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ALGEBRAIC AND SPECTRAL PROPERTIES OF
DUAL TOEPLITZ OPERATORS

KAREL STROETHOFF AND DECHAO ZHENG

Abstract. Dual Toeplitz operators on the orthogonal complement of the
Bergman space are defined to be multiplication operators followed by pro-
jection onto the orthogonal complement. In this paper we study algebraic and
spectral properties of dual Toeplitz operators.

1. Introduction

The Bergman space L2
a is the Hilbert space of analytic functions on the unit

disk D that are square integrable with respect to normalized area measure dA. We
write P for the orthogonal projection of L2(D, dA) onto its closed linear subspace
L2
a. For a bounded measurable function f on D the Toeplitz operator with symbol

f is the operator Tf on L2
a defined by Tfh = P (fh), for h ∈ L2

a. We define the
dual Toeplitz operator Sf to be the operator on (L2

a)⊥ given by Sfu = Q(fu), for
u ∈ (L2

a)⊥, where Q = I −P is the orthogonal projection of L2(D, dA) onto (L2
a)⊥.

The orthogonal complement of the Hardy space in L2(∂D) is equal to zH2, so that
a Toeplitz operator on H2 is anti-unitarily equivalent to multiplication on (H2)⊥

followed by projection onto (H2)⊥. In the Bergman space setting this is no longer
the case, since the orthogonal complement (L2

a)⊥ of L2
a in L2(D, dA) is much larger

than zL2
a.

Although dual Toeplitz operators differ in many ways from Toeplitz operators,
they do have some of the same properties. The purpose of this paper is to study
some algebraic and spectral properties of dual Toeplitz operators and to study
to what extent these properties parallel those of Toeplitz operators on the Hardy
space. Our results for dual Toeplitz operators may offer some insight into the study
of similar questions for Toeplitz operators on the Bergman space.

In the setting of the classical Hardy space H2, algebraic and spectral properties
of Toeplitz operators were studied in [6], [9], [12], [16], [18] and [23]. In particular,
Brown and Halmos [6] characterized commuting Toeplitz operators on H2. Axler
and Čučković [3] characterized commutativity of Toeplitz operators on L2

a with
bounded harmonic symbols. In Section 2 we will describe when two dual Toeplitz
operators commute. Unlike the result of Axler and Čučković [3], our commuta-
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tivity result holds for general symbols. Brown and Halmos [6] showed that the
product of two Toeplitz operators on the Hardy space can only be zero if one of
the factors is zero. In Section 3 we will prove that dual Toeplitz operators have
this same property. Two operators are called essentially commuting if their com-
mutator is compact. In [19] the first author characterized essentially commuting
Toeplitz operators on L2

a with harmonic symbols. A characterization of essentially
commuting Toeplitz operators on the Hardy space has recently been obtained by
Gorkin and the second author [11]. We will give a genenal characterization for
essentially commuting dual Toeplitz operators in Section 4. In Section 5 we will
give localized conditions for essential commutativity of pairs of dual Toeplitz op-
erators whose symbols are continuous on the maximal ideal space of the algebra
of bounded analytic functions on the unit disk. Analogously to McDonald and
Sundberg’s [15] description for the commutator ideal of the Toeplitz algebra, we
will describe the commutator ideal of the C∗-algebra generated by all analytic dual
Toeplitz operators in Section 6.

Brown and Halmos [6] showed that the only compact Toeplitz operator on the
Hardy space is the zero operator and a Toeplitz operator is bounded on the Hardy
space if and only if its symbol is bounded. This is easily seen to be false for
Toeplitz operators on the Bergman space. A complete characterization of compact
Toeplitz operators on the Bergman space via the Berezin transform has recently
been obtained by Axler and the second author [5]. On the Bergman space, there
are unbounded symbols that induce bounded Toeplitz operators. In Section 7 we
prove that the only compact dual Toeplitz operator is the zero operator, and that
a densely defined dual Toeplitz operator with square-integrable symbol is bounded
if and only if its symbol is essentially bounded.

The symbol map on the Toeplitz algebra in the Hardy space has been an im-
portant tool in the study of Fredholm properties of Toeplitz operators and the
structure of the Toeplitz algebra (see [9], Chapter 7). Analogous to the symbol
map in the classical Hardy space setting, in Section 8 we construct a symbol map
on the dual Toeplitz algebra, the algebra generated by all bounded dual Toeplitz
operators. We establish structure theorems for the dual Toeplitz algebra and the
C∗-subalgebra generated by the dual Toeplitz operators with symbols continuous
on the closed unit disk. As an application of our symbol map we obtain a necessary
condition on symbols of a finite number of dual Toeplitz operators whose product
is the zero operator. For bounded harmonic functions on the unit disk we prove
that the product of the associated dual Toeplitz operators can only be zero if one
of the factors is the zero operator.

In the final section of the paper we discuss spectral properties of dual Toeplitz
operators. We prove a spectral inclusion theorem, completely analogous to the
spectral inclusion theorem of Hartman and Wintner [12] for Toeplitz operators on
the Hardy space. Widom [23] proved that the spectrum of a Toeplitz operator
on the Hardy space is connected, and Douglas [9] proved that also the essential
spectrum is connected. We give examples to show that in general the spectrum
and essential spectrum of a dual Toeplitz operator can be disconnected. For some
classes of special symbols we establish connectedness of both the spectrum and
essential spectrum of dual Toeplitz operators with these symbols.

Acknowledgement. We thank the referee for several comments that improved
the paper, including a simplification of our proof of Theorem 9.12.
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2. Commuting Dual Toeplitz Operators

The following elementary algebraic properties of dual Toeplitz operators are
easily verified:

S∗f = Sf̄ ,

and

Sαf+βg = αSf + βSg,

for bounded measurable functions f and g on D, and α, β ∈ C. Both Toeplitz
and dual Toeplitz operators are closely related to Hankel operators. For a bounded
measurable function f on D the Hankel operator Hf is the operator L2

a → (L2
a)⊥

defined by Hfh = Q(fh), for h ∈ L2
a. Toeplitz operators on the Bergman space are

related to Hankel operators by the following algebraic relation:

Tfg = TfTg +H∗f̄Hg.

Analogously, for dual Toeplitz operators we have

Sfg = SfSg + HfH
∗
ḡ .(2.1)

The Hankel operator of an analytic symbol is the zero operator. Consequently, if
ϕ is a bounded analytic function on D and ψ is a bounded measurable function on
D, then

SϕSψ = Sψϕ and SψSϕ̄ = Sψϕ̄.(2.2)

It follows from (2.2) that the dual Toeplitz operators Sf and Sg commute in case
both f and g are analytic and in case both f and g are conjugate analytic. Clearly,
the operators Sf and Sg commute also if a nontrivial linear combination of f and g
is constant. The following theorem states that two dual Toeplitz operators commute
only in these trivial cases. This result is completely analogous to the characteriza-
tion of commuting Toeplitz operators on the Hardy space obtained by Brown and
Halmos [6]. Unlike Axler and Čučković’s [3] result for commutativity of Toeplitz
operators on the Bergman space, we do not require the symbols to be harmonic.

Theorem 2.3. Let f and g be bounded measurable functions on D. Then: Sf and
Sg commute if and only if one of the following conditions holds:
(i) both f and g are analytic;
(ii) both f̄ and ḡ are analytic;
(iii) there are constants α and β, not both zero, such that αf + βg is constant.

Before we prove this theorem we discuss some preliminaries which will also be
needed in the following sections.

The Bergman space L2
a has reproducing kernels Kw given by

Kw(z) =
1

(1− w̄z)2
,

for z, w ∈ D: for every h ∈ L2
a we have 〈h,Kw〉 = h(w), for all w ∈ D. In particular,

‖Kw‖2 = 〈Kw,Kw〉1/2 = (1− |w|2)−1. The functions

kw(z) =
1− |w|2

(1− w̄z)2

are the normalized reproducing kernels for L2
a.
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For w ∈ D, the fractional linear transformation ϕw, defined by

ϕw(z) =
w − z
1− w̄z ,

for z ∈ D, is an automorphism of the unit disk; in fact, ϕ−1
w = ϕw.

For a linear operator T on (L2
a)⊥ and w ∈ D we define the operator Sw(T ) by

Sw(T ) = T − SϕwTSϕ̄w .

Note that

S2
w(T ) = Sw(Sw(T )) = T − 2SϕwTSϕ̄w + S2

ϕwTS
2
ϕ̄w .

To get necessary conditions on dual Toeplitz operators with certain algebraic prop-
erties we will make use of rank one operators generated by the normalized repro-
ducing kernels of the Bergman space. For f, g ∈ L2(D, dA), define the rank one
operator f ⊗ g by

(f ⊗ g)h = 〈h, g〉f,

for h ∈ L2(D, dA). It is easily shown that the norm of f ⊗ g is ‖f‖2‖g‖2.
It follows from (2.1) that the commutator [Sf , Sg] = SfSg − SgSf is given by

[Sf , Sg] = HgH
∗
f̄ −HfH

∗
ḡ .(2.4)

From the proof of Proposition 4.8 of [22],

(Hfkw)⊗ (Hḡkw) = Hf (kw ⊗ kw)H∗ḡ = S2
w(HfH

∗
ḡ ).(2.5)

Also,

(Hgkw)⊗ (Hf̄kw) = S2
w(HgH

∗
f̄ ).

