in more ways than we previously realized.
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What initially led to this investigation was the considera-
tion of the subset

A = {f ∈ L∞(S, dσ) : Hf is compact}

of L∞(S, dσ). As Davie and Jewell observed, A is in fact a
Banach subalgebra of L∞(S, dσ).

When n = 1, i.e., in the case of the unit circle, it is well
known that

A = H∞ + C(T),

which is unquestionably a direct condition for compactness. But
when n ≥ 2, A is known to be strictly larger than H∞(S)+C(S)
(Davie and Jewell).

So here at least, there is a genuine difference between the
case n = 1 and the case n ≥ 2. But wait, for difference is not
the whole story. Even for A, there is similarity between the case
n = 1 and the case n ≥ 2.

Let us also consider the subset

A1 = {f ∈ L∞(S, dσ) : f − Pf ∈ VMO}

of L∞(S, dσ). By the H1-Theorem of Coifman, Rochberg and
Weiss we have

A1 ⊂ A.
One might say that A1 is the obvious part of A. Our first result
is the reverse inclusion, i.e., A consists of nothing but its obvious
part.

Theorem 1.2. A ⊂ A1.

As it turns out, this result can be refined and improved in
many different ways.
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For each f ∈ L1(S, dσ) and each ζ ∈ S, denote

LMO(f)(ζ) = lim
δ↓0

sup
B(ξ,r)⊂B(ζ,δ)

1
σ(B(ξ, r))

∫
B(ξ,r)

|f − fB(ξ,r)|dσ,

which is called the local mean oscillation of f at ζ.

Theorem 1.3. If f is a function in BMO and ζ is a point in S
such that

(1.6) lim
z→ζ
|z|<1

‖Hfkz‖ = 0,

then LMO(f − Pf)(ζ) = 0.

Corollary 1.4. Suppose that f ∈ BMO. If

(1.7) lim
|z|↑1

‖Hfkz‖ = 0,

then f − Pf ∈ VMO.

Corollary 1.4 explains why Theorem 1.1 holds: if f belongs
to BMO and satisfies (1.7), then f − Pf ∈ VMO, which im-
plies the compactness of [P,Mf−Pf ], which in turn implies the
compactness of Hf−Pf = Hf .

Corollary 1.5. Suppose that f ∈ BMO and that

f ⊥ H2(S) +H2(S).

Then Hf is compact if and only if Hf̄ is compact.

This is reminds us a theorem about Hankel operators on the
Segal-Bargmann space H2(Cn, dµ) due to Berger and Coburn.
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Theorem 1.6. There exists a constant 0 < C < ∞ which
depends only on the complex dimension n such that

‖f − Pf‖BMO ≤ C sup
|z|<1

‖Hfkz‖

for every f ∈ BMO.

This and the H1-Theorem of Coifman, Rochberg and Weiss
together give us the inequality

(1.8) ‖[P,Mf−Pf ]‖ ≤ C1‖Hf‖,

f ∈ BMO.

Corollary 1.7. There exists a constant 0 < C < ∞ which
depends only on the complex dimension n such that for f ∈
BMO satisfying the condition f ⊥ H2(S) +H2(S), we have

C−1‖Hf‖ ≤ ‖Hf̄‖ ≤ C‖Hf‖.

Suppose that A is a bounded operator on a Hilbert space
H. Recall that the essential norm of A is defined by the formula

‖A‖Q = inf{‖A+K‖ : K is compact on H}.

An analogue of (1.8) holds for essential norms.

Theorem 1.8. There exists a constant 0 < C < ∞ which
depends only on the complex dimension n such that

‖[P,Mf−Pf ]‖Q ≤ C‖Hf‖Q

for every f ∈ BMO.
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Note that in all the results above the condition f ∈ BMO
was a part of the assumption. But the bound provided by The-
orem 1.6 enables us to deal with symbol functions which are not
a priori assumed to be in BMO. For ψ ∈ L2(S, dσ), we can still
define the Hankel operator Hψ on the dense subset H∞(S) of
H2(S). That is, Hψh = (1 − P )(ψh) for h ∈ H∞(S).

Theorem 1.9. If ψ ∈ L2(S, dσ) and if

sup
|z|<1

‖Hψkz‖ <∞,

then ψ − Pψ ∈ BMO.

