BOUNDEDNESS AND COMPACTNESS OF
HANKEL OPERATORS ON THE SPHERE



1. Introduction
S ={z¢€ C":|z| =1}, the unit sphere in C".

o = the positive, regular Borel measure on S which is
invariant under the orthogonal group O(2n).

Normalization: o(S) = 1.

The Cauchy projection P is defined by the integral formula

Prw) = [ o), el <1

P is the orthogonal projection from L?(S, do) onto
the Hardy space H?(S).

Normalized reproducing kernel for H?(S):

(1—[=[*)"?

S (e

w| <1, |z| < 1.




The formula

(1.1) d(¢, &) =11 - (¢, OV, ¢ ees,

defines a metric on the sphere (anisotropic metric).

For ( € S and r > 0, denote

B({(,r)={zx e S:|1— (az,C>|1/2 <r}

There is a constant Ag € (27", 00) such that
272" < o(B((, 1)) < Agr®™

for all ( € S and 0 < r < v/2.

A function f € L'(S,do) is said to have bounded mean
oscillation if

1
JllBMO = sup / f = fBrldo < oo,
17llsni0 = 808 SBC) Joie T 7260

r>0

where fp = [, fdo/o(B), the average of f over B. A function
f € LY(S,do) is said to have vanishing mean oscillation if

1

lim sup / f— fBc.|do = 0.
510 ¢es o(B(¢, 7)) B(C,r)| e
0<r<d

BMO = all functions of bounded mean oscillation on S.

VMO = all functions of vanishing mean oscillation on S.



The Hankel operator Hy : H*(S) — L*(S,do) is defined by
Hy = (1 - P)My|H¥(S).
Relation between commutator and Hankel operators:
[P, My| = H;— Hy,

We can think of [P, My] as a matrix with respect to the space
decomposition

L*(S,do) = H*(S) @ {H*(S)} .
That is, with respect to this space decomposition,

[P,Mf]:[ ; H;]

—Hy 0
A fundamental result:

Theorem. (Coifman, Rochberg and Weiss, 1976)
(a) [P, My] is bounded if and only if f € BMO.
(b) [P, My] is compact if and only if f € VMO.
(¢) Moreover, [|[P, Ml < C||f]lBmo-

The “only if” part is easy; it follows from the inequality
I(f = (s k) |? < ([ Hpke ||+ | Hpk .

The hard part of this theorem is the “if” part.



A basic fact: if h € H?(S), then Hj, = 0. Therefore
Hf = Hf_pf.

Also,
f—Pf=Hl

Recall that there is a famous T'1-Theorem for singular inetgral
operators on L?. In analogy with that, the theorem of Coifman,
Rochberg and Weiss implies what might be called

H1-Theorem.
(a) If f — Pf € BMO, then H/ is bounded.
(b) If f — Pf € VMO, then Hy is compact.

But in the T'1-Theorem, the sufficient conditions for bound-
edness are well known to be necessary. So one naturally asks,
what happens in the case of the H1-Theorem 7

This talk is about the various converses to the H1-Theorem
stated above.

In general, there are two kinds of problems in the theory
of Hankel operators, namely “two-sided” problems and “one-
sided” problems. A “two-sided” problem concerns Hy and H ¢
simultaneously. “T'wo-sided” problems are equivalent to the
study of the commutator [P, M¢]. Therefore there is a large
body of literature on “two-sided” problems.



By contrast, a “one-sided” problem is the study of H; alone.
Almost invariably, a “one-sided” problem is more difficult than
the corresponding “two-sided” problem. The reason for this is
very simple: for a “one-sided” problem, the inequality

I(f = (fhs b))k |1 < | Hpho|* + || H gk ||

is useless, because one assumes nothing about Hz. To solve
a “one-sided” problem, one must find a way to control mean
oscillation by other methods.

“One-sided” problems are all about these other methods.

In the case n = 1, i.e., on the unit circle, because

(1.3) f—Pf e H?

every “one-sided” problem is actually a “two-sided” problem.
But when n > 2, (1.3) no longer holds, and a difference be-
tween “two-sided” problems and “one-sided” problems appears.
The main difficulty in “one-sided” problems is the fact that the
subspace

(1.4) L*(S,do) © {H*(S) + H2(S)}

is huge and intractable when n > 2.