Using (2.4) it follows that

(Hgkw)⊗ (Hf̄kw)− (Hfkw)⊗ (Hḡkw) = S2
w([Sf , Sg]).(2.6)

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. It suffices to show the necessity of one of conditions (i), (ii)
and (iii) in case Sf and Sg commute. If Sf and Sg commute, then it follows from
(2.6) that (Hfkw)⊗ (Hḡkw) = (Hgkw)⊗ (Hf̄kw), for all w ∈ D. Note that k0 ≡ 1,
thus

(Hf1)⊗ (Hḡ1) = (Hg1)⊗ (Hf̄1),

that is,

〈u,Hḡ1〉Hf1 = 〈u,Hf̄1〉Hg1,

for all u ∈ (L2
a)⊥. If Hf̄1 6= 0 and Hf1 6= 0, then there exists a complex number λ

such that Hg1 = λHf1 and Hḡ1 = λ̄Hf̄1. Then Q(g−λf) = 0, so that the function
g − λf is analytic. Also Q(ḡ − λ̄f̄) = 0, so that g − λf is also co-analytic. Thus
g − λf is constant. If Hf̄1 = 0, then f is co-analytic, and Hf1 = 0 or Hḡ1 = 0,
that is, f is also analytic (in which case f is constant) or g is also co-analytic. If
Hf1 = 0, then f is analytic, and Hg1 = 0 or Hf̄1 = 0, that is, g is analytic or f is
also co-analytic (in which case f is constant).
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The above proof does not work for Toeplitz operators, because there is no canon-
ical transformation of Hankel products H∗

f̄
Hg into rank-one operators such as the

transformation used to obtain equation (2.5).
Theorem 2.3 has the following consequence.

Corollary 2.7. Let f be a bounded measurable function on D. Then the dual
Toeplitz operator Sf is normal if and only if the range of f lies on a line.

Proof. The dual Toeplitz operator Sf is normal if and only if Sf and S∗f = Sf̄
commute. By Theorem 2.3 this is the case if and only if there are constants α and
β, not both zero, such that αf + βf̄ is constant.

3. Zero Divisors of Dual Toeplitz Operators

Brown and Halmos proved that the product of two Toeplitz operators on the
Hardy space can only be zero if one of the Toeplitz operators is zero. Whether the
analogous statement is true for Toeplitz operators on the Bergman space is still an
open question, even if the symbols are restricted to harmonic functions. Ahern and
Čučković [1] have recently obtained results in support of the conjecture that the
above question has an affirmative answer for harmonic symbols. In this section we
will prove the analogous result for dual Toeplitz operators.

We have the following theorem, analogous to Theorem 8 of Brown and Hal-
mos [6]:

Theorem 3.1. Let f and g be bounded measurable functions on D. Then: SfSg is
a dual Toeplitz operator if and only if f is analytic on D or g is co-analytic on D,
in which case SfSg = Sfg.

Proof. The sufficiency follows immediately from (2.2). To prove the necessity, sup-
pose that SfSg = Sh, where h is a bounded measurable function on D. Then it
follows from (2.1) that

Sfg−h = HfH
∗
ḡ .

Using (2.2) we see that

Sw(Sfg−h) = Sfg−h − SϕwSfg−hSϕ̄w = S(1−|ϕw|2)(fg−h),

hence

S2
w(Sfg−h) = S(1−|ϕw|2)2(fg−h).

It follows that

S(1−|ϕw|2)2(fg−h) = S2
w(Sfg−h) = S2

w(HfH
∗
ḡ ) = (Hfkw)⊗ (Hḡkw),

for all w ∈ D. In particular,

S(1−|z|2)2(fg−h) = (Hf1)⊗ (Hḡ1).

Using that the range of S(1−|z|2)2(fg−h) is at most one-dimensional, it is easy to see
that there exist complex numbers a and b, not both zero, such that

S(1−|z|2)2(fg−h)(az̄ + bz̄2) = 0.

This implies that the function ϕ = (1 − |z|2)2(fg − h)(az̄ + bz̄2) is in L2
a. Since

ϕ(z) → 0 as |z| → 1−, we must have ϕ(z) = 0, for all z ∈ D. Thus f(z)g(z) =
h(z) for all z ∈ D, with the exception of at most two points. It follows that
(Hf1)⊗ (Hḡ1) = 0, thus ‖Hf1‖2‖Hḡ1‖2 = 0. If Hf1 = 0, then f is analytic on D;
if Hḡ1 = 0, then ḡ is analytic on D.
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The following corollary states that dual Toeplitz operators have no zero-divisors.

Corollary 3.2. The product of two dual Toeplitz operators can only be zero if one
of the dual Toeplitz operators is zero.

Proof. If SfSg = 0, then SfSg = Sh, where h is the zero function. From the proof
of Theorem 3.1 we see that fg = 0 on D. This implies that f = 0 almost everywhere
or g = 0 almost everywhere, thus Sf = 0 or Sg = 0.

Corollary 3.3. A dual Toeplitz operator Sf is an isometry if and only if f is
constant of modulus 1.

Proof. By Theorem 3.1, Sf̄Sf = I = S1 only if f is analytic, in which case Sf̄Sf =
S|f |2. Thus |f |2 = 1 on D, which is only possible if f is constant.

Corollary 3.4. The only idempotent dual Toeplitz operators are 0 and I.

Proof. If S2
f = Sf , then SfS1−f = 0, and by Corollary 3.2, Sf = 0, or S1−f = 0 (in

which case Sf = S1 = I).

4. Essentially Commuting Dual Toeplitz Operators

We have the following result for compactness of the commutator of a pair of
dual Toeplitz operators. In the next section we will use this theorem to show that
for nice symbols f and g the dual Toeplitz operators Sf and Sg are essentially
commuting if and only if the conditions for commutativity hold locally. This will
be made precise in the next section.

Theorem 4.1. Let f and g be bounded measurable functions on D. Then the com-
mutator [Sf , Sg] is compact if and only if

‖(Hgkw)⊗ (Hf̄kw)− (Hfkw)⊗ (Hḡkw)‖ → 0,

as |w| → 1−.

We need the following lemma from [22].

Lemma 4.2. If T is a compact operator on (L2
a)⊥, then ‖Sw(T )‖ → 0 as |w| → 1−.

Note that ‖Sw(T )‖ ≤ 2‖T ‖. Thus ‖S2
w(T )‖ ≤ 2‖Sw(T )‖, so if T is a compact

operator on (L2
a)⊥, then by Lemma 4.2 also ‖S2

w(T )‖ → 0 as |w| → 1−. Thus, if
[Sf , Sg] is compact, then ‖S2

w([Sf , Sg])‖ → 0 as |w| → 1−, and the necessity of the
condition in Theorem 4.1 follows using (2.6).

To prove the sufficiency of the condition in Theorem 4.1 we will make use of the
following lemmas.

Lemma 4.3. If u1, u2, v1, v2 are vectors in a Hilbert space H with u1 ⊥ u2, then
1
2

(‖u1‖ ‖v1‖+ ‖u2‖ ‖v2‖) ≤ ‖u1 ⊗ v1 + u2 ⊗ v2‖ ≤ ‖u1‖ ‖v1‖+ ‖u2‖ ‖v2‖.

Proof. Putting S = u1 ⊗ v1 + u2 ⊗ v2, we have

‖Sx‖2 = |〈x, v1〉|2‖u1‖2 + |〈x, v2〉|2‖u2‖2 ≤ ‖x‖2‖v1‖2‖u1‖2 + ‖x‖2‖v2‖2‖u2‖2,
for all x ∈ H, and therefore ‖S‖2 ≤ ‖u1‖2‖v1‖2 + ‖u2‖2‖v2‖2. Clearly we also have
‖u1‖2‖v1‖2 ≤ ‖S‖2 and ‖u2‖2‖v2‖2 ≤ ‖S‖2. Hence 1

2 (‖u1‖2‖v1‖2 + ‖u2‖2‖v2‖2) ≤
‖S‖2. The stated result follows using the inequalities (s2+t2) ≤ (s+t)2 ≤ 2(s2+t2),
for s, t ≥ 0.
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Before we state and prove another lemma, we introduce more notation. For
w ∈ D we use Fw to denote the following finite rank operator on (L2

a)⊥:

Fw = Hfkw ⊗Hḡkw −Hgkw ⊗Hf̄kw.

Lemma 4.4. Let f and g be bounded measurable functions on D. If neither f nor
g is analytic on D, then

‖Fw‖ ≤ ‖Hfkw‖2‖Hg−λfkw‖2 + ‖Hf̄kw‖2‖Hg−λfkw‖2 ≤ 2‖Fw‖,
and

‖Fw‖ ≤ ‖Hf−µgkw‖2‖Hḡkw‖2 + ‖Hf−µgkw‖2‖Hgkw‖2 ≤ 2‖Fw‖,
where

λ =
〈Hgkw, Hfkw〉
‖Hfkw‖22

and µ =
〈Hfkw, Hgkw〉
‖Hgkw‖22

.

Proof. We have Hg−λfkw ⊥ Hfkw and

Fw =
(
Hfkw

)
⊗
(
Hg−λfkw

)
−
(
Hg−λfkw

)
⊗
(
Hf̄kw

)
.

The first pair of inequalities follows using Lemma 4.3. The second pair of inequal-
ities is proved similarly.