Combining Theorem 1.9 and Corollary 1.4, and using the
fact that Hψ = Hψ−Pψ, we have the following improvement of
Theorem 1.1:

Corollary 1.10. Suppose that ψ ∈ L2(S, dσ) and that

lim
|z|↑1

‖Hψkz‖ = 0.

Then ψ − Pψ ∈ VMO. Consequently Hψ extends to a compact
operator from H2(S) to L2(S, dσ) �H2(S).
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Summarizing, we now have the

Complete Version of H1-Theorem.
Let f ∈ L2(S, dσ). Then
(a) Hf is bounded if and only if f − Pf ∈ BMO;
(b) Hf is compact if and only if f − Pf ∈ VMO.

Recall that the “if” part is due to Coifman, Rochberg and
Weiss; our contribution is the “only if” part.
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2. An Estimate of Mean Oscillation

Coifman, Rochberg and Weiss showed that the Cauchy pro-
jection P maps L∞(S, dσ) into BMO. In fact, something slightly
stronger is also true:

Proposition 2.1. If f ∈ BMO, then Pf ∈ BMO.

As it turns out, the key to the proofs of the results in Section
1 is the following quantitative refinement of Proposition 2.1.

Proposition 2.2. There exists a constant 0 < C2.2 <∞ which
depends only on the complex dimension n such that for all f ∈
L2(S, dσ) and B = B(ζ, r), where ζ ∈ S and r > 0, we have

{
1

σ(B)

∫
B

|Pf − (Pf)B |2dσ
}1/2

≤ C2.2

{
1

σ(B1)

∫
B1

|f − fB1 |2dσ
}1/2

+ C2.2

∞∑
k=2

2−k

σ(Bk)

∫
Bk

|f − fBk
|dσ,

where Bk = B(ζ, 2kr) for every k ≥ 1.
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Proof. Given f ∈ L2(S, dσ) and B = B(ζ, r), we may assume
‖(Pf − (Pf)B)χB‖ �= 0, for otherwise there is nothing to prove.
Define

g =
1

‖(Pf − (Pf)B)χB‖
(Pf − (Pf)B)χB ,

which is, of course, a unit vector in L2(S, dσ). Write 1 for the
constant function of value 1 on S. Then obviously 〈1, g〉 = 0.
Thus

{
1

σ(B)

∫
B

|Pf − (Pf)B |2dσ
}1/2

=
〈Pf − (Pf)B , g〉

σ1/2(B)

=
〈Pf, g〉
σ1/2(B)

.(2.1)

To estimate 〈Pf, g〉, note that P1 = 1, which leads to 〈1, Pg〉 =
〈1, g〉 = 0. Hence

〈Pf, g〉 = 〈f, Pg〉 = 〈f − fB1 , Pg〉

=
∫
B1

(f − fB1)Pgdσ +
∞∑
k=2

∫
Bk\Bk−1

(f − fB1)Pgdσ.

(2.2)

Next we estimate the terms in (2.2), using the properties
of g and P . For the first term in (2.2), we have

∫
B1

|f − fB1 ||Pg|dσ ≤ ‖(f − fB1)χB1‖‖Pg‖ ≤ ‖(f − fB1)χB1‖.

15



Recall that σ(B1) ≤ 23nA0σ(B). Let C1 = (23nA0)1/2.
Then∫

B1

|f − fB1 ||Pg|dσ ≤ ‖(f − fB1)χB1‖

= σ1/2(B1)
{

1
σ(B1)

∫
B1

|f − fB1 |2dσ
}1/2

≤ C1σ
1/2(B)

{
1

σ(B1)

∫
B1

|f − fB1 |2dσ
}1/2

.(2.3)

To estimate the other terms in (2.2), we need the fact that
there is a constant C2 which depends only on n such that

(2.4)
∣∣∣∣ 1
(1 − 〈x, y〉)n − 1

(1 − 〈x, ζ〉)n
∣∣∣∣ ≤ C2

|1 − 〈y, ζ〉|1/2
|1 − 〈x, ζ〉|n+(1/2)

if y ∈ B and x ∈ S\B1.

