Discrepancy and Small Ball Inequalities

Dmitriy Bilyk & Michael Lacey & Armen Vagharshakyan

February 20, 2008

Quantitative Estimates of Uniform Distribution

$$[0,(x_1,\ldots,x_d)]=\prod_{t=1}^d[0,x_t]$$

Quantitative Estimates of Uniform Distribution

$$[0,(x_1,\ldots,x_d)]=\prod_{t=1}^{a}[0,x_t]$$

Definition

The Discrepancy Function of $\mathcal{P}_N = \{x_1, \dots, x_N\} \subset [0, 1]^d$ is

$$D_N(x) = \sharp (\mathcal{P} \cap [0,x]) - N[0,x].$$

Quantitative Estimates of Uniform Distribution

$$[0,(x_1,\ldots,x_d)]=\prod_{t=1}^d[0,x_t]$$

Definition

The Discrepancy Function of $\mathcal{P}_N = \{x_1, \dots, x_N\} \subset [0, 1]^d$ is

$$D_N(x) = \sharp (\mathcal{P} \cap [0,x]) - N[0,x].$$

Koksma-Hlawka Inequality

For any function $f:[0,1]^d \longrightarrow \mathbb{R}$ of bounded variation V(f) in the sense of Hardy, then

$$\left| \int_{[0,1]^d} f(y) \ dy - N^{-1} \sum_{j=1}^N f(x_j) \right| \le V(f) \cdot \frac{\|D_N\|_{\infty}}{N} \ .$$

Lattices are Not Extremal Point Distributions

Lattices are Not Extremal Point Distributions

The area of the rectangle is tiny, but contains 1/15 of all the rectangles.

Random Selection is Bad

CLT: For measurable f, random X_n ,

$$\frac{1}{N}\sum_{n=1}^{N}f(X_n)=\int_{[0,1]^d}f(x)\ dx+O(N^{-1/2}).$$

Random Selection is Bad

CLT: For measurable f, random X_n ,

$$\frac{1}{N}\sum_{n=1}^{N}f(X_n)=\int_{[0,1]^d}f(x)\ dx+O(N^{-1/2}).$$

They cluster, and have gaps.

Examples of Low Discrepancy Set

Roth's Theorem

For any choice of \mathcal{P}_N we have

 $||D_N||_2 \gtrsim (\log N)^{(d-1)/2}$

Two Giants: Klaus Roth and Wolfgang Schmidt

Roth Heuristic

For extremal distributions, one expects that each dyadic rectangle with volume N^{-1} has one point in it.

Roth Heuristic

For extremal distributions, one expects that each dyadic rectangle with volume N^{-1} has one point in it.

Hyperbolic Haar Reduction

Consider dyadic rectangles of volume $(2N)^{-1}$; at least one-half of these must not contain *any* point in \mathcal{P}_N . Call these the *good* rectangles. And consider the Haar function associated to these dyadic rectangles.

$$h_{I_1 \times \cdots \times I_d}(x_1, \dots, x_d) = \prod_{j=1}^d \left\{ -\mathbf{1}_{I_{j,\text{left}}}(x_j) + \mathbf{1}_{I_{j,\text{right}}}(x_j) \right\}$$

One Dimensional Haar Functions

Two Dimensional Haar Functions

Two Dimensional Haar Functions

Two Dimensional Haar Functions

Proof of Roth Theorem

Lemma

If $R \cap \mathcal{P}_N = \emptyset$, then $\langle h_R, D_N \rangle < -cN|R|^2$.

Proof of Roth Theorem

Lemma

If $R \cap \mathcal{P}_N = \emptyset$, then $\langle h_R, D_N \rangle < -cN|R|^2$.