In the proof of Theorem 4.1 we need some results from [22]. The following inner
product formula is proved in [22]:∫

D
F (z)G(z) dA(z) = 3

∫
D
(1− |z|2)2F (z)G(z) dA(z)

+
1
2

∫
D

(1− |z|2)2F ′(z)G′(z)dA(z)(4.5)

+
1
3

∫
D

(1− |z|2)3F ′(z)G′(z)dA(z),

for F and G in L2
a. If h is a bounded measurable function on D, u ∈ (L2

a)⊥, and
ε > 0, then in [22] it is shown that

(1− |z|2)|(H∗hu)(z)| ≤ ‖h ◦ ϕz − P (h ◦ ϕz)‖2 ‖u‖2,(4.6)

and

(1− |z|2)|(H∗hu)′(z)| ≤ 4 ‖h ◦ ϕz − P (h ◦ ϕz)‖2+ε P0[|u|δ](z)1/δ,(4.7)

for every z ∈ D, where δ = (2 + ε)/(1 + ε) and P0 denotes the integral operator
on L2(D, dA) with kernel 1/|1− w̄z|2. It is well-known that P0 is Lp-bounded for
every 1 < p <∞ (see [2] or [24]).

Proof of Theorem 4.1. Let 0 < s < 1. Using the inner product formula (4.5), it is
easily seen that there exists a compact operator Ks on (L2

a)⊥ such that

〈([Sf , Sg]−Ks)u, v〉 = Is + IIs + IIIs,

for u, v ∈ (L2
a)⊥, where

Is = 3
∫
s<|z|<1

(1− |z|2)2
{

(H∗f̄u)(z)(H∗gv)(z)− (H∗ḡu)(z)(H∗f v)(z)
}
dA(z),

IIs =
1
2

∫
s<|z|<1

(1− |z|2)2
{

(H∗f̄u)′(z)(H∗g v)′(z)− (H∗ḡu)′(z)(H∗f v)′(z)
}
dA(z),
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and

IIIs =
1
3

∫
s<|z|<1

(1 − |z|2)3
{

(H∗f̄u)′(z)(H∗g v)′(z)− (H∗ḡu)′(z)(H∗f v)′(z)
}
dA(z).

We will estimate each of |Is|, |IIs| and |IIIs|.
By (4.6) we have,

(1− |z|2)2
∣∣∣(H∗f̄u)(z)(H∗g v)(z)− (H∗ḡu)(z)(H∗fv)(z)

∣∣∣ ≤ ‖u‖2‖v‖2R(f, g, z),

where

R(f, g, z) = ‖Q(f ◦ ϕz)‖2‖Q(ḡ ◦ ϕz)‖2 + ‖Q(f̄ ◦ ϕz)‖2‖Q(g ◦ ϕz)‖2.
It is easily verified that

(H∗f̄u)(z) (H∗g v)(z)− (H∗ḡu)(z) (H∗f v)(z)

= (H∗f̄u)(z) (H∗g−λfv)(z)− (H∗
g−λfu)(z) (H∗fv)(z),

(4.8)

for all z ∈ D and λ ∈ C; thus also

(1− |z|2)2
∣∣∣(H∗f̄u)(z)(H∗g v)(z)− (H∗ḡu)(z)(H∗f v)(z)

∣∣∣ ≤ ‖u‖2‖v‖2R(f, g − λf, z),

for all z ∈ D and λ ∈ C. We have a similar inequality with f replaced by f − µg,
and conclude that

(1− |z|2)2
∣∣∣(H∗f̄u)(z)(H∗g v)(z)− (H∗ḡu)(z)(H∗f v)(z)

∣∣∣ ≤ ‖u‖2‖v‖2M(f, g, z),

for all z ∈ D, where

M(f, g, z) = min
{

min
|λ|≤1

R(f, g − λf, z), min
|µ|≤1

R(f − µg, g, z)
}
.

It follows that

|Is| ≤ 3‖u‖2‖v‖2 sup
s<|z|<1

M(f, g, z).

Next we will obtain similar estimates for |IIs| and |IIIs|. By (4.7) we have

(1− |z|2)2
∣∣∣(H∗f̄u)′(z) (H∗g v)′(z)− (H∗ḡu)′(z) (H∗f v)′(z)

∣∣∣
≤ 16P0[|u|δ](z)1/δP0[|v|δ](z)1/δRε(f, g, z),

where

Rε(f, g, z) = ‖Q(f ◦ ϕz)‖2+ε‖Q(ḡ ◦ ϕz)‖2+ε + ‖Q(f̄ ◦ ϕz)‖2+ε‖Q(g ◦ ϕz)‖2+ε.

It follows from (4.8) that

(H∗f̄u)′(z) (H∗g v)′(z)− (H∗ḡu)′(z) (H∗f v)′(z)

is invariant if g is replaced by g − λf or f is replaced by f − µg. We obtain

(1− |z|2)2
∣∣∣(H∗f̄u)′(z) (H∗g v)′(z)− (H∗ḡu)′(z) (H∗f v)′(z)

∣∣∣
≤ 16P0[|u|δ](z)1/δP0[|v|δ](z)1/δMε(f, g, z),

where

Mε(f, g, z) = min
{

min
|λ|≤1

Rε(f, g − λf, z), min
|µ|≤1

Rε(f − µg, g, z)
}
.
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It follows that

|IIs| ≤ 8
∫
s<|z|<1

P0[|u|δ](z)1/δP0[|v|δ](z)1/δMε(f, g, z) dA(z)

≤ 8 sup
s<|z|<1

Mε(f, g, z)
∫
D
P0[|u|δ](z)1/δP0[|v|δ](z)1/δ dA(z).

By the Cauchy-Schwarz inequality, and Lp-boundedness of the operator P0 (for
p = 2/δ > 1),∫

D
P0[|u|δ](z)1/δP0[|v|δ](z)1/δ dA(z)

≤
(∫

D
P0[|u|δ](z)2/δ dA(z)

)1/2 (∫
D
P0[|v|δ](z)2/δ dA(z)

)1/2

≤
(
C

∫
D
[|u(z)|δ]2/δ dA(z)

)1/2(
C

∫
D
[|v(z)|δ]2/δ dA(z)

)1/2

= C‖u‖2‖v‖2.
Thus

|IIs| ≤ 8C‖u‖2‖v‖2 sup
s<|z|<1

Mε(f, g, z).

Similarly we obtain the estimate

|IIIs| ≤ 8C‖u‖2‖v‖2 sup
s<|z|<1

Mε(f, g, z).

Since clearly M(f, g, z) ≤ Mε(f, g, z) we can conclude that there exists a finite
positive constant C′ for which

‖[Sf , Sg]−Ks‖ ≤ C′ sup
s<|z|<1

Mε(f, g, z).

It remains to show that Mε(f, g, w) → 0 as |w| → 1−. This will follow from the
following:

Claim. There is a constant C such that Mε(f, g, w) ≤ C‖Fw‖1/(2+ε), for all w ∈ D.

To prove the claim, fix w ∈ D. Suppose that ‖Hfkw‖ > 0 and ‖Hgkw‖ > 0. Let
λ and µ be as in Lemma 4.4. By the Cauchy-Schwarz inequality, |λ| |µ| = λµ ≤ 1,
thus |λ| ≤ 1 or |µ| ≤ 1. Assume that |λ| ≤ 1. Note that then

Mε(f, g, w) ≤ Rε(f, g − λf,w).

By Lemma 4.4, R(f, g − λf,w) ≤ 2‖Fw‖.
If h is a bounded measurable function on D, using the Cauchy-Schwarz inequality

we have

‖Q(h ◦ ϕw)‖2+ε ≤ ‖Q(h ◦ ϕw)‖1/(2+ε)
2 ‖Q(h ◦ ϕw)‖(1+ε)/(2+ε)

2+2ε .

Since the Bergman projection P is L2+2ε-bounded, we can find a positive constant
M such that ‖Q(h ◦ ϕw)‖2+2ε ≤M‖h‖∞, for all w ∈ D. It follows that

‖Q(f ◦ ϕw)‖2+ε‖Q((g − λf) ◦ ϕw)‖2+ε

≤M2/δ‖f‖1/δ∞ ‖g − λf‖1/δ∞ ‖Q(f ◦ ϕw)‖1/(2+ε)
2 ‖Q((g − λf) ◦ ϕw)‖1/(2+ε)

2

≤M2/δ(‖f‖∞ + ‖g‖∞)2/δ‖Q(f ◦ ϕw)‖1/(2+ε)
2 ‖Q((g − λf) ◦ ϕw)‖1/(2+ε)

2 ,
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for all w ∈ D. We conclude that

Rε(f, g − λf,w) ≤M2/δ(‖f‖∞+‖g‖∞)2/δ

×
{

(‖Q(f ◦ ϕw)‖2‖Q((g − λf) ◦ ϕw)‖2)1/(2+ε)

+ (‖Q(f̄ ◦ ϕw)‖2‖Q((g − λf) ◦ ϕw)‖2)1/(2+ε)
}
,

for all w ∈ D. Applying the inequality s1/p + t1/p ≤ 2(p−1)/p(s + t)1/p with s =
‖Q(f◦ϕw)‖2‖Q((g − λf)◦ϕw)‖2, t = ‖Q(f̄◦ϕw)‖2‖Q((g−λf)◦ϕw)‖2 and p = 2+ε,
we obtain

Rε(f, g − λf,w) ≤ 21/δM2/δ(‖f‖∞ + ‖g‖∞)2/δR(f, g − λf,w)1/(2+ε),

for all w ∈ D. It follows that

Mε(f, g, w) ≤ 21/δM2/δ(‖f‖∞ + ‖g‖∞)2/δ‖Fw‖1/(2+ε),

for all w ∈ D, proving the claim.
In case Hfkw = 0, we have

‖Fw‖ = ‖Hgkw ⊗Hf̄kw‖ = ‖Hgkw‖2‖Hf̄kw‖2 = R(f, g, w),

and, reasoning as before, the inequality follows. The case Hf̄kw = 0 is treated
similarly.

