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Abstract. By means of a center manifold analysis we investigate the averaged
mean curvature flow near spheres. In particular, we show that there exist
global solutions to this flow starting from non-convex initial hypersurfaces.

1. Introduction

Let G be a compact, closed, connected, embedded hypersurface in Rn of class
C1+β . We are interested in the averaged mean curvature flow, i.e., in finding
a family M = {Mt ; t ≥ 0} of smooth hypersurfaces in Rn satisfying the following
evolution equation:

V = h−H, M0 = G,(1.1)

where V (t) denotes the normal velocity of M at time t and H(t) stands for the
mean curvature of Mt. Finally, h(t) is the average of the mean curvature on Mt,
i.e.,

h(t) :=

∫
Mt

H dσ∫
Mt

dσ
, t ≥ 0.

The averaged mean curvature flow has some interesting geometrical features.
Suppose that M = {Mt ; t ≥ 0} is a smooth solution to (1.1) and let Vol(t) and
A(t) denote the volume enclosed by Mt and the area of Mt, respectively. Then
these functions are smooth, and we find for their derivatives

d

dt
Vol(t) =

∫
Mt

V dσ =
∫

Mt

(h−H) dσ = 0,

and, see e.g., [11] Theorem 4 or [9] p. 70,
1

n− 1
d

dt
A(t) =

∫
Mt

HV dσ =
∫

Mt

(hH −H2) dσ = −
∫

Mt

(h−H)2dσ ≤ 0,

since obviously
∫

h(h−H) dσ = 0. Hence the averaged mean curvature flow is vol-
ume preserving and area shrinking. Moreover, observe that every Euclidean
sphere is an equilibrium for (1.1). These simple observations form in fact the start-
ing point of our investigations. More precisely, the isoperimetric inequality suggests
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analyzing the infinite-dimensional semiflow generated by (1.1) near spheres. In or-
der to formulate our main result, let us introduce the following notation. Given an
open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order s > 0, that is,
the closure of C∞(U) in the usual Hölder norm of Cs(U). If Γ is a (sufficiently)
smooth submanifold of Rn then the spaces hs(Γ) are defined by means of a smooth
atlas for Γ. We have the following:

Main Result. Assume that 0 < β < 1 and let G be a compact, closed, connected,
embedded hypersurface in Rn of class h1+β. Then:

a) The averaged mean curvature flow (1.1) has a unique local classical solution
M = {Mt ; t ∈ [0, T )} for some T > 0. Each hypersurface Mt is of class C∞ for
t ∈ (0, T ). Moreover, the mapping [t 7→ Mt] is continuous on [0, T ) with respect to
the h1+β-topology and smooth on (0, T ) with respect to the C∞-topology.

b) Suppose that the initial hypersurface G is an h1+β-graph in normal direction
over some smooth hypersurface Γ. Then the mapping ϕ := [(t,G) 7→ Mt] induces a
local smooth semiflow on h1+β(Γ).

c) Let S be a fixed Euclidean sphere and let M denote the set of all spheres
which are sufficiently h1+β(S)-close to S. Then M attracts at an exponential rate
all solutions which are h1+β(S)-close to M. In particular, if G is sufficiently close
to S in h1+β(S), then Mt exists globally and converges exponentially fast to some
sphere as t →∞. The convergence is in the Ck-topology for any fixed k ∈ N.

Remarks. a) The existence part of the above result is well-known for smooth initial
hypersurfaces G, cf. [10] Theorem 0.1 and [8] Theorem 4.1. However, it is important
to be able to allow h1+β-hypersurfaces as initial data in order to get the semiflow
property stated in b) on the large space h1+β (cf. also Remark e) below).

b) The proof of part c) of the Main Result consists of two steps. We first show
that the semiflow ϕ admits a stable (n+1)-dimensional local center manifoldMc. In
particular, this means thatMc is a locally invariant manifold and that Mc contains
all small global solutions of ϕ. Additionally, there is an (n + 1)-dimensional linear
subspace N of h1+β(S), which is invariant under the linearization of ϕ and to which
Mc is tangential at 0. In a second step we then prove that Mc and M coincide.