Thus if y ∈ B and x ∈ Bk\Bk−1, k ≥ 2, then∣∣∣∣ 1
(1 − 〈x, y〉)n − 1

(1 − 〈x, ζ〉)n
∣∣∣∣ ≤ C2r

(2k−1r)2n+1

=
22n+1C2

2k
· 1
(2kr)2n

≤ C3

2kσ(Bk)
.

By the definition of g, we have g = 0 on S\B and∫
B

gdσ = 0.

Also, by the Cauchy-Schwarz inequality,∫
B

|g|dσ ≤ σ1/2(B)‖g‖ = σ1/2(B).
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For x ∈ S\B1 we have

(Pg)(x) =
∫
B

g(y)
(1 − 〈x, y〉)n dσ(y)

=
∫
B

(
1

(1 − 〈x, y〉)n − 1
(1 − 〈x, ζ〉)n

)
g(y)dσ(y).

Therefore
(2.6)

|(Pg)(x)| ≤ C3

2kσ(Bk)

∫
B

|g|dσ ≤ C3σ
1/2(B)

2kσ(Bk)
if x ∈ Bk\Bk−1,

k ≥ 2. Integrating the above over Bk\Bk−1, we see that
(2.7)∫

Bk\Bk−1

|Pg|dσ ≤ C3σ
1/2(B)

2kσ(Bk)
σ(Bk\Bk−1) ≤

C3

2k
σ1/2(B)

if k ≥ 2. Applying (2.6) and (2.7), for each k ≥ 2 we have

∫
Bk\Bk−1

|f − fB1 ||Pg|dσ ≤
∫
Bk\Bk−1

|f − fBk
||Pg|dσ

+ |fBk
− fB1 |

∫
Bk\Bk−1

|Pg|dσ

≤ C3σ
1/2(B)

2kσ(Bk)

∫
Bk\Bk−1

|f − fBk
|dσ

+
C3

2k
σ1/2(B)|fBk

− fB1 |.
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But

|fBk
− fB1 | ≤

k∑
j=2

|fBj
− fBj−1 | ≤

k∑
j=2

(
σ(Bj)
σ(Bj−1)

)

1
σ(Bj)

∫
Bj

|f − fBj
|dσ.

We see that if we set C4 = (1 + 23nA0)C3, then

∫
Bk\Bk−1

|f − fB1 ||Pg|dσ ≤ C4

2k

k∑
j=2

σ1/2(B)
σ(Bj)

∫
Bj

|f − fBj |dσ.

Therefore

∞∑
k=2

∫
Bk\Bk−1

|f − fB1 ||Pg|dσ

≤ C4σ
1/2(B)

∞∑
k=2

1
2k

k∑
j=2

1
σ(Bj)

∫
Bj

|f − fBj |dσ

= C4σ
1/2(B)

∞∑
j=2


 ∞∑
k=j

1
2k


 1
σ(Bj)

∫
Bj

|f − fBj
|dσ

= 2C4σ
1/2(B)

∞∑
j=2

2−j

σ(Bj)

∫
Bj

|f − fBj
|dσ.

Combining this with (2.1-3), we find that C2.2 = max{C1, 2C4}
will do for the proposition. �
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3. Möbius Transform

For each z ∈ Cn with 0 < |z| < 1, let

ϕz(w) =
1

1 − 〈w, z〉

{
z − 〈w, z〉

|z|2 z − (1 − |z|2)1/2
(
w − 〈w, z〉

|z|2 z

)}
,

|w| ≤ 1. Then ϕz is an involution, i.e., ϕz ◦ ϕz = id.

The formula

(Uzg)(ξ) = g(ϕz(ξ))kz(ξ), ξ ∈ S and g ∈ L2(S, dσ),

defines a unitary operator with the property [Uz, P ] = 0. More-
over, there exist constants 0 < α < β <∞ such that

(3.3) α‖f ◦ ϕa‖BMO ≤ β‖f‖BMO

for all f ∈ BMO and a ∈ Cn with 0 < |a| < 1.