5. Symbols Continuous on the Maximal Ideal Space

Let H∞ denote the algebra of bounded analytic functions on D. The maximal
ideal space of H∞, denoted byM, is the set of all multiplicative linear functionals
on H∞. Endowed with the weak-star topology it inherits as a subspace of the
dual of H∞, the maximal ideal space M is a compact Hausdorff space. Using
the Gelfand transform we think of H∞ as a subalgebra of C(M), the algebra of
continuous complex-valued functions on M equipped with the usual supremum
norm. By the Stone-Weierstrass Theorem, the set of finite sums of functions of
the form ϕ̄ψ, with ϕ, ψ ∈ H∞, is dense in C(M). Identifying a point in the unit
disk D with the functional of evaluation at this point, we regard D as a subset
of M. Carleson’s Corona Theorem states that D is a dense subset of M. The
pseudohyperbolic distance between m and m′ in M is defined by

d(m,m′) = sup{|m′(h)| : h ∈ H∞, ‖h‖∞ ≤ 1, and m(h) = 0}.
For z, w ∈ D we have d(z, w) = |ϕw(z)|. For m in M the Gleason part containing
m in M is the set G(m) = {m′ ∈ M : d(m,m′) < 1}. The Gleason parts form a
partition ofM, and for each w ∈ D the Gleason part containing w is equal to D. For
each m ∈ M, Hoffman [13] constructed a canonical continuous map ϕm : D →M
such that ϕm(0) = m. The map ϕm is defined by setting

ϕm(w)h = lim
z→m

h ◦ ϕz(w),

for w ∈ D and h ∈ H∞, where the limit is taken in M. Hoffman [13] proved
the existence of this limit, as well as many other deep properties of the mappings
ϕm. For an exposition of Hoffman’s result see [10], Chapter X. We recall here
the following properties. The image of ϕm is the Gleason part G(m), and ϕm is
injective if G(m) consists of more than one point. If f ∈ C(M), m ∈ M and (wj)
is a net in D converging to m in M, then f ◦ ϕwj → f ◦ ϕm uniformly on each
compact subset of D (see, for example, [19], Lemma 5). In particular, if f ∈ H∞
and m ∈M, then the composition f ◦ ϕm is in H∞.
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If G is a Gleason part and f is a function on M, we say that f is analytic on
G if the function f ◦ ϕm is analytic on D, where m ∈ G. Note that this definition
is independent of the chosen representative m for the Gleason part G: if m′ ∈ G
is distinct from m, then m′ = ϕm(λ), for some λ ∈ D. By the Schwarz Lemma
there is a unimodular constant ζ for which ϕm′(z) = ϕm(ϕλ(ζz)), for all z ∈ D. It
follows that f ◦ ϕm′ is analytic on D if and only if f ◦ ϕm is analytic on D.

We have the following characterization of essentially commuting dual Toeplitz
operators. Note that this result is analogous to the characterization of essentially
commuting Toeplitz operators on the Bergman space obtained by the first author
[19] as well as the characterization of essentially commuting Toeplitz operators on
the Hardy space obtained by Gorkin and the second author [11].

Theorem 5.1. Let f and g be in C(M). Then: Sf and Sg are essentially com-
muting if and only if on each of the Gleason parts G in M\D one of the following
conditions holds:
(i) both f and g are analytic on G;
(ii) both f̄ and ḡ are analytic on G;
(iii) there are constants α and β, not both zero, such that the function αf + βg is

constant on G.

Proof. Suppose that m ∈ M \ D. Let (wj) be a net in D converging to m. First
assume that there exists a δ > 0 such that ‖Hfkwj‖2 ≥ δ and ‖Hf̄kwj‖2 ≥ δ

for all indices j. The numbers λj = 〈Hgkwj , Hfkwj 〉/‖Hfkwj‖22 are bounded by
M = ‖f‖∞‖g‖∞/δ2. Passing to a subnet, if necessary, we may assume that λj → λ.
It is easily seen that then (g−λjf)◦ϕwj → (g−λf)◦ϕm pointwise on D. We claim
that this convergence is also in L2(D, dA). Some care needs to be taken to prove this
claim, since the bounded convergence theorem does not hold for nets. A standard
density argument shows that the convergence (g − λjf) ◦ ϕwj → (g − λf) ◦ ϕm is
uniform on compact subsets of D (see [19], Lemma 5). Using that

‖(g − λjf) ◦ ϕwj − (g − λf) ◦ ϕm‖22
≤ sup
|z|≤r

|(g − λjf) ◦ ϕwj (z)− (g − λf) ◦ ϕm(z)|2 + 4(1− r2)(‖f‖∞ +M‖g‖∞)2,

for all 0 < r < 1, we see that indeed (g− λjf) ◦ϕwj → (g−λf) ◦ϕm in L2(D, dA).
Thus ‖Q((g − λjf) ◦ ϕwj )‖2 → ‖Q((g − λ f) ◦ ϕm)‖2. Since ‖Hg−λjfkwj‖2 =
‖Q((g − λjf) ◦ ϕwj )‖2 (see [21]) we obtain

‖Hg−λjfkwj‖2 → ‖Q((g − λ f) ◦ ϕm)‖2.

Likewise

‖Hg−λjfkwj‖2 → ‖Q((g − λ f) ◦ ϕm)‖2.

Since also ‖Hfkwj‖2 → ‖Q(f ◦ ϕm)‖2 and ‖Hf̄kwj‖2 → ‖Q(f̄ ◦ ϕm)‖2, it follows
that

‖Hfkwj‖2‖Hg−λjfkwj‖2 + ‖Hf̄kwj‖2‖Hg−λjfkwj‖2
→ ‖Q(f ◦ ϕm)‖2‖Q((g − λ f) ◦ ϕm)‖2 + ‖Q(f̄ ◦ ϕm)‖2‖Q((g − λ f) ◦ ϕm)‖2.

If ‖Fwj‖ → 0, then appealing to Lemma 4.4 we get

‖Q(f ◦ ϕm)‖2‖Q((g − λ f) ◦ ϕm)‖2 + ‖Q(f̄ ◦ ϕm)‖2‖Q((g − λ f) ◦ ϕm)‖2 = 0.
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Since ‖Q(f ◦ ϕm)‖2 ≥ δ > 0 and ‖Q(f̄ ◦ ϕm)‖2 ≥ δ > 0, we conclude that
‖Q((g − λ f) ◦ ϕm)‖2 = ‖Q((g − λ f) ◦ ϕm)‖2 = 0. This implies that the func-
tion (g − λ f) ◦ ϕm is both analytic and co-analytic, thus is constant. Conversely,
if (g − λ f) ◦ ϕm is constant, then the above argument shows that necessarily
‖Fwj‖ → 0.

In case the numbers ‖Hfkwj‖2 are not bounded below, by passing to a subnet
we may assume that ‖Hfkwj‖2 → 0, and thus ‖Q(f ◦ ϕm)‖2 = 0. This means that
f ◦ ϕm is analytic on D. Since

‖Fwj‖ − ‖Hgkwj‖2‖Hf̄kwj‖2 → 0,

we have

‖Fwj‖ → ‖Q(g ◦ ϕm)‖2‖Q(f̄ ◦ ϕm)‖2.

From this we see: ‖Fwj‖ → 0 if and only if ‖Q(g ◦ϕm)‖2 = 0 or ‖Q(f̄ ◦ϕm)‖2 = 0.
In case ‖Q(g ◦ ϕm)‖2 = 0 the function g ◦ ϕm is analytic, so that case (i) occurs;
in case ‖Q(f̄ ◦ ϕm)‖2 = 0 the function f̄ ◦ ϕm is analytic, so that f ◦ ϕm must be
constant and case (iii) occurs.

The case where the numbers ‖Hf̄kwj‖2 are not bounded below is handled simi-
larly.

An operator S is essentially normal if the commutator [S, S∗] = SS∗ − S∗S is
compact. The above theorem has the following consequence.

Corollary 5.2. Let f be in C(M). Then: Sf is essentially normal if and only if
f maps each Gleason part of M, except D, into a line in the complex plane.

Proof. Observe that if G is a Gleason part of M not equal to D, then f(G) is
contained in a line in the complex plane if and only if there exist constants α and
β, not both 0, such that αf + βf̄ is constant on G.

6. The Commutator Ideal

Writing B(L2
a) for the set of all bounded operators on L2

a, the Toeplitz algebra T
is the C∗-subalgebra of B(L2

a) generated by all Toeplitz operators Tg for g ∈ H∞. If
we let U denote the C∗-subalgebra of L∞(D, dA) generated by H∞, then U equals
the closed subalgebra of L∞(D, dA) generated by the set of bounded harmonic
functions on D (see [2], Proposition 4.5), and it can be shown that T is equal to
the closed subalgebra of B(L2

a) generated by all Toeplitz operators Tu with u ∈ U .
Recall that the commutator ideal CT is the smallest closed, two-sided ideal of

T containing all commutators [R,S] = RS − SR, where R,S ∈ T . McDonald and
Sundberg [15] showed that T /CT is isomorphic, as a C∗-algebra, to C(M1), where
M1 denotes the subset ofM consisting of all one-point parts (that is, the set of m ∈
M for which G(m) = {m}). More precisely, they proved that the map u 7→ Tu+CT
is a surjective homomorphism of U onto T /CT , with kernel {u ∈ U : u|M1 = 0}.
This theorem says that each S ∈ T can be written in the form S = Tu + R for
some u ∈ U and R ∈ CT , and that for every u ∈ U the Toeplitz operator Tu belongs
to the commutator ideal CT if and only if u|M1 = 0. These results account for
the importance of understanding the commutator ideal CT . The decomposition of
S ∈ T as S = Tu+R with u ∈ U and R ∈ CT is not unique. The Berezin transform
of an operator S ∈ B(L2

a) is defined by S̃(z) = 〈Skz, kz〉, for z ∈ D. Axler and the
second author [4] used the Berezin transform to obtain a canonical decomposition
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of a given operator in T , and showed that S−TS̃ is in the commutator ideal CT for
every S ∈ T . Furthermore, an operator S ∈ B(L2

a) is in the commutator ideal CT
if and only if S̃|M1 = 0 (here S̃ is the continuous extension to the maximal ideal
space of the Berezin transform of S; see [4]). Writing S = TS̃ + (S − TS̃) gives a
canonical way to express the (nondirect) sum T = {Tu : u ∈ U} + CT .