Proof.

$$\begin{split} ||D_N||_2^2 & \ge \sum_{R \text{ good}} |R|^{-1} |D_N, h_R|^2 \\ & \ge N^2 \sum_{R \text{ good}} |R|^3 \gtrsim (\log N)^{d-1} \,. \end{split}$$

]

Theorem

For any choice of point distribution \mathcal{P}_N we have

$$||D_N||_p \gtrsim \left(\log N\right)^{(d-1)/2}, \qquad 1$$

Theorem

For any choice of point distribution \mathcal{P}_N we have

$$||D_N||_p \gtrsim (\log N)^{(d-1)/2}, \qquad 1$$

There is however a 'kink' at L^{∞} in Dimension d=2.

Schmidt's Theorem (d = 2!)

$$||D_N||_{L^{\infty}([0,1]^2)} \gtrsim \log N$$

A gain of $\sqrt{\log N}$ over the average case bound.

Conjecture: Discrepancy Function in L^{∞}

For $d \ge 3$,

 $||D_N||_{\infty} \gtrsim (\log N)^{d/2}$

Conjecture: Discrepancy Function in L^{∞}

For $d \ge 3$,

$$||D_N||_{\infty} \gtrsim (\log N)^{d/2}$$

Conjecture: Small Ball Inequality

For $d \ge 3$, and generic choices of coefficients $a_R \in \{-1, 0, 1\}$,

$$\left\|\sum_{|R|=2^{-n}}a_Rh_R(x)\right\|_{\infty}\gtrsim n^{d/2}.$$

Conjecture: Discrepancy Function in L^{∞}

For $d \ge 3$,

$$||D_N||_{\infty} \gtrsim (\log N)^{d/2}$$

Conjecture: Small Ball Inequality

For $d \ge 3$, and generic choices of coefficients $a_R \in \{-1, 0, 1\}$,

$$\left\|\sum_{|R|=2^{-n}}a_Rh_R(x)\right\|_{\infty}\gtrsim n^{d/2}.$$

- d = 2 is a Theorem of Talagrand.
- Both conjectures are a 'gain of a square root' over the average case bounds.

Theorem (Bilyk & L & Vagharshakyan)

In dimension $d \ge 3$ there is a $\eta = \eta(d) \ge c/d^2 > 0$ for which we have

$$\left\| \sum_{|R|=2^{-n}} a_R h_R \right\|_{\infty} \gtrsim n^{(d-1)/2+\eta}. \tag{1}$$

Beck established a version of this Theorem with d = 3 and

$$n^{\eta} \leftarrow (\log n)^{1/8}$$
.

József Beck, A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution Compositio Math. **72** (1989) 269—339

Other Applications of the Small Ball Inequality

- Lower bounds on Packing Numbers of Unit Balls of certain Mixed Derivative Sobolev Spaces.
- For the Brownian Sheet B, upper bounds on

$$\mathbb{P}(\|B\|_{C([0,1]^d)} < \epsilon), \qquad \epsilon \downarrow 0.$$

Talagrand's Theorem-aprés Halasz, & Temlyakov

Talagrand's Theorem

In dimension d = 2, for generic choices of coefficients $a_R \in \{-1, 0, 1\}$

$$\left\| \sum_{|R|=2^n} a_R h_R \right\|_{\infty} \gtrsim n.$$

$$H = \sum_{|R|=2^{-n}} a_R h_R$$

$$\begin{split} H &= \sum_{|R| = 2^{-n}} a_R \; h_R \\ f_{(k,n-k)} &= \sum_{|R_1| = 2^{-k}, \, |R_2| = 2^{-n+k}} \mathrm{sgn}(a_R) \; h_R \,, \qquad 0 \leq k \leq n \,, \end{split}$$

$$F = \prod_{k=1}^{n} (1 + f_{(k,n-k)})$$
 $F \ge 0$, $\mathbb{E}F = 1$.

$$F = \prod_{k=1}^{n} (1 + f_{(k,n-k)})$$
 $F \ge 0$, $\mathbb{E}F = 1$.