Lemma 3.1. Given any f ∈ BMO and z ∈ Cn with 0 < |z| <
1, there exist functions hz and vz satisfying the following four
conditions:

(a) hz ∈ H2(S).
(b) hz + vz = f − Pf .
(c) ‖vzkz‖ = ‖Hfkz‖.
(d) ‖vz‖BMO ≤ C3.1‖f‖BMO, where the constant C3.1

depends only on the complex dimension n.
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Proof. Given f ∈ BMO and 0 < |z| < 1, set

hz = (P (f ◦ ϕz)) ◦ ϕz − Pf

and
vz = f − (P (f ◦ ϕz)) ◦ ϕz.

Then (a) and (b) are obvious. Using the identities ϕz ◦ ϕz = id
and [Uz, P ] = 0, we have

‖Hfkz‖ = ‖(1 − P )Mfkz‖
= ‖(1 − P )Mf◦ϕz◦ϕzkz‖
= ‖(1 − P )UzMf◦ϕz1‖
= ‖Uz(1 − P )Mf◦ϕz1‖
= ‖Uz{f ◦ ϕz − P (f ◦ ϕz)}‖
= ‖vzkz‖,

proving (c). To verify (d), note that Proposition 2.2 provides
a constant C such that ‖Pη‖BMO ≤ C‖η‖BMO for every η ∈
BMO. Combining this with (3.3), we have

‖vz‖BMO ≤ ‖f‖BMO + ‖(P (f ◦ ϕz)) ◦ ϕz‖BMO

≤ ‖f‖BMO + (β/α)‖P (f ◦ ϕz)‖BMO

≤ ‖f‖BMO + (β/α)C‖f ◦ ϕz‖BMO

≤ ‖f‖BMO + (β/α)2C‖f‖BMO.

Thus C3.1 = 1 + (β/α)2C will do for (d). �
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Proof of Theorem 1.6. We first pick an integer L > 2 such that

(3.9) C2.2C3.1

∞∑
k=L+1

2−k ≤ 1
4
,

where C2.2 and C3.1 are the constants in Proposition 2.2 and
lemma 3.1 respectively. Let f ∈ BMO be given and write

u = f − Pf.

Proposition 2.2 tells us that ‖u‖BMO < ∞ (crucial). By this
finiteness, there exist ξ ∈ S and r > 0 such that

(3.10)
1

σ(B(ξ, r))

∫
B(ξ,r)

|u− uB(ξ,r)|dσ ≥ 1
2
‖u‖BMO.

Write
B = B(ξ, r)

as in the proof of Theorem 1.3. Also, let ρ = 2Lr. Now the
proof divides into two cases.

(1) Suppose that ρ < 1/2. In this case we define

z = (1 − ρ2)1/2ξ.

Applying Lemma 3.1 to u and z, we obtain hz and vz such that
(i) hz ∈ H2(S);
(ii) hz + vz = u− Pu = u;
(iii) ‖vzkz‖ = ‖Hukz‖;
(iv) ‖vz‖BMO ≤ C3.1‖u‖BMO.
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By (i) and (ii), hz = −Pvz. Applying Proposition 2.2 to vz
and B, we have

{
1

σ(B)

∫
B

|hz − (hz)B |2dσ
}1/2

=
{

1
σ(B)

∫
B

|Pvz − (Pvz)B |2dσ
}1/2

≤ C2.2

L∑
k=1

{
1

σ(Bk)

∫
Bk

|vz − (vz)Bk
|2dσ

}1/2

+ C2.2

∞∑
k=L+1

2−k‖vz‖BMO,

where Bk = B(ξ, 2kr), k ≥ 1. We have

L∑
k=1

{
1

σ(Bk)

∫
Bk

|vz − (vz)Bk
|2dσ

}1/2

≤ L
σ(BL)
σ(B1)

{
1

σ(BL)

∫
BL

|vz − (vz)BL
|2dσ

}1/2

.

Combining the above with (iv) and with (3.9), we see that

1
σ(B)

∫
B

|hz − (hz)B |dσ

≤ C2.2C(n,L)
{

1
σ(BL)

∫
BL

|vz − (vz)BL
|2dσ

}1/2

+
1
4
‖u‖BMO,

where C(n,L) depends only on n and L.
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It is easy to show that

{
1

σ(BL)

∫
BL

|vz − (vz)BL
|2dσ

}1/2 ≤
{

1
σ(BL)

∫
BL

|vz|2dσ
}1/2

≤ 8n/2‖vzkz‖ = 8n/2‖Hukz‖.