Denoting the set of bounded operators on (L2
a)⊥ by B((L2

a)⊥), the dual Toeplitz
algebra DT is the C∗-subalgebra of B((L2

a)
⊥) generated by the dual Toeplitz op-

erators Sf for f ∈ H∞. Let CDT be the commutator ideal of DT . We have the
following analogue of the McDonald-Sundberg theorem:

Theorem 6.1. The map Ψ: C(M)→ DT /CDT defined by

Ψ(f) = Sf + CDT
is a C∗-algebra isomorphism.

This theorem states that each S ∈ DT can be written in the form S = Sf + R,
where f ∈ C(M) and R ∈ CDT . Unlike the McDonald-Sundberg theorem for
the Toeplitz algebra, this decomposition is unique. Consequently, the only dual
Toeplitz operator contained in the commutator ideal CDT is the zero operator.

Proof. Using the elementary algebraic properties of dual Toeplitz operators from
the beginning of Section 2, it is obvious that Ψ is a linear *-map into DT /CDT .
Next we will show that the mapping Ψ is multiplicative. Since sums of elements of
the form f ḡ, for f and g in H∞, are dense in C(M), it is sufficient to show that

Ψ(f ḡhk̄) = Ψ(f ḡ)Ψ(hk̄),

for f , g, h and k in H∞. This is equivalent to showing that

SfḡShk̄ − Sfḡhk̄ ∈ CDT .
Using (2.2) we have

SfḡShk̄ − Sfḡhk̄ = Sf (SḡSh − ShSḡ)Sk̄,
so that indeed SfḡShk̄ − Sfḡhk̄ ∈ CDT . This completes the proof that Ψ is multi-
plicative.

Thus DT /CDT is ∗-isometrically isomorphic to C(M)/ ker Ψ, where

ker Ψ = {ϕ ∈ C(M) : ϕ = 0 on M′}
for some closed subset M′ of M.

To finish the proof, we need to identify the subset M′. We shall show that
M′ =M.

First we show that M′ contains the unit disk D. Since DT is generated by
subnormal operators, a theorem of Bunce [7] shows that for all f ∈ H∞ the left
spectrum of Sf̄ is identified with the set f(M′). So it suffices to show that for each
w in D and f ∈ H∞, f(w) is in the left spectrum of Sf̄ . To do this, for w ∈ D and
0 < s < 1−|w|, let gw,s be the function on D defined by gw,s(z) = (z − w)χw+sD(z),
for z ∈ D. For each h ∈ L2

a,∫
D
h(z)gw,s(z) dA(z) =

∫
sD
h(z + w)z dA(z) = 0.

Thus gw,s ∈ (L2
a)⊥ and (z − w)gw,s ∈ (L2

a)⊥. An easy computation yields

‖Sz−wgw,s‖2 = ‖(z − w)gs‖2 = s3/
√

3.
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On the other hand, ‖gw,s‖2 = s2/
√

2. Therefore∥∥Sz−w(gw,s/‖gw,s‖2)
∥∥

2
= s
√

2/3.

For each f ∈ H∞, there is a function f1 ∈ H∞ such that f(z)−f(w) = (z−w)f1(z),
for all z ∈ D. Then∥∥Sf−f(w)(gs/‖gs‖2)

∥∥
2

=
∥∥Sf̄1

Sz−w(gs/‖gs‖2)
∥∥

2

≤ ‖f1‖∞
∥∥Sz−w(gs/‖gs‖2)

∥∥
2

= ‖f1‖∞ s
√

2/3→ 0,

as s→ 0+. This implies that f(w) is in the left spectrum of Sf̄ .
By Carleson’s Corona Theorem the unit disk D is dense in M. Thus M′ =M,

so that Ψ is injective. The range of Ψ is easily seen to be dense in DT /CDT . Thus
Ψ is also surjective.

McDonald and Sundberg [15] proved that a Toeplitz operator with symbol in
C(M) is only compact if the symbol is identically equal to 0. We have the following
analogous result for dual Toeplitz operators.

Corollary 6.2. If f ∈ C(M), then Sf is compact if and only if f = 0 on M.

Proof. Let f ∈ C(M) and suppose that the operator Sf is compact. For w ∈ D and
0 < s < 1−|w| let gw,s be the function defined in the proof of Theorem 6.1, and let
uw,s = gw,s/‖gw,s‖2. The functions uw,s are unit vectors in the space (L2

a)⊥. For
ψ ∈ L2(D, dA), applying the Cauchy-Schwarz inequality, we have

|〈ψ, gw,s〉| =
∣∣∣∣∫
w+sD

ψ(z)gw,s(z) dA(z)
∣∣∣∣ ≤ ‖gw,s‖2(∫

w+sD
|ψ(z)|2 dA(z)

)1/2

.

Thus

|〈ψ, uw,s〉| ≤
(∫

w+sD
|ψ(z)|2 dA(z)

)1/2

,

and it follows that the functions uw,s tend to 0 weakly in L2(D, dA), and thus in
(L2

a)⊥, as s → 0+. Since Sf is compact, we must have ‖Sfuw,s‖2 → 0 as s → 0+.
Using the continuity of f at w it is easily seen that ‖Sf−f(w)uw,s‖2 → 0, thus

‖Sfuw,s‖2 → |f(w)|,
as s → 0+. Hence f(w) = 0. Since D is dense in M and f is continuous, we
conclude that f = 0.

In the next section we will generalize the above result to arbitrary bounded
measurable symbols.

7. Bounded and Compact Dual Toeplitz Operators

For f ∈ L2(D, dA) the dual Toeplitz operator Sf is densely defined by the formula
Sfu = Q(fu), for u ∈ (L2

a)⊥ ∩ L∞(D, dA). In this section we will characterize the
bounded and compact dual Toeplitz operators.

The functions uw,s in the following lemma are defined in the proof of Corol-
lary 6.2.
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Lemma 7.1. Let f ∈ L2(D, dA). For each w ∈ D,

lim
s→0+

‖H∗fuw,s‖2 = 0.

Proof. Fix w ∈ D. For every z ∈ D we have

H∗fgw,s(z) =
∫
D
f(λ)gw,s(λ)Kz(λ) dA(λ)

=
∫
w+sD

f(λ)gw,s(λ)Kz(λ) dA(λ).

The Cauchy-Schwarz inequality gives

|H∗f gw,s(z)| ≤ ‖gs,w‖2
(∫

w+sD
|f(λ)|2|Kz(λ)|2 dA(λ)

)1/2

,

so that

|H∗fuw,s(z)|2 ≤
∫
w+sD

|f(λ)|2|Kz(λ)|2 dA(λ),

for all z ∈ D. Integrate with respect to z to obtain

‖H∗fuw,s‖22 ≤
∫
w+sD

|f(λ)|2
{∫

D
|Kz(λ)|2 dA(z)

}
dA(λ),

and using
∫
D |Kz(λ)|2 dA(z) =

∫
D |Kλ(z)|2 dA(z) = Kλ(λ) = 1/(1− |λ|2)2, we get

‖H∗fuw,s‖22 ≤
∫
w+sD

|f(λ)|2
(1− |λ|2)2

dA(λ)

≤ 1
(1 − (|w|+ s))2

∫
w+sD

|f(λ)|2 dA(λ),

which gives the stated result, since
∫
w+sD |f(λ)|2 dA(λ)→ 0 as s→ 0+.

The following lemma will be used repeatedly.

Lemma 7.2. For f ∈ L2(D, dA) we have

|f(w)| = lim
s→0+

‖Sfuw,s‖2,

for almost every w ∈ D.

Proof. Note that Mfu = Sfu+H∗
f̄
u, and Sfu ⊥ H∗f̄u for every bounded u ∈ (L2

a)⊥.
Thus

‖Mfu‖22 = ‖Sfu‖22 + ‖H∗f̄u‖
2
2.

For each w ∈ D, taking u = uw,s in the above equality, by Lemma 7.1 we have

lim
s→0+

‖Sfuw,s‖22 = lim
s→0+

‖Mfuw,s‖22.

We claim that

lim
s→0+

‖Mfuw,s‖22 = lim
s→0+

∫
|z−w|<s |f(z)|2|z − w|2 dA(z)∫
|z−w|<s |z − w|2 dA(z)

= |f(w)|2,(7.3)



2510 KAREL STROETHOFF AND DECHAO ZHENG

for a.e. w ∈ D. Clearly this claim will prove the stated result. To prove (7.3) write
g = |f |2. Using the fact that

∫
|z−w|<s |z − w|2 dA(z) = s4/2, we have∣∣∣∣∣

∫
|z−w|<s g(z)|z − w|2 dA(z)∫
|z−w|<s |z − w|2 dA(z)

− g(w)

∣∣∣∣∣ ≤ s2
∫
|z−w|<s |g(z)− g(w)| dA(z)

s4/2

=
2

|B(w, s)|

∫
B(w,s)

|g(z)− g(w)| dA(z),

where B(w, s) = {z ∈ C : |z − w| < s}, so (7.3) holds for all w in the Lebesgue set{
w ∈ D : lim

s→0+

1
|B(w, s)|

∫
B(w,s)

|g(z)− g(w)| dA(z) = 0

}
.