A good example of a “one-sided” result is the following:

Theorem 1.1. (Dechao Zheng) Let f € BMO. Then the Hankel
operator Hy is compact if and only if

lim ||Hsk,| = 0.
lim |[H k|

Although this is the best existing result on the compactness
of Hy, questions still remain. Note that Theorem 1.1 is really a

statement about the FAMILY

{Hf : fEBMO}

as a whole. We know that a necessary condition for any operator
X to be compact is

1.5 lim || Xk.| = 0.
(1.5) lim | Xk |
What Theorem 1.1 really says is that if

X € {Hy: f € BMO},

then (1.5) is also a sufficient condition for X to be compact.
This is certainly very nice, but it does not say much about f.

We would like to determine the compactness of Hy in terms
of f, such as the membership of f in some easily-defined function
class.



As it turns out, the Hankel operator H; actually tells us a
great deal about the commutator [P, Ms_ps]. That is, in many
situations, a “one-sided” problem actually has a “two-sided”
solution! In other words, notwithstanding the size of

L?(S,do) © {H?*(S) + H2(5)},

the theory of Hankel operators in the case n > 2 resembles the
case n = 1 in more ways than we previously realized.



What initially led to this investigation was the considera-
tion of the subset

A={f € L>*(S,do): Hy is compact}

of L>°(S,do). As Davie and Jewell observed, A is in fact a
Banach subalgebra of L°°(S, do).

When n = 1, i.e., in the case of the unit circle, it is well
known that

A= H* +C(T),

which is unquestionably a direct condition for compactness. But
when n > 2, A is known to be strictly larger than H>(S)+C(.5)
(Davie and Jewell).

So here at least, there is a genuine difference between the
case n = 1 and the case n > 2. But wait, for difference is not
the whole story. Even for A, there is similarity between the case
n = 1 and the case n > 2.

Let us also consider the subset
Ay ={f € L>=(S,do): f — Pf € VMO}

of L*>°(S,do). By the H1-Theorem of Coifman, Rochberg and
Weiss we have

.A1C.A.

One might say that 4 is the obvious part of A. Our first result
is the reverse inclusion, i.e., A consists of nothing but its obvious
part.

Theorem 1.2. A C A;.

As it turns out, this result can be refined and improved in
many different ways.



For each f € L'(S,do) and each ¢ € S, denote

1

LMO(f)(¢) = lim sup / [ — IBerldo,
() 010 B(¢,r)CB(C,0) o(B(§,)) B(f,r)‘ e

which is called the local mean oscillation of f at (.

Theorem 1.3. If f is a function in BMO and ( is a point in S
such that

(1.6) i, ||H .|| = 0,
|z]<1

then LMO(f — Pf)(¢) = 0.

Corollary 1.4. Suppose that f € BMO. If

(L.7) lim |[H k.|| =0,

then f — Pf € VMO.

Corollary 1.4 explains why Theorem 1.1 holds: if f belongs
to BMO and satisfies (1.7), then f — Pf € VMO, which im-
plies the compactness of [P, Ms_p¢], which in turn implies the
compactness of Hy_py = Hy.

Corollary 1.5. Suppose that f € BMO and that
f L H*(S)+ H2(S).

Then Hy is compact if and only if Hz is compact.

This is reminds us a theorem about Hankel operators on the
Segal-Bargmann space H?(C",du) due to Berger and Coburn.

10



Theorem 1.6. There exists a constant 0 < C < oo which
depends only on the complex dimension n such that

|f = Pfllemo < C|Sl|1p | H k.|
z|<1

for every f € BMO.

This and the H1-Theorem of Coifman, Rochberg and Weiss
together give us the inequality
(1.8) 112, My—pyslll < CrllHl,

f € BMO.

Corollary 1.7. There exists a constant 0 < C < oo which

depends only on the complexr dimension n such that for f €
BMO satisfying the condition f L H?(S) + H2(S), we have

CH Hyll < |1 Hpll < C|lHll.

Suppose that A is a bounded operator on a Hilbert space
‘H. Recall that the essential norm of A is defined by the formula

|Allo = inf{||A + K| : K is compact on H}.