c) Under suitable spectral assumptions for the linearization, the existence of
center manifolds is well-known for finite-dimensional dynamical systems. The cor-
responding construction for quasilinear infinite-dimensional semiflows (e.g. for ϕ)
is considerable more involved. The basic technical tool here is the theory of maxi-
mal regularity, due to G. Da Prato and P. Grisvard [3]. These results particularly
allow us to treat (1.1) as a fully nonlinear perturbed linear evolution equation; see
[4, 12, 13].

d) It is well-known that local stable center manifolds, which do not consist of
equilibria only, are not unique, in general.

e) It is important to note that the exponential attractivity of M holds for initial
data G which are h1+β-close to S. This result is close to optimal and has a nice
application to non-convex initial data; see the Corollary below.

f) Observe that Remark b) yields the fact that G is an equilibrium of (1.1) iff G
is a Euclidean sphere. In particular, this implies the following result: Suppose that
G is a compact, closed, connected, embedded hypersurface which is h1+β-close to
a sphere. Additionally, assume that the mean curvature of G is constant. Then G
is a Euclidean sphere. This observation is a special case of a general result due to
A. D. Alexandrov; cf. [1].
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g) The volume preserving mean curvature flow shares some properties with the
Mullins-Sekerka model [5, 6]—a moving boundary problem originating in the the-
ory of phase transitions. In particular, the Mullins-Sekerka model is also volume
preserving and area shrinking, and the only equilibria of this flow are spheres. As
for the averaged mean curvature flow, we show in [7] that the invariant manifold
M of Euclidean spheres is exponentially attracting.

G. Huisken [10] (and M. Gage [8] in the case of curves) proved the fundamental
result that the solution to (1.1) exists globally and converges exponentially fast to
a sphere, provided the initial surface G is uniformly convex and smooth. Moreover,
it is shown in [8, 10] that Mt stays uniformly convex for all t ≥ 0.

As an immediate consequence of part c) of our Main Result we get the following

Corollary. Convexity is not necessary for global existence of the averaged mean
curvature flow (1.1). More precisely, there are non-convex hypersurfaces G such
that the solution of (1.1) with initial condition M0 = G exists globally and converges
exponentially fast to a sphere.

Proof. Let S be a Euclidean sphere. Since in every h1+β- neighborhood of S there
are non-convex hypersurfaces, the assertion follows from part c) of the Main Result.

2. Proof of the Main Result

Let 0 < α < β0 < β < 1 be fixed and pick a compact, closed, connected,
embedded hypersurface G of class h1+β .

i) We first provide an appropriate parameterization of a small neighborhood of
G. Given a > 0, we find a smooth hypersurface Γ such that G is a C1-close graph
over Γ in normal direction, i.e., we find Γ of class C∞ and ρ0 ∈ h1+β(Γ) with
‖ρ0‖C1(Γ) < a/2 such that θρ0 := idΓ + ρ0ν is a diffeomorphism of class h1+β,
mapping Γ onto G. Here, ν denotes the outer unit normal field on Γ with the sign
convention that “interior” is given by the compact part of Rn enclosed by Γ. Let V
be the ball in h1+β(Γ) with center 0 and radius a, where a > 0 is chosen sufficiently
small such that

X : Γ× (−a, a) → Rn, X(s, r) := s + rν(s)

is a smooth diffeomorphism onto its image R := im(X). It is convenient to decom-
pose the inverse of X into X−1 = (S, Λ), where

S ∈ C∞(R, Γ) and Λ ∈ C∞(R, (−a, a)).

Note that S(x) is the nearest point on Γ to x and that Λ(x) is the signed distance
from x to Γ. Moreover, R is the neighborhood of Γ consisting of those points with
distance to Γ less than a.

Now let T > 0 be fixed. Given any (sufficiently) smooth function ρ : Γ× [0, T ]
→ (−a, a), let

Φρ : R× [0, T ]→ R, Φρ(x, t) := Λ(x) − ρ(S(x), t).