It is a classical theorem of Lebesgue that the complement of the above set in D has
area measure 0 (see, for example, Theorem 8.8 in [17]).

For f ∈ L2(D, dA) we can consider Tf and Sf as densely defined operators on L2
a

and (L2
a)⊥, respectively. It is well-known that there exist unbounded functions f

for which the Toeplitz operator Tf is bounded on L2
a. In contrast, for dual Toeplitz

operators we have the following result.

Theorem 7.4. Let f ∈ L2(D, dA). Then Sf is bounded if and only if f ∈ L∞(D),
in which case ‖Sf‖ = ‖f‖∞.

Proof. The “if” part is trivial: if f ∈ L∞(D, dA), then Sf is bounded with ‖Sf‖ ≤
‖f‖∞. To prove the “only if” part, suppose that Sf is bounded. Then ‖Sfuw,s‖ ≤
‖Sf‖, for all w ∈ D and 0 < s < 1 − |w|. It follows from Lemma 7.2 that ‖f‖∞ ≤
‖Sf‖.

Brown and Halmos showed that the only compact (completely continuous) Toe-
plitz operator on the Hardy space is the zero operator. This is easily seen to be
false for Toeplitz operators on the Bergman space: for every continuous function
f on D such that f(w) → 0 as |w| → 1− the Toeplitz operator Tf is compact on
L2
a. A complete characterization of compact Toeplitz operators on the Bergman

space via the Berezin transform has recently been obtained by Axler and the second
author [5]. In contrast with Toeplitz operators on the Bergman space we have the
following result for dual Toeplitz operators.

Theorem 7.5. For f in L∞(D, dA): Sf is compact if and only if f = 0 a.e. on D.

Proof. Since uw,s → 0 weakly in (L2
a)⊥, if Sf is compact, then for each w ∈ D we

have ‖Sfuw,s‖2 → 0 as s → 0+, and it follows from Lemma 7.2 that f(w) = 0 for
a.e. w ∈ D.

We conclude this section with the following generalization of Theorem 3.1.

Theorem 7.6. Let f and g be in L∞(D). If SfSg is a compact perturbation of a
dual Toeplitz operator Sh, then f(w)g(w) = h(w) for almost all w ∈ D, and HfH

∗
ḡ

is compact.

Proof. Assume that SfSg − Sh is compact. Then, using (2.1), we see that the
operator

Sfg−h −HfH
∗
ḡ = SfSg − Sh
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is compact. For w ∈ D, uw,s → 0 weakly in (L2
a)⊥ as s→ 0+; thus

‖(Sfg−h −HfH
∗
ḡ )uw,s‖2 → 0.

By Lemma 7.1 we also have

‖HfH
∗
ḡuw,s‖2 → 0.

Thus

‖Sfg−huw,s‖2 → 0.

Applying Lemma 7.2 we see that

‖Sfg−huw,s‖22 → |f(w)g(w) − h(w)|2,

for a.e. w in D. Since f(w)g(w) − h(w) = 0 for almost all w ∈ D, we have that
Sfg−h = 0. Hence HfH

∗
ḡ is compact.

8. Symbol Map on the Dual Toeplitz Algebra

The symbol map on the Toeplitz algebra in the Hardy space setting is described
in Chapter 7 of [9]. In this section we will show the existence of a symbol map on
the dual Toeplitz algebra. Our construction of this symbol map will make use of
the following lemma.

Lemma 8.1. If the operator S is in the closed ideal generated by the semicommu-
tators of all bounded dual Toeplitz operators, then

‖Suw,s‖2 → 0

for all w in D as s→ 0+.

Proof. If operator S is in the closed ideal generated by the semicommutators of
all bounded dual Toeplitz operators, then S can be approximated by a finite sum
of finite products of dual Toeplitz operators or operators of the form Sfg − SfSg.
Noting that

Sfg − SfSg = HfH
∗
ḡ ,

Lemma 7.1 gives that

‖(Sfg − SfSg)uw,s‖2 → 0,

for all w in D as s→ 0+. To prove the stated result, it suffices to show that for f, g,
and h1, . . . , hn in L∞(D),

‖(Sfg − SfSg)Sh1Sh2 · · ·Shn−1Shnuw,s‖2 → 0,

for all w in D as s → 0+. This can be proved using induction. To prove the basis
for the induction put h = h1. Repeatedly using (2.1) we gave

(Sfg − SfSg)Sh = SfgSh − SfSgSh = SfgSh − Sf (Sgh −HgH
∗
h
)

= SfgSh − SfSgh + SfHgH
∗
h

= (Sfgh − SfSgh)− (Sfgh − SfgSh) + SfHgH
∗
h

= HfH
∗
gh
−HfgH

∗
h

+ SfHgH
∗
h
.
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Using Lemma 7.1 we conclude that ‖(Sfg − SfSg)Shuw,s‖2 → 0, for all w in D as
s→ 0+. The case n = can be proved similarly. The induction step follows likewise
from the observation that

(Sfg − SfSg)Sh1Sh2 · · ·Shn−1Shn = (Sfg − SfSg)Sh1Sh2 · · ·Shn−1hn

− (Sfg − SfSg)Sh1Sh2 · · ·Shn−2Hhn−1H
∗
hn
,

for n > 2.

Proposition 8.2. For f1, f2, . . . , fn ∈ L∞(D) the operator

Sf1Sf2 · · ·Sfn − Sf1f2···fn

belongs to the closed ideal generated by the semicommutators of all bounded dual
Toeplitz operators.

Proof. Writing

Sf1Sf2 · · ·Sfn − Sf1f2···fn = Sf1 (Sf2 · · ·Sfn − Sf2···fn) + Sf1Sf2···fn − Sf1f2···fn ,

the statement follows by induction.

If F is a subset of L∞(D), then we write I(F) for the smallest closed subalgebra
of B((L2

a)⊥) containing {Sf : f ∈ F}. The dual Toeplitz algebra is I(L∞(D)).
Let D be the semicommutator ideal of the dual Toeplitz algebra I(L∞(D)). The
following result states the existence of a symbol map from the dual Toeplitz algebra
I(L∞(D)) to L∞(D).

Theorem 8.3. There is a contractive C∗-homomorphism ρ from the dual Toeplitz
algebra I(L∞(D)) to L∞(D) such that ρ(Sf ) = f , for all f ∈ L∞(D).

Proof. First we define ρ on finite sums of finite products of dual Toeplitz operators.
If S =

∑n
i=1 Sfi1Sfi2 · · ·Sfini , we define ρ(S) by

ρ(S) =
n∑
i=1

fi1fi2 · · · fini .

We must show that ρ(S) is well-defined. Suppose that S has another representation:
S =

∑m
i=1 Sgi1Sgi2 · · ·Sgimi . Let

F =
n∑
i=1

fi1fi2 · · · fini and G =
m∑
i=1

gi1gi2 · · · gini .

We need only to show that F (w) = G(w) a.e. on D. By Proposition 8.2 both
S−SF and S−SG are in the semicommutator ideal D. Thus SF −SG is in D. By
Lemma 8.1 we have

lim
s→0+

‖(SF − SG)uw,s‖2 = 0

for a.e. w ∈ D. On the other hand, Lemma 7.2 gives that

|F (w)−G(w)| = lim
s→0+

‖(SF − SG)uw,s‖2.

Thus F (w) = G(w) a.e. on D, so that ρ(S) is well-defined.
For each S ∈ I(L∞(D)) and a given positive integer n there is a finite sum Fn

of finite products of dual Toeplitz operators such that

‖S − Fn‖ < 1/n.



DUAL TOEPLITZ OPERATORS 2513

By the first part of the proof, ρ(Fn) is well-defined. The sequence (ρ(Fn)) in L∞(D)
is a Cauchy sequence, since

‖ρ(Fn)− ρ(Fm)‖∞ ≤ ‖Fn − Fm‖.
We define ρ(S) to be the limit of the Cauchy sequence (ρ(Fn)) in L∞(D). It is
easily seen that ρ(S) does not depend on the chosen sequence (Fn).

The mapping ρ is clearly linear, and it is easily seen that ρ(S∗) = ρ(S). To
prove that ρ is contractive it is sufficient to show that ‖ρ(S)‖∞ ≤ ‖S‖ if S is a
finite sum of finite products of dual Toeplitz operators. Writing F = ρ(S), the
operator D = S − SF is in the semicommutator ideal D, so that by Lemma 8.1,
‖Duw,s‖2 → 0 as s→ 0+. Using Lemma 7.2 it follows that

‖S‖ = ‖SF +D‖ ≥ lim
s→0+

‖(SF +D)uw,s‖2 = |F (w)|,

for a.e. w ∈ D, proving that indeed ‖ρ(S)‖∞ = ‖F‖∞ ≤ ‖S‖.
To prove that ρ is a C∗-algebra homomorphism it suffices to prove that ρ(ST ) =

ρ(S)ρ(T ), for operators S and T which are finite products of dual Toeplitz operators.
Clearly it will be sufficient to show that

ρ(Sf1 · · ·Sfn) = ρ(Sf1) · · · ρ(Sfn),

for f1, · · · , fn ∈ L∞(D). This follows immediately from Proposition 8.2.