An analogue of (1.8) holds for essential norms.

Theorem 1.8. There exists a constant 0 < C' < oo which
depends only on the complex dimension n such that

I[P, My—prlllo < CllHyllo
for every f € BMO.

11



Note that in all the results above the condition f € BMO
was a part of the assumption. But the bound provided by The-
orem 1.6 enables us to deal with symbol functions which are not
a priori assumed to be in BMO. For ¢ € L?(S, do), we can still
define the Hankel operator H,, on the dense subset H>(S) of
H?(S). That is, Hyh = (1 — P)(¢h) for h € H>(S).

Theorem 1.9. Ifv € L?(S,do) and if

sup ||Hyk.|| < oo,
|z|<1

then ¢ — Py € BMO.

Combining Theorem 1.9 and Corollary 1.4, and using the

fact that Hy = Hy_py, we have the following improvement of
Theorem 1.1:

Corollary 1.10. Suppose that ) € L?(S,do) and that

lim (|Hyk,|| = 0.
Wl” whke||

Then ¢ — Py € VMO. Consequently H,, extends to a compact
operator from H?(S) to L*(S,do) © H?(S).

12



Summarizing, we now have the

Complete Version of H1-Theorem.

Let f € L?(S,do). Then

(a) Hy is bounded if and only if f — Pf € BMO;
(b) Hy is compact if and only if f — Pf € VMO.

Recall that the “if” part is due to Coifman, Rochberg and
Weiss; our contribution is the “only if” part.

13



2. An Estimate of Mean Oscillation

Coifman, Rochberg and Weiss showed that the Cauchy pro-

jection P maps L*° (S, do) into BMO. In fact, something slightly
stronger is also true:

Proposition 2.1. If f € BMO, then Pf € BMO.

As it turns out, the key to the proofs of the results in Section
1 is the following quantitative refinement of Proposition 2.1.

Proposition 2.2. There exists a constant 0 < Cy5 < 00 which
depends only on the complex dimension n such that for all f €
L?(S,do) and B = B({,r), where ¢ € S and r > 0, we have

{U(lB) [ 1pi- (Pf)B|2da}1/2

| 1/2
SCZ'Z{U(Bl) /Bl f_fBl|2d0}

2—k
o2y s [ 17 = fuudde

where By, = B(C, 2%r) for every k > 1.

14



Proof. Given f € L?*(S,do) and B = B({,r), we may assume
|(Pf—(Pf)s)xs|l # 0, for otherwise there is nothing to prove.
Define

1
H(Pf - (Pf)B)XBH

g= (Pf—(Pf)B)xB;

which is, of course, a unit vector in L?(S,do). Write 1 for the

constant function of value 1 on S. Then obviously (1,g) = 0.
Thus

1
o(B

(2.1)

1/2 B
)/B‘Pf— (Pf)B‘QdU} = <Pfg1/(2f()£))B7g>

_ (Pt g
o172(B)

To estimate (Pf, g), note that P1 = 1, which leads to (1, Pg) =
(1,g) = 0. Hence

(Pf,g) = (f,Pg) = (f — fB,, Pg)
(2.2)
/ (f /B, Pgd0+2/ f—fBl)P_ng'.

Bi\Bk_1

Next we estimate the terms in (2.2), using the properties
of g and P. For the first term in (2.2), we have

/B |f = . |IPgldo < [|(f = fe)xB, Pl < I(f = fB:)x8: -

15



Recall that o(B;) < 23"Ago(B). Let Cp = (237 Ag)Y/2.
Then

/B 1 — foullPaldo < |(f — f5)x

1 1/2
= 01/2(31) {O‘(Bl) /B f — fBl\QdU}

(2.3) < C10l2(B) {0(21) /B ]f—f31\2da}1/2.

To estimate the other terms in (2.2), we need the fact that
there is a constant Cy which depends only on n such that

1 . 1 |1 - <y7C>’1/2
24) '(1 ")y A=) = Aoy
if y € B and x € S\B;.