Then for each t ∈ [0, T ], the zero-level set of Φρ(·, t) defines a smooth, compact,
connected hypersurface Mρ(t) := Φ−1

ρ (·, t)(0). Observe that

Mρ(t) = {x ∈ Rn ; x = X(s, ρ(s, t)), s ∈ Γ}, t ∈ [0, T ].
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In addition, the normal velocity of {Mρ(t) ; t ∈ [0, T ]} and the mean curvature of
Mρ(t) (as functions parameterized over Γ) are given by

V (s, t) =
∂tρ(s, t)
|∇xΦ(x, t)|

∣∣∣∣
x=X(s,ρ(s,t))

, (s, t) ∈ Γ× [0, T ],

and

Hρ(s, t) =
1

n− 1
divx

( ∇xΦρ(x, t)
|∇xΦρ(x, t)|

)∣∣∣∣
x=X(s,ρ(s,t))

, (s, t) ∈ Γ× (0, T ),

respectively. Finally, we let

Lρ(s, t) := |∇xΦρ(x, t)|
∣∣∣
x=X(s,ρ(s,t))

, µρ :=
√

det[Dsθρ]T [Dsθρ],

and we define

G(ρ) := Lρ

( 1∫
Γ

µρ dσ

∫
Γ

Hρµρ dσ −Hρ

)
, ρ ∈ V ∩ h2+α(Γ).

Then we consider the abstract evolution equation for the distance function ρ
given by

∂tρ = G(ρ), ρ(0) = ρ0.(2.1)

We call a family ρ : [0, T ] → V a classical solution of (2.1) if

ρ ∈ C([0, T ],V) ∩ C∞((0, T ), C∞(Γ))

and if ρ satisfies (2.1) point-wise. It is not difficult to see that the averaged mean
curvature flow (1.1) and the abstract problem (2.1) are equivalent on R. More
precisely, if M := {Mt ; t ∈ [0, T ]} is a classical solution of (1.1) such that Mt ⊂ R
for t ∈ [0, T ], then the above construction yields a classical solution of (2.1), and
vice-versa; if ρ : [0, T ] → V is a classical solution of (2.1) then M := {Mρ(t) ; t ∈
[0, T ]} is a classical solution of (1.1).

ii) It is known that Hρ is a quasilinear uniformly elliptic operator of second order
acting in hα(Γ). More precisely, let U := {ρ ∈ h1+β0(Γ) ; ‖ρ‖1+β0 < a}. Then it
was shown in [7] Lemma 3.1 and [6] Lemma 3.2 that there exist functions

P ∈ C∞(U ,L(h2+α(Γ), hα(Γ))) and Q ∈ C∞(U , hβ0(Γ))(2.2)

such that

Hρ = P (ρ)ρ + Q(ρ) for ρ ∈ U ∩ h2+α(Γ).

Moreover, the linear operator [h 7→ P (ρ)h] is a uniformly elliptic operator of second
order. Now let −Gπ

ρ be the linear part of the principal part of G(ρ), i.e.,

Gπ
ρh = Lρ

(
P (ρ)h− 1∫

Γ

µρ dσ

∫
Γ

P (ρ)hµρ dσ
)
, h ∈ h2+α(Γ),

and fix ρ ∈ V . Since Lρ belongs to hβ(Γ) and is strictly positive, the linear op-
erator [h 7→ −LρP (ρ)h] generates a strongly continuous analytic semigroup on
hα(Γ) with domain of definition equal to h2+α(Γ), i.e., LρP (ρ) belongs to the class
H(h2+α(Γ), hα(Γ)) introduced by H. Amann; see, e.g. [2].



THE VOLUME PRESERVING MEAN CURVATURE FLOW 2793

Next, let B(ρ) be the linear operator in hα(Γ) given by

B(ρ)h :=
Lρ∫

Γ

µρ dσ

∫
Γ

P (ρ)hµρ dσ, h ∈ h2+α(Γ).

Obviously, ‖B(ρ)h‖hα = ‖Lρ‖hα

(∫
Γ µρ dσ

)−1| ∫
Γ

P (ρ)hµρ dσ|, and therefore

‖B(ρ)h‖hα ≤ Cρ‖h‖C2, h ∈ h2+α(Γ),

with a positive constant Cρ depending only on ρ ∈ V . Hence, given ε > 0, a well-
known interpolation inequality shows that there exists a positive constant Cε such
that

‖B(ρ)h‖hα ≤ ε‖h‖h2+α + Cε‖h‖hα , h ∈ h2+α(Γ).