We call ρ the symbol map on the dual Toeplitz algebra I(L∞(D)). Define the
mapping ξ : L∞(D) −→ L((L2

a)⊥) by ξ(f) = Sf , for f ∈ L∞(D).

Theorem 8.4. If D is the semicommutator ideal in the dual Toeplitz algebra
I(L∞(D)), then the mapping ξ̄ induced from L∞(D) to I(L∞(D))/D by ξ is a
∗-isometric isomorphism. Thus there is a short exact sequence

(0) −→ D −→ I(L∞(D))
ρ−→ L∞(D) −→ (0)

for which ξ is an isometric cross section.

Proof. The mapping ξ̄ is obviously linear and contractive. To show that ξ̄ is mul-
tiplicative, observe that for functions f and g in L∞(D),

ξ(f)ξ(g)− ξ(fg) = SfSg − Sfg
is in the semicommutator D. Thus ξ̄ is multiplicative on L∞(D).

To complete the proof we show that ‖Sf +K‖ ≥ ‖Sf‖ for ϕ ∈ L∞(D) and K in
D, and hence ξ̄ is an isometry. Note that ‖Sf‖ = ‖f‖∞. So it suffices to show that
‖Sf +K‖ ≥ ‖f‖∞. Since K is in the semicommutator, by Theorem 8.3 we have

lim
s→0+

‖Kuw,s‖ = 0,

for all w ∈ D. By Lemma 7.2 we also have that

lim
s→0+

‖Sfuw,s‖ = |f(w)|,

for a.e. w ∈ D. Thus

‖Sf +K‖ ≥ lim
s→0+

‖(Sf +K)uw,s‖ = |f(w)|

for a.e. w ∈ D. So this gives that ‖Sf+K‖ ≥ ‖f‖∞, which completes the proof.

Theorem 8.5. The semicommutator ideal in the dual Toeplitz algebra I(L∞(D))
contains the ideal K of compact operators on (L2

a)⊥.
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Proof. Let D denote the semicommutator ideal of I(L∞(D)). First we show that
D contains the rank one operator z̄ ⊗ z̄.

As a special case of (2.5) we have

z̄ ⊗ z̄ = (Hz̄1)⊗ (Hz̄1) = Hz̄(1⊗ 1)H∗z̄ = S2
0 (Hz̄H

∗
z̄ )

= Hz̄H
∗
z̄ − 2SzHz̄H

∗
z̄Sz̄ + S2

zHz̄H
∗
z̄S

2
z̄ .

By (2.1),

Hz̄H
∗
z̄ = Sz̄z − Sz̄Sz ∈ D.

Thus z̄ ⊗ z̄ is in D.
Next we will show that the set D is irreducible in B((L2

a)
⊥). Let N be a

closed linear subspace of B((L2
a)⊥) which is reducing for D. We have to show

that N = B((L2
a)
⊥). We will first prove the following claim.

Claim. The function z̄ is in N .

Since N is nonzero, it contains a nonzero function ϕ. Since the linear combina-
tions of the functions zmz̄n are dense in L2(D, dA) and ϕ is not the zero function,
ϕ cannot be orthogonal to all zmz̄n, and thus there exist integers m,n ≥ 0 such
that 〈ϕ, zmz̄n〉 6= 0. Since ϕ ∈ (L2

a)⊥ is orthogonal to the function zm, we must
have n > 0. Note that

〈ϕ, zmz̄n〉z̄ = 〈z̄mzn−1ϕ, z̄〉z̄ = 〈Sz̄mzn−1ϕ, z̄〉z̄ = (z̄ ⊗ z̄)Sz̄mzn−1ϕ.

By the first part of the proof, z̄ ⊗ z̄ ∈ D. Since D is an ideal, (z̄ ⊗ z̄)Sz̄mzn−1 ∈ D.
Because N is reducing for every operator in D, we have 〈ϕ, zmz̄n〉z̄ ∈ N . Because
〈ϕ, zmz̄n〉 6= 0, we conclude that z̄ ∈ N , and our claim is proved.

Now let ψ be a function in (L2
a)⊥ which is orthogonal to N . If n > 0 and m ≥ 0

are integers, then (z̄⊗ z̄)Sz̄mzn−1 ∈ D, and since N is reducing for D it follows that

〈ψ, zmz̄n〉z̄ = (z̄ ⊗ z̄)Sz̄mzn−1ψ

is orthogonal to N . Because z̄ ∈ N we must have 〈ψ, zmz̄n〉 = 0. Note that this
is also true if n = 0, since ψ ∈ (L2

a)⊥. So ψ is orthogonal to all functions zmz̄n,
where n ≥ 0 and m ≥ 0 are integers. We conclude that ψ = 0 a.e. on D, and hence
N equals (L2

a)⊥. This completes the proof that D is irreducible.
Note that D contains the nonzero compact operator z̄ ⊗ z̄ = Hz̄(1 ⊗ 1)H∗z̄ . By

Theorem 5.39 of [9], D contains the ideal K of all compact operators on (L2
a)⊥.

Theorem 8.6. The C∗-algebra I(C(D̄)) contains the ideal K of compact operators
on (L2

a)⊥ as its semicommutator ideal, and the sequence

(0)→ K → I(C(D̄))→ C(D̄)→ (0)

is short exact; that is, the quotient algebra I(C(D̄))/K is ∗-isometrically isomorphic
to C(D̄).

Proof. Write S to denote the semicommutator ideal in the dual Toeplitz algebra
I(C(D̄)). By the proof of the previous theorem, K is contained in S. For two
continuous functions f and g on D̄, by (2.1) the semicommutator

Sfg − SfSg = HfH
∗
ḡ
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is compact. Since S is generated by semicommutators of dual Toeplitz operators
with symbols in C(D̄), it follows that S is contained in K. Hence K equals the
semicommutator ideal S. This completes the proof.

In Section 3 we have shown that the product of two dual Toeplitz operators
cannot be zero unless one of the dual Toeplitz operators is the zero operator. The
symbol mapping can be used to obtain generalizations of this result. In fact, we
can obtain a necessary condition for the product of dual Toeplitz operators to be
compact. We have the following generalization of Theorem 7.5:

Theorem 8.7. Let f1, . . . , fn ∈ L∞(D). If the product Sf1Sf2 · · ·Sfn is compact,
then f1(w)f2(w) . . . fn(w) = 0 for almost all w in D.

Proof. If Sf1Sf2 · · ·Sfn is compact, then, by Theorem 8.5, Sf1Sf2 · · ·Sfn is in the
semicommutator ideal D. Using Proposition 8.2 we see that Sf1f2···fn is in D. It
follows that ρ(Sf1f2···fn) = 0, hence f1f2 · · · fn = 0 a.e. on D.

The following result shows that a finite product of dual Toeplitz operators with
bounded harmonic symbols cannot be zero unless one of the dual Toeplitz operators
is zero. Whether or not the analogous statement is true for Toeplitz operators on
the Hardy space is still an open problem.

Corollary 8.8. Let f1, . . . , fn be bounded harmonic functions on D. The following
statements are equivalent:

(i) Sf1Sf2 · · ·Sfn is compact.
(ii) Sf1Sf2 · · ·Sfn = 0.
(iii) One of the fi must be zero on D.

9. Spectral properties of dual Toeplitz operators

In this section we discuss the spectrum and essential spectrum of dual Toeplitz
operators.

Proposition 9.1. Let f be a function in L∞(D). If Sf is invertible, then f is
invertible in L∞(D).

Proof. Assume that for some δ > 0 we have ‖Sfu‖2 ≥ δ, for all u ∈ (L2
a)⊥ with

‖u‖2 = 1. By Lemma 7.2, for a.e. w ∈ D we have

|f(w)| = lim
s→0+

‖Sfuw,s‖2 ≥ δ.

This completes the proof.

If f is a measurable function on D, then the essential range R(f) of f is the
set of all λ in C for which {z ∈ D : |f(z)− λ| < ε} has positive measure for every
ε > 0. We have the following spectral inclusion theorem, completely analogous to
the spectral inclusion theorem of Hartman and Wintner for Toeplitz operators on
the Hardy space (see Corollary 7.7 in [9]):

Theorem 9.2. If f is in L∞(D), then R(f) ⊂ σ(Sf ).

Proof. Since Sf −λ = Sf−λ for λ in C, using Proposition 9.1 it follows that R(f) ⊂
σ(Sf ).
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Brown and Halmos [6] proved that the spectrum of a Toeplitz operator on the
Hardy space is contained in the closed convex hull of the essential range of its
symbol. For a subset E of the complex plane we write h(E) for the closed convex
hull of E. The same argument as the proof of Corollary 7.19 in [9] shows that this
is also true for dual Toeplitz operators.

Theorem 9.3. For every f ∈ L∞(D) we have σ(Sf ) ⊂ h(R(f)).

A bounded operator S on (L2
a)⊥ is Fredholm if and only if the operator S+K is

invertible in the Calkin algebra B((L2
a)
⊥)/K. The following proposition states that

a dual Toeplitz operator can only be Fredholm if its symbol is invertible.

Proposition 9.4. If f is a function in L∞(D) such that Sf is a Fredholm operator,
then f is invertible in L∞(D).

Proof. Let K denote the ideal of compact operators on (L2
a)⊥ and let D denote the

ideal generated by the semicommutators of all bounded dual Toeplitz operators. If
Sf is Fredholm, then Sf +K is invertible in the Calkin algebra B(L∞(D))/K. Since
I(L∞(D))/K is a closed self-adjoint subalgebra of B(L∞(D))/K, it follows from
Theorem 4.28 of [9] that Sf + K is invertible in I(L∞(D))/K. By Theorem 8.5,
K ⊂ D, so Sf+D is invertible in the algebra I(L∞(D))/D. It follows that f = ρ(Sf )
is invertible in L∞(D).