Since u = hz + vz, from the above we deduce

1
σ(B)

∫
B

|u−uB |dσ ≤ (1+C2.2)C(n,L)8n/2‖Hukz‖+
1
4
‖u‖BMO.

Recalling (3.10) and using the fact that Hu = Hf , we now have

1
2
‖u‖BMO ≤ (1 + C2.2)C(n,L)8n/2‖Hfkz‖ +

1
4
‖u‖BMO.

Cancelling out (1/4)‖u‖BMO form both sides, we obtain

1
4
‖u‖BMO ≤ (1 + C2.2)C(n,L)8n/2‖Hfkz‖

in the case ρ < 1/2. (Note that this last step required the fact
‖u‖BMO <∞.)

(2) Suppose that ρ ≥ 1/2. This the trivial case. �

Remark. In the above proof, the fact ‖u‖BMO < ∞ was used
non-trivially in two places. This is the reason why Theorem 1.9
requires a separate proof.
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4. Smoothing

Let U = U(n) denote the collection of unitary transfor-
mations on Cn. For each U ∈ U , define the operator WU :
L2(S, dσ) → L2(S, dσ) by the formula

(WUg)(ζ) = g(Uζ),

g ∈ L2(S, dσ). By the invariance of σ, WU is a unitary operator
on L2(S, dσ). Obviously, [P,WU ] = 0 for every U ∈ U .

With the usual multiplication and topology, U is a compact
group. Write dU for the Haar measure on U .

It is easy to see that for each g ∈ L2(S, dσ), the map
U �→ WUg is continuous with respect to the norm topology
of L2(S, dσ). Let Φ be a continuous function on U . Then for
each g ∈ L2(S, dσ) we can define the integral

YΦg =
∫
U

Φ(U)WUgdU

in the sense that

〈YΦg, f〉 =
∫
U

Φ(U)〈WUg, f〉dU

for every f ∈ L2(S, dσ).

Lemma 4.1. If Φ ∈ C(U), then ‖YΦg‖∞ < ∞ for every g ∈
L2(S, dσ).
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Proof. Recall that the equality
∫
U
f(Uζ)dU =

∫
fdσ

holds for all f ∈ C(S) and ζ ∈ S. Thus for q, p ∈ C(S) we have

|〈YΦq, p〉| =
∣∣∣∣
∫
U

Φ(U)〈WUq, p〉dU
∣∣∣∣

=
∣∣∣∣
∫
U

Φ(U)
{∫

q(Uζ)p(ζ)dσ(ζ)
}
dU

∣∣∣∣
=

∣∣∣∣
∫ {∫

U
Φ(U)q(Uζ)dU

}
p(ζ)dσ(ζ)

∣∣∣∣
≤ ‖Φ‖∞

∫ {∫
U
|q(Uζ)|dU

}
|p(ζ)|dσ(ζ)

= ‖Φ‖∞
∫

|q|dσ
∫

|p|dσ.

Since YΦ is obviously a bounded operator on L2(S, dσ) and since
C(S) is dense in L2(S, dσ), the above implies

|〈YΦg, f〉| ≤ ‖Φ‖∞
∫

|g|dσ
∫

|f |dσ

for all g, f ∈ L2(S, dσ). This obviously means ‖YΦg‖∞ <∞. �
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Proof of Theorem 1.9. Let η : [0,∞) → [0, 1] be a continuous
function satisfying the conditions that η = 1 on [0, 1] and that
η = 0 on [2,∞). For each j ∈ N, define

Φj(U) =
η(j‖1 − U‖)∫

U η(j‖1 − V ‖)dV , U ∈ U .

Then the following properties are obvious:
(1) Φj ∈ C(U).
(2) Φj ≥ 0 on U .
(3) Φj(U) = 0 if ‖1 − U‖ ≥ 2/j.
(4)

∫
U Φj(U)dU = 1.

Let ψ be given as in the statement of the theorem and denote

R = sup
|z|<1

‖Hψkz‖.

Furthermore, for each j ∈ N denote

ψj = YΦjψ.