$$\sum_{k=0}^{n} \langle H, f_{(k,n-k)} \rangle = 2^{-n} \sum_{|R|=2^{-n}} |a_R|,$$

$$F = \prod_{k=1}^{n} (1 + f_{(k,n-k)})$$
 $F \ge 0$, $\mathbb{E}F = 1$.

$$\sum_{k=0}^{n} \langle H, f_{(k,n-k)} \rangle = 2^{-n} \sum_{|R|=2^{-n}} |a_R|,$$

H is orthogonal to the higher products of the f_k .

$$F = \prod_{k=1}^{n} (1 + f_{(k,n-k)}) \qquad F \ge 0, \qquad \mathbb{E}F = 1.$$

$$\sum_{k=0}^{n} \langle H, f_{(k,n-k)} \rangle = 2^{-n} \sum_{|R|=2^{-n}} |a_R|,$$

H is orthogonal to the higher products of the f_k .

Note that the Riesz Product is

$$F = \prod_{k=0}^{n} (1 + f_k) = 2^n \mathbf{1}_E,$$
 $E = \{x : \text{all } f_k(x) \text{ equal one} \}$

The 'Short' Bernoulli Product

• Set $H = \sum_{|R|=2^{-n}} a_R h_R$.

The 'Short' Bernoulli Product

- Set $H = \sum_{|R|=2^{-n}} a_R h_R$.
- Define sgn(0) = 1, and

$$f_{\vec{r}} = \sum_{R: |R_j| = 2^{-r_j} \ \forall j} \operatorname{sgn}(a_R) h_R$$

The 'Short' Bernoulli Product

- Set $H = \sum_{|R|=2^{-n}} a_R h_R$.
- Define sgn(0) = 1, and

$$f_{\vec{r}} = \sum_{R: |R_j| = 2^{-r_j} \ \forall j} \operatorname{sgn}(a_R) h_R$$

• Set $q = n^{\epsilon}$, this will be the length of our product.

The 'Short' Bernoulli Product

- Set $H = \sum_{|R|=2^{-n}} a_R h_R$.
- Define sgn(0) = 1, and

$$f_{\vec{r}} = \sum_{R: |R_j| = 2^{-r_j} \ \forall j} \operatorname{sgn}(a_R) h_R$$

- Set $q = n^{\epsilon}$, this will be the length of our product.
- Divide the integers $\{1, 2, ..., n\}$ into q disjoint intervals $I_1, ..., I_q$, and let $\mathbb{I}_t \stackrel{\text{def}}{=} \{\vec{r} \in \mathbb{N}_n : r_1 \in I_t\}$.

The 'Short' Bernoulli Product

- Set $H = \sum_{|R|=2^{-n}} a_R h_R$.
- Define sgn(0) = 1, and

$$f_{\vec{r}} = \sum_{R:|R_j|=2^{-r_j} \ \forall j} \operatorname{sgn}(a_R) h_R$$

- Set $q = n^{\epsilon}$, this will be the length of our product.
- Divide the integers $\{1, 2, ..., n\}$ into q disjoint intervals $I_1, ..., I_q$, and let $\mathbb{I}_t \stackrel{\text{def}}{=} \{\vec{r} \in \mathbb{N}_n : r_1 \in I_t\}$.
- We will define F_t as a poor man's $sgn(\sum_{\vec{r} \in \mathbb{I}_t} f_{\vec{r}})$.

$$F_t = \widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_t} f_{\vec{r}}.$$

$$\rho = \frac{q^{1/2}}{n^{(d-1)/2}}, \qquad \widetilde{\rho} = \frac{aq^{1/4}}{n^{(d-1)/2}}.$$

$$\begin{split} F_t &= \widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_t} f_{\vec{r}} \,. \\ \rho &= \frac{q^{1/2}}{n^{(d-1)/2}} \,, \qquad \widetilde{\rho} = \frac{aq^{1/4}}{n^{(d-1)/2}} \,. \end{split}$$

$$\Psi \stackrel{\mathrm{def}}{=} \prod_{t=1}^{q} (1+F_t).$$

This tends to be large when the F_t are all positive.

$$\begin{split} F_t &= \widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_t} f_{\vec{r}} \,. \\ \rho &= \frac{q^{1/2}}{n^{(d-1)/2}} \,, \qquad \widetilde{\rho} = \frac{aq^{1/4}}{n^{(d-1)/2}} \,. \end{split}$$

$$\Psi \stackrel{\mathrm{def}}{=} \prod_{t=1}^{q} (1+F_t).$$

This tends to be large when the F_t are all positive.