Thus if y € B and « € Bi\Bk_1, k > 2, then

< Cs

' 1 _ 1 < CQ?“
L=y A= {a, )|~ @1
22, 1 C3

< .
2k (2Fr)2n = 2kg(By)
By the definition of g, we have ¢ = 0 on S\ B and

/ gdo = 0.
B

Also, by the Cauchy-Schwarz inequality,

/ lgldo < o**(B)||g|| = */*(B).
B

16



For x € S\ By we have

o)) = [ 2ot

N /B ((1 — <i;, N (1— é’ <>)n) 9(y)do(y).

Therefore
(2.6)
Cg 030'1/2(B) .
< — <
(Po)@) < gt [ laldr < ST it @ e BB,

k > 2. Integrating the above over By\Bj_1, we see that
(2.7)

Pqldo < B.\B. ) < 225Y2(B
/Bk\Bkl‘ gldo < %o (By) o(Brp\Br-1) < o /*(B)

if £ > 2. Applying (2.6) and (2.7), for each k > 2 we have

/ f — fa||Pgldo < / f — f5,||Pgldo
B\ Bk -1

Bip\Br—1
+‘ka:_f31’ ’Pg’dO'
Bi\Br_1
030'1/2(3)
< — d
= 2kg(By) /Bk\Bkl = Ialdo

C
+ S22 (B) f, — f

17



But
k k
‘ka_fBl‘SZ‘fBj_fBj 1 Z( )
j=2 j=
1

a(BJ)/ |f — fB;|do.

We see that if we set Cy = (1 + 23" Ay)C3, then

Cy k 1/2
= toul\Palir < G ST [ 17— o i
/Bk\B“ sullPgldo < 52T V=15,

71=2

Therefore
S [ 1= fmlpgldo
k—2 Y Brk\Bk—1
1IN 1
< Cyo'?(B)Y  — / |f — [B;|do
o kj:é o(B;) JB,

2
= Cio(B) 3 (Z ¥ ) 518 Jy, 1 Tl

:2040‘1/2(B)Zo_2(;7j) /B_‘f_fBj‘dO-.

Combining this with (2.1-3), we find that C5 o = max{C7,2C,}
will do for the proposition. []
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3. Mobius Transform

For each z € C" with 0 < |z]| < 1, let
@Z(w) =
1 <w Z> 271 <w Z>
- . ’ . 1 . /2 . ’
= (w,2) { EEE R G e U

|lw| < 1. Then ¢, is an involution, i.e., ¢, o ¢, = id.

The formula

(U-9)(&) = g(p=()k=(€), €€ S and g€ L*(S,do),

defines a unitary operator with the property [U,, P] = 0. More-
over, there exist constants 0 < o < < oo such that

(3.3) allf o pallBMmo < B fllsmo

for all f € BMO and a € C" with 0 < |a] < 1.

Lemma 3.1. Given any f € BMO and z € C" with 0 < |z| <
1, there exist functions h, and v, satisfying the following four
conditions:

(a) h, € H?(S).

(b) hy +v, =f—Pf.

(¢) vk = | H gk |].

(d) ||vsllBMo < CsallfllBMmo, where the constant Cs 4

depends only on the complex dimension n.
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Proof. Given f € BMO and 0 < |z] < 1, set

he = (P(fop:))op. — Pf

and
UZ:f—(P(ngDZ))OQOZ.

Then (a) and (b) are obvious. Using the identities ¢, o ¢, = id
and [U,, P] = 0, we have

[Hpk.|| = [|(1 — P)Myk,|
= [[(1 = P)Myop.op. k-
= |(1 = P)U.Myop 1
= [|[U.(1 = P)Myop 1
= |UAfop. — P(fop.)}
= ||vzk=],

proving (c). To verify (d), note that Proposition 2.2 provides
a constant C such that ||Pn|smo < C||n||lsmo for every n €
BMO. Combining this with (3.3), we have

[vzllBMo < [IfllBmo + [[(P(f 0 ¢2)) o ¢z llBMO
< [[fllBmo + (B/)|P(f o ¢2)lBMO
< [[fllBmo + (B/a)C||f o - ||BMO
< || fllsmo + (B/a)*C|| flsmo-

Thus C31 =1+ (3/a)?C will do for (d). O

20



Proof of Theorem 1.6. We first pick an integer L > 2 such that

o |

(3.9) C2.2C51 Z 27k <
k=L+1

where Cy5 and C31 are the constants in Proposition 2.2 and
lemma 3.1 respectively. Let f € BMO be given and write

u=f—Pf.