By Lemma 4.1, ‖ψj‖∞ < ∞. Thus we can apply Theorem 1.6
to obtain

(4.1) ‖ψj − Pψj‖BMO ≤ C sup
|z|<1

‖Hψjkz‖,

where C depends only on the complex dimension n. We claim
that

(4.2) sup
|z|<1

‖Hψj
kz‖ ≤ R

for every j ∈ N.
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To prove (4.2), note that for all U ∈ U and z ∈ Cn with
|z| < 1, we have WUHψWU∗kz = HWUψkz and WU∗kz = kUz.
Thus for all j ∈ N, |z| < 1 and f ∈ L2(S, dσ) �H2(S) we have

〈Hψj
kz, f〉 = 〈ψjkz, f〉 = 〈ψj , k̄zf〉 = 〈YΦj

ψ, k̄zf〉

=
∫
U

Φj(U)〈WUψ, k̄zf〉dU

=
∫
U

Φj(U)〈kzWUψ, f〉dU

=
∫
U

Φj(U)〈HWUψkz, f〉dU

=
∫
U

Φj(U)〈WUHψkUz, f〉dU.

By properties (2) and (4) we now have

|〈Hψjkz, f〉| ≤
∫
U

Φj(U)‖HψkUz‖‖f‖dU ≤ R‖f‖

for all j ∈ N, |z| < 1 and f ∈ L2(S, dσ) �H2(S). This proves
(4.2).

Now consider an arbitrary B = B(ζ, r), where ζ ∈ S and
r > 0. By (4.1) and (4.2),

(4.3)
1

σ(B)

∫
B

|ψj − Pψj − (ψj − Pψj)B |dσ ≤ CR

for every j ∈ N. Clearly, the proof will be complete if we can
show limj→∞ ‖ψj − ψ‖ = 0, for this convergence and (4.3) to-
gether will give us

1
σ(B)

∫
B

|ψ − Pψ − (ψ − Pψ)B |dσ ≤ CR.
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Thus the proof is now reduced to that of the convergence

(4.4) s- lim
j→∞

YΦj
= 1

on the Hilbert space L2(S, dσ). But this works just like in the
case of convolution and is absolutely routine.

It is easy to see that if q ∈ C(S), then

(YΦjq)(ζ) =
∫
U

Φj(U)q(Uζ)dU, ζ ∈ S.

Applying properties (1)-(4), we have

(4.5) lim
j→∞

‖YΦjq − q‖∞ = 0, q ∈ C(S).

Also, by (2) and (4), the norm of the operator YΦj on the Hilbert
space L2(S, dσ) satisfies the estimate ‖YΦj‖ ≤ 1. Obviously,
(4.4) follows from (4.5) and this norm bound. �
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5. Open Questions

Suppose that n ≥ 2. Recall that what initially lead to this
investigation was the consideration of the Banach subalgebra

A = {f ∈ L∞(S, dσ) : Hf is compact}

of L∞(S, dσ). Davie and Jewell showed that

A �= H∞(S) + C(S).

We have figured out that

(5.1) A = {f ∈ L∞(S, dσ) : f − Pf ∈ VMO},

which is progress. One can see that (5.1) and the fact that
A is a Banach algebra together have interesting multiplicative
consequences.

On the other hand, there is plenty of unknown about A.
To discuss the unknown, observe that

A ⊃ H∞(S) + {VMO ∩ L∞(S, dσ)}.
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The following questions were raised by Davie and Jewell in
1977. More than thirty years later, these questions remain open.

Question 1. Is it true that

A = H∞(S) + {VMO ∩ L∞(S, dσ)}?

Note that an affirmative answer to Question 1 would im-
ply that H∞(S) + {VMO ∩L∞(S, dσ)} is a Banach subalgebra
of L∞(S, dσ). Therefore the following are weaker versions of
Question 1.

Question 2. Is the subset

H∞(S) + {VMO ∩ L∞(S, dσ)}

closed in L∞(S, dσ) with respect to the norm ‖.‖∞?

Question 3. Is the ‖.‖∞-closure of

H∞(S) + {VMO ∩ L∞(S, dσ)}

an algebra?

Question 4. Does the Banach algebra generated by

H∞(S) + {VMO ∩ L∞(S, dσ)}

coincide with A?
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