The essential spectrum of a bounded linear operator S on (L2
a)⊥, denoted by

σe(S), is the spectrum of S + K in the Calkin algebra B((L2
a)⊥)/K. We have the

following inclusion theorem for the essential spectrum of a dual Toeplitz operator:

Theorem 9.5. If f is in L∞(D), then R(f) ⊂ σe(Sf ).

Proof. Since Sf −λ = Sf−λ for λ in C, using Proposition 9.4 it follows that R(f) ⊂
σe(Sf ).

Theorem 9.6. If f is in L∞(D) and is such that both Hankel operators Hf and
Hf̄ are compact, then σe(Sf ) = R(f).

Proof. By the previous theorem it suffices to prove that σe(Sf ) ⊂ R(f). If λ ∈
C \ R(f), then for some ε > 0 we have |f(z) − λ| ≥ ε, for a.e. z in D. Then
g = 1/(f − λ) is in L∞(D). By (2.1)

Sf−λSg = I −HfH
∗
ḡ and SgSf−λ = I −HgH

∗
f̄ .

Since both HfH
∗
ḡ and HgH

∗
f̄

are compact, Sf−λ + K is invertible in the Calkin
algebra, so that λ ∈ C \ σe(Sf ).

Widom [23] proved that the spectrum of a Toeplitz operator on the Hardy space
is connected, and Douglas [9] proved that also the essential spectrum is connected.
These statements are no longer true for dual Toeplitz operators.

Proposition 9.7. If f is a non-constant real-valued simple measurable function on
D for which Hf is compact, then both σ(Sf ) and σe(Sf ) are disconnected.

Proof. By Theorem 9.6, σe(Sf ) = R(f), which is a finite set consisting of more
than one point. Since Sf is self-adjoint, eigenvectors corresponding to distinct
eigenvalues are orthogonal. Because (L2

a)⊥ is a separable Hilbert space, the operator
Sf has at most countable point-spectrum σp(Sf ). Since σ(Sf ) \ σe(Sf ) ⊂ σp(Sf ),
the spectrum σ(Sf ) is at most countable. Because σ(Sf ) contains R(f), the set
σ(Sf ) must be disconnected.
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The following class of examples will show that modulo countable sets the spec-
trum of a dual Toeplitz operator can be any compact subset of the complex plane.

Example 9.8. Let (rk) be a strictly increasing sequence in the interval [0, 1) with
r0 = 0, and let (wk) be a bounded sequence of complex numbers. Consider the
function f : D→ C defined by

f(z) = wk for rk−1 ≤ |z| < rk, k = 1, 2, · · · .
Put W = {w1, w2, · · · }. Note that W̄ = R(f) ⊂ σe(Sf ). Suppose that λ is an
eigenvalue of Sf not in W̄ . Then there exists a nonzero h in (L2

a)⊥ such that
Sfh = λh. Then the function g = (f − λ)h = fh − Sfh = P (fh) is in L2

a. If
rk−1 ≤ |z| < rk, then f(z) = wk; thus h(z) = g(z)/(wk − λ). If g(z) =

∑∞
n=0 anz

n,
then for each n we have

0 = 〈h, zn〉 =
∞∑
k=1

∫
rk−1≤|z|<rk

h(z)z̄n dA(z)

=
∞∑
k=1

∫
rk−1≤|z|<rk

g(z)
wk − λ

z̄n dA(z)

=
∞∑
k=1

an
wk − λ

∫
rk−1≤|z|<rk

|z|2n dA(z),

hence λ satisfies the equations

an
n+ 1

∞∑
k=1

r2n+2
k − r2n+2

k−1

wk − λ
= 0,(9.9)

for all n = 0, 1, · · · . Since g is not the zero function, an 6= 0 for some n, and
consequently

∞∑
k=1

r2n+2
k − r2n+2

k−1

wk − λ
= 0.

For each non-negative integer n the function

ϕn(z) =
∞∑
k=1

r2n+2
k − r2n+2

k−1

wk − z

is analytic on C \ W̄ : if z is not in W̄ , then |z − wk| ≥ δ > 0, for all k = 1, 2, · · · ,
and thus

r2n+2
k − r2n+2

k−1

|wk − z|
≤ δ−1(r2n+2

k − r2n+2
k−1 ).

Hence
∞∑
k=1

r2n+2
k − r2n+2

k−1

|wk − z|
≤ δ−1

∞∑
k=1

(r2n+2
k − r2n+2

k−1 )

= δ−1r2n+2
∞ ≤ δ−1 <∞,

where r∞ = limk→∞ rk.
Thus the point-spectrum of Sf is contained in the union of W̄ with the zero sets

Z(ϕn) of the functions ϕn. The equations determining the eigenvalues of S∗f = Sf̄
not in the closure of the w̄k’s are identical to the above equations (just the complex
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conjugates of them). Using the notation E∗ = {z̄ : z ∈ E}, for a set E of complex
numbers, for any bounded operator T we have

σ(T ) \ σe(T ) ⊂ σp(T ) ∪ σp(T ∗)∗.
We conclude that

σ(Sf ) ⊂ σe(Sf ) ∪
∞⋃
n=0

Z(ϕn).

If f is furthermore constant near the circle (i.e., r∞ < 1), then both operators Hf

and Hf̄ are compact; thus σe(Sf ) = R(f) = W̄ , and we obtain

W̄ ⊂ σ(Sf ) ⊂ W̄ ∪
∞⋃
n=0

Z(ϕn).

So, if W is an infinite set with a finite number of accumulation points, then σ(Sf )
is countably infinite and thus disconnected. The set Z =

⋃∞
n=0 Z(ϕn) is countable;

W̄ can be any compact subset of the complex plane, so the above inclusions show:

For every compact subset K of the complex plane there exists a bounded measur-
able function f such that σ(Sf ) = K ∪N , where N is a countable set.

Note that it is not necessary for r∞ to be strictly less than 1 in order for Hf and
Hf̄ to be compact. If we take

r2k = 1− 1
2k + 1

, r2k+1 = 1− 1
2k + 1 + 2−2k−1

,

and wk = (1+(−1)k)/2, then in [8] it was shown that the Hankel operator Hf = Hf̄

is Hilbert-Schmidt.
In the special case that f is the function

f(z) =

{
w1 for |z| < r,

w2 for r ≤ |z| < 1,

equations (9.9) are equivalent to

an

{
r2n+2

w1 − λ
+

1− r2n+2

w2 − λ

}
= 0,(9.10)

for n = 0, 1, · · · . If an 6= 0, then (9.10) has solution λ = w1 + (w2 − w1)r2n+2. If
λ = w1 + (w2 − w1)r2n+2 and h is the function on D defined by

h(z) =

{
zn

w1−λ if |z| < r,
zn

w2−λ if r ≤ |z| < 1,

then (f − λ)h = zn, and thus Sf−λh = 0. So λ is indeed an eigenvalue. Note that
(9.10) shows that the power series coefficients of g other than an must be 0. This
easily implies that Sf−λ has one-dimensional kernel. We conclude that in this case

σ(Sf ) = {w1, w2} ∪ {w1 + (w2 − w1)r2n+2 : n = 0, 1, 2, · · · }.
Observe that this set does belong to the closed convex hull of w1 and w2.

Thus there are bounded measurable functions f on D for which both ker(Sf ) and
ker(S∗f ) are non-trivial, in constrast with Coburn’s result for Toeplitz operators on
the Hardy space (see Proposition 7.24 in [9]).
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The above example shows a difference with Toeplitz operators on the Bergman
space. If f is the characteristic function of a countable union of annuli in the unit
disk centered at 0, then Lark [14] has shown that σe(Tf) is connected. However, as
is the case for dual Toeplitz operators, σ(Tf ) may be disconnected. If g is a function
as described in Section 6 of [20] such that Tg is compact, then f = 1

2 (1 + g) is a
characteristic function of a countable union of annuli in the unit disk centered at
0, and σ(Tf ) = { 1

2 + λn : n = 0, 1, 2, · · · }, where the λn are positive numbers
converging to 0. Clearly this set is disconnected.

In contrast to Proposition 9.7 we have the following result.

Proposition 9.11. If f is a continuous real-valued function on D, then σ(Sf ) =
σe(Sf ) is connected.

Proof. Since f is continuous and real-valued, R(f) = f(D) is an interval. Combin-
ing Theorem 9.5 and Theorem 9.3, we see that σe(Sf ) = σ(Sf ) = f(D).

By the above proposition the spectrum of a dual Toeplitz operator with bounded
real-valued harmonic symbol is connected. We do not know whether this is also
true for dual Toeplitz operators with bounded complex-valued harmonic symbols.
For bounded analytic and co-analytic symbols we have the following result.

Theorem 9.12. If f is a bounded analytic or co-analytic function on D, then
σ(Sf ) = σe(Sf ) = f(D).

Proof. Since S∗f = Sf̄ , it suffices to consider the case that f is co-analytic on D.
If f is conjugate analytic, then L2

a is invariant under the multiplication operator
Mf̄ , so (L2

a)⊥ is invariant under Mf . Thus Sf is the restriction of Mf to (L2
a)⊥.

If a complex number λ is not in f(D), then Sf−λ has inverse S1/(f−λ). Hence
σ(Sf ) ⊂ f(D). By Theorem 9.5, f(D) ⊂ σe(Sf ), and the conclusion follows.
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