Proposition 2.2 tells us that ||u|lpmo < oo (crucial). By this
finiteness, there exist £ € S and r > 0 such that

1

(3.10) ! / | do > Ll
. U—upeE,r O -~ —|[|U||[BMO-
o(B(,7)) B(&,r) (&r) 2

Write
B = B(,r)

as in the proof of Theorem 1.3. Also, let p = 2%r. Now the
proof divides into two cases.

(1) Suppose that p < 1/2. In this case we define

2= (1-p")"%.

Applying Lemma 3.1 to u and z, we obtain h, and v, such that
(i) h, € H?(S);
(ii)) hy + v, = u — Pu = u;
(iii) Hvzkz” - HHusza
(iv) ||lvzllBmo < Cs.1|lulBMmo-

21



By (i) and (ii), h, = —Pwv,. Applying Proposition 2.2 to v,
and B, we have

{5 [ Ihe- <hz>B\2do}1/z

{5 [ 1P <Pvz>312da}1/2

L

1 1/2
< . 2

(0. @)
+Caa Y 27"|v.|lBMo,
k=L+1

where By, = B(£,2%r), k > 1. We have

< b [ o)

Combining the above with (iv) and with (3.9), we see that
i [ I = (sl
z — \z)B|G0O
o(B) JB

1 V2o
< CaaCOn D) { s [ o= @ Poh 4 lullenco

where C(n, L) depends only on n and L.
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It is easy to show that

1 1/2 1 1/2
2 2
v, — (v, do < v, |“do
Vo Jy, e Cmlan < { s [ el
< 8"2||v.k.|| = 8"/?| Hyk-||.

Since u = h, + v,, from the above we deduce

1 1
B / lu—up|do < (1+C2.2)C(n, L)8n/2|’Hukz”+_HU’HBMO'
) /5 !

o
Recalling (3.10) and using the fact that H,, = H¢, we now have
1 1
Sllullsyo < (1+ Ca2)C(n, L)8™?|[Hpk: || + 7 ullsao.
Cancelling out (1/4)||u||mo form both sides, we obtain
Flullorio < (14 Ca)Cln, L)S™2 | Hk |

in the case p < 1/2. (Note that this last step required the fact
[ullBmo < 00.)

(2) Suppose that p > 1/2. This the trivial case. [

Remark. In the above proof, the fact ||u||pmo < oo was used
non-trivially in two places. This is the reason why Theorem 1.9
requires a separate proof.

23



4. Smoothing

Let U = U(n) denote the collection of unitary transfor-
mations on C". For each U € U, define the operator Wy :
L?(S,do) — L?(S,do) by the formula

(Wug)(C) = g(UQ),

g € L?(S,do). By the invariance of o, Wy is a unitary operator
on L?(S,do). Obviously, [P, W] = 0 for every U € U.

With the usual multiplication and topology, U is a compact
group. Write dU for the Haar measure on .

It is easy to see that for each g € L*(S,do), the map
U — Wpyg is continuous with respect to the norm topology

of L*(S,do). Let ® be a continuous function on . Then for
each g € L?(S,do) we can define the integral

Yog = | o) Wyga
U
in the sense that

Yog., f) = / S (Wirg, f)dU

u

for every f € L?(S,do).

Lemma 4.1. If ® € C(U), then ||Yog|lco < o0 for every g €
L?*(S,do).
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Proof. Recall that the equality

/u FUOd = | sdo

holds for all f € C(S) and ¢ € S. Thus for ¢q,p € C(S) we have

Vag.p)l = | | SW)Wua,p)d \

-| [ 2@ { [aweiiaeo) | av]
-|[{ [ swrawaav | cias <<>'
srcbuoo/{/ 0(U0) ydU} Oldote
— ] [ laldo | Ipido

Since Y3 is obviously a bounded operator on L?(S, do) and since
C(S) is dense in L?(S, do), the above implies

(Yag, ) < @] / 9ldo / fldo

for all g, f € L?(S,do). This obviously means ||Y3g|lco < 00. O
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Proof of Theorem 1.9. Let n : [0,00) — [0,1] be a continuous
function satisfying the conditions that n = 1 on [0, 1] and that
n =0 on [2,00). For each j € N, define
n(lt=Ul)
JunGlILt=Vi)av

Then the following properties are obvious:

®;(U) =

(1) @; € C(U).