• $\mathbb{E}\Psi=1$, as an easy conditional expectation argument shows, but Ψ takes negative values.

$$\begin{split} F_t &= \widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_t} f_{\vec{r}} \,. \\ \rho &= \frac{q^{1/2}}{n^{(d-1)/2}} \,, \qquad \widetilde{\rho} = \frac{aq^{1/4}}{n^{(d-1)/2}} \,. \end{split}$$

$$\Psi \stackrel{\mathrm{def}}{=} \prod_{t=1}^{q} (1+F_t).$$

This tends to be large when the F_t are all positive.

- $\mathbb{E}\Psi=1$, as an easy conditional expectation argument shows, but Ψ takes negative values.
- And, Ψ can not be the test function since...

Product Rule Fails in Three Dimensions

Definition

Say that \vec{r} , \vec{s} have a *coincidence* if \vec{r} and \vec{s} agree in any one coordinate.

Definition

Say that \vec{r} , \vec{s} have a *coincidence* if \vec{r} and \vec{s} agree in any one coordinate.

 $\bullet \ \ \text{Write} \ \Psi = 1 + \Psi^{\text{NoCoin}} + \Psi^{\text{Coin}}$

Definition

Say that \vec{r} , \vec{s} have a *coincidence* if \vec{r} and \vec{s} agree in any one coordinate.

- Write $\Psi = 1 + \Psi^{NoCoin} + \Psi^{Coin}$
- 0

 $\Psi^{\text{NoCoin}} \stackrel{\text{def}}{=} \text{All sums of products of } \vec{r} \text{ function in the}$ expansion of Ψ without a coincidence.

Definition

Say that \vec{r} , \vec{s} have a *coincidence* if \vec{r} and \vec{s} agree in any one coordinate.

- $\bullet \ \ \text{Write} \ \Psi = 1 + \Psi^{\text{NoCoin}} + \Psi^{\text{Coin}}$
- •

 $\Psi^{\text{NoCoin}} \stackrel{\text{def}}{=} \text{All sums of products of } \vec{r} \text{ function in the}$ expansion of Ψ without a coincidence.

• Most of the analysis takes place on Ψ^{Coin} .

The Crucial Lemma of Beck—In the Simplest Case

Lemma

We have the estimate

$$\left\| \sum_{\substack{\vec{r} \neq \vec{s} \in \mathbb{N}_n \\ t_1 = s_1}} f_{\vec{r}} \cdot f_{\vec{s}} \right\|_{p} \lesssim p^{2d-3/2+1} n^{2d-3/2}$$

The Crucial Lemma of Beck—In the Simplest Case

The Number of Parameters

No of Parameters

$$= 2d - 1 - 1 - 1$$

Longer Products: Graphs as Bookkeeping Device

Longer Products: Graphs as Bookkeeping Device

Longer Products: Graphs as Bookkeeping Device

- A graph on eight vertices, with two different colors.
- An edge means equality between the different vectors.
- So the number of parameters decreases with the length of spanning tree of the graph.
- The Beck Gain reflects a full proportion of the loss of parameters.

An Example Inequality, using previous graph:

For absolute $\zeta > 0$,

$$\left\| \sum_{\substack{\vec{r}_1, \dots, \vec{r}_8 \\ \text{satisfy 'graph conditions'}}} \prod_{j=1}^8 f_{\vec{r}_j} \right\|_p \lesssim p^{4(d-1)} n^{4(d-1)-8\zeta},$$