We now apply a standard perturbation argument for the class H(h2+α(Γ), hα(Γ))
in order to conclude that

Gπ
ρ ∈ H(h2+α(Γ), hα(Γ)), ρ ∈ V .(2.3)

Finally, we set F (ρ) := G(ρ) + Gπ
ρρ for ρ ∈ V and we rewrite problem (2.1) as

∂tρ + Gπ
ρρ = F (ρ), ρ(0) = ρ0.(2.4)

Observe that F ∈ C∞(U , hβ0(Γ)). Hence property (2.3) allows us to apply the
general results for quasilinear parabolic problems due to H. Amann. In particular,
Theorem 12.1 in [2] and the proof of Theorem 1 in [6] imply the assertions in a)
and b).

iii) Now let S := SR be a Euclidean sphere of radius R and set Γ = SR in the
above construction. It follows from (2.2) that

G : U ∩ h2+α(S) → hα(S), ρ 7→ G(ρ)

is smooth. Our next goal is to determine the Fréchet derivative at ρ = 0 of the
above operator. To do this, observe that L0 ≡ 1. Moreover, it is shown in [7],
Lemma 3.1 and its proof, that

∂Hρ

∣∣
ρ=0

= − 1
n− 1

(n− 1
R2

+ ∆S
)
, ∂Lρ

∣∣
ρ=0

= 0,

where ∆S denotes the Laplace-Beltrami operator on S. Finally, it follows from [9]
p. 70 that

∂

∫
S

µρ dσ
∣∣
ρ=0

h = −n− 1
R

∫
S

h dσ, h ∈ h2+α(S).

Hence for the full linearization of G(ρ) at ρ = 0 we get the expression

∂G(0)h =
1

n− 1

(n− 1
R2

+ ∆S
)
h− 1

(n− 1)|S|
∫
S

(n− 1
R2

+ ∆S
)
h dσ(2.5)

for each h ∈ h2+α(S); here |S| stands for the area of S. Finally, note that∫
S

∆Sh dσ = (h|∆S1) = 0, h ∈ h2+α(S),
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where (·|·) denotes the inner product in L2(S). So we arrive at

∂G(0)h =
1

n− 1

(n− 1
R2

+ ∆S
)
h− 1

|S|R2

∫
S

h dσ(2.6)

for h ∈ h2+α(S).
iv) In our next step we determine the first eigenvalue of A := ∂G(0) and locate

the remainder of the spectrum. In this part of the proof we will always employ
the natural complexification without distinguishing this notationally. Of course,
σ(A) consists only of eigenvalues, due to the compact embedding of h2+α(S) in
hα(S). Furthermore, observe that A1 = 0. Moreover, it is well-known that λ =
(n − 1)/R2 is an eigenvalue of −∆S of multiplicity n and that the spherical har-
monics {Y R

k ; 1 ≤ k ≤ n} of degree 1 of the R-sphere S span the corresponding
eigenspace. Hence (2.5) shows that 0 is an eigenvalue of A of multiplicity at least
n + 1. Let N := span{1, Y R

k ; 1 ≤ k ≤ n} and assume that h ∈ h2+α(S) ∩ N⊥ is
a solution of Ah = 0, where the orthogonal complement has to be taken in L2(S).
In particular, h has average 0. Consequently, we find that(n− 1

R2
+ ∆S

)
h = 0,

showing that h belongs to N . Thus h = 0, and we conclude that the multiplicity
of 0 is in fact equal to n + 1.

Finally, assume that λ ∈ C\{0} and h ∈ h2+α(S) satisfy the equation (λ−A)h =
0. It follows from (2.5) that

0 =
(
(λ−A)h|Yk

)
= λ

(
h|Yk), k ∈ {0, · · · , n},

showing that h belongs to N⊥. Multiplying (λ −A)h = 0 with h in L2(S), we get

λ

∫
S
|h|2 dσ =

1
n− 1

((n− 1
R2

+ ∆S
)
h
∣∣h)

.