(2) @, >0 onU.

() iU )—01f||1—U|!22/j.
fu (U)dU = 1.

Let w be given as in the statement of the theorem and denote

R = sup ||[Hyk.||.
|z|<1

Furthermore, for each 57 € N denote

Y = Yo, 1.

By Lemma 4.1, ||4;]lcc < 0o. Thus we can apply Theorem 1.6
to obtain

(4.1) 14; — Pjllmo < C Sup [Hoy, k|,
z|<1

where C' depends only on the complex dimension n. We claim
that

(42) sup | Hy, k.| < R
|z|<1

for every 5 € N.
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To prove (4.2), note that for all U € U and z € C" with
‘Z’ < 1, we have WUH¢WU*kZ = HWU¢kZ and Wy«k, = ky,.
Thus for all j € N, |2| <1 and f € L*(S,do) © H?(S) we have

<H¢jk27f> — <¢Jk27f> — <¢j7l_€2f> — <Y@jwal_€zf>
= | &)Wy k. pyav

_ /u B (U) (k. Wortp, £)dU
:L¢j(U)<Hwakz,f>dU

_ /u &, (U) (W Hyky ., £)dU

By properties (2) and (4) we now have

(Hy ke f)] < /u & ,(U) | Hyko-llIf 114U < RIS

for all j € N, |z| < 1 and f € L*(S,do) © H?(S). This proves
(4.2).

Now consider an arbitrary B = B((,r), where ¢ € S and
r > 0. By (41 ) and (4.2),

(4.3) / [Y; — Py — — Py;)p|ldo < CR
for every 5 € N. Clearly, the proof will be complete if we can

show lim;_, ||¢); — 9| = 0, for this convergence and (4.3) to-
gether will give us

1
5 [ 6= Pv— (= Pu)slde < O
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Thus the proof is now reduced to that of the convergence

(4.4) s- lim Yp, =1

J—00

on the Hilbert space L?(S,do). But this works just like in the
case of convolution and is absolutely routine.

It is easy to see that if ¢ € C'(S), then

Yo,/ = | &)U, ¢es.

u

Applying properties (1)-(4), we have

(4.5) jlgglo Y3, — qlloc =0, q € C(S5).

Also, by (2) and (4), the norm of the operator Y. on the Hilbert
space L*(S,do) satisfies the estimate ||Ys,|| < 1. Obviously,
(4.4) follows from (4.5) and this norm bound. [
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5. Open Questions

Suppose that n > 2. Recall that what initially lead to this
investigation was the consideration of the Banach subalgebra

A={f e L>*(S,do): Hy is compact}
of L*°(S,do). Davie and Jewell showed that

A+ H®(S) + C(S).

We have figured out that

(5.1) A={f e L>(S,do): f—Pf e VMO},
which is progress. One can see that (5.1) and the fact that

A is a Banach algebra together have interesting multiplicative
consequences.

On the other hand, there is plenty of unknown about A.

To discuss the unknown, observe that

A D H™(S)+{VMONL>(S,do)}.
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The following questions were raised by Davie and Jewell in
1977. More than thirty years later, these questions remain open.

Question 1. Is it true that

A= H>(S) + {VMO N L>®(S, do)}?

Note that an affirmative answer to Question 1 would im-
ply that H>(S) + {VMO N L*°(S,do)} is a Banach subalgebra
of L>°(S,do). Therefore the following are weaker versions of
Question 1.

Question 2. Is the subset
H*>(S)+{VMO N L>(S,do)}
closed in L*>(S, do) with respect to the norm ||.||o?

Question 3. Is the ||.||s-closure of
H>(S)+{VMO N L>(S,do)}
an algebra?

Question 4. Does the Banach algebra generated by
H>(S)+{VMON L>(S,do)}

coincide with A?
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