But on N⊥ the operator (n−1)/R2 +∆S is negative definite. Consequently, we see
that λ belongs to (−∞, 0). In summary, the spectrum of A consists of a sequence
of negative real numbers

· · · < µk+1 < µk < µk−1 < · · · < µ1 < µ0 = 0

and µ0 is an eigenvalue of multiplicity n + 1.
v) In the next step we briefly sketch the construction of a center manifold Mc

over N for ϕ. Let Y0 := |S|−11 and let Pg :=
∑n

k=0(g|Yk)Yk for g ∈ hr(S). Then
P is a continuous projection of hr(S) onto N parallel to ker(P ), and it follows from
(2.5) that P commutes with A, that is, PAg = APg = 0 for every g ∈ h2+α(S).
Therefore, N = im(P ) and ker(P ) are complimentary subspaces of h2+α(S) that
reduce A. To simplify the notation we write πc = P and πs = (1−P ), and we define
h2+α

s (S) := πs(h2+α(S)). It follows that σ(πcA) = {0} and σ(πsA) ⊂ (−∞, 0). For
this reason, N and h2+α

s (S) are called the center subspace and the stable subspace
of A, respectively. We are now in a position to apply Theorem 4.1 in [13] (see also
[12] Theorem 9.2.2). These results imply that, given l ∈ N∗, there exist an open
neighborhood Λ of 0 in N and a mapping

γ ∈ Cl(Λ, h2+α
s (S)) with γ(0) = 0, ∂γ(0) = 0

such that Mc := graph(γ) is a locally invariant manifold for the semiflow generated
by the solutions of (2.1). Observe that Mc is an (n + 1)-dimensional submanifold
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of h2+α(S) with T0Mc = N . Moreover, the manifold Mc is exponentially stable
and contains all small equilibria of (2.1).

vi) We show that Mc and M coincide near 0. Suppose that S′ is a sphere which
is sufficiently close to S. Let (z1, . . . , zn) be the coordinates of its center and R′ be
its radius. Recall that R is the radius of S and set z0 := R′ −R. If ρ measures the
distance from S to S ′ in normal direction with respect to S, we get the identity

(R + z0)2 =
n∑

k=1

(
(R + ρ)Yk − zk

)2
,

where we write for simplicity Yk = Y R
k , k = 1, . . . , n. Additionally, let Y0 := 1.

Solving for ρ, we obtain that S ′ can be parameterized over S by the distance
function

ρ(z) =
n∑

k=1

zkYk − R +

√√√√( n∑
k=1

zkYk

)2 + (R + z0)2 −
n∑

k=1

z2
k,(2.7)

where z := (z0, . . . , zn) ∈ Rn+1. If U is a sufficiently small neighborhood of 0 in
Rn+1, it is clear that any sphere S′ which is close to S can be characterized by
(2.7) with z ∈ U . Furthermore, the mapping [z 7→ ρ(z)] : U → h2+α(S) is smooth
and its derivative at 0 is given by

∂ρ(0)h =
n∑

k=0

hkYk, h ∈ Rn+1.(2.8)

Now let {F0(z), . . . , Fn(z)} be the coordinates of πcρ(z) with respect to the basis
{Y0, . . . , Yn} of N . Then (2.8) yields that ∂F (0) = idRn+1 . Consequently, the
inverse function theorem implies that F is a smooth diffeomorphism from U onto
its image V := im(F ), provided U is small enough. Let M := {ρ(z) ; z ∈ U}. Then
it follows that πcM is an open neighborhood of 0 in N , which can be assumed
to coincide with the open neighborhood Λ of 0 in N constructed in step (v). By
Remark b) we know that M⊂Mc. Hence we conclude that M = Mc

vii) As is in [7], Theorem 6.5 and Proposition 6.6, one shows the following result.
Given k ∈ N and ω ∈ (0,−µ1), there exists a neighborhood W = W (k, ω) of 0 in
h1+β(S) with the following property: Given ρ ∈ W , the solution ρ(·, ρ0) of (2.4)
exists globally and there exist c = c(k, ω) > 0, T = T (k, ω) > 0, and a unique
z0 = z0(ρ0) ∈ Λ such that

‖(πcρ(t, ρ0), πsρ(t, ρ0)
)− (

z0, γ(z0)
)‖Ck ≤ ce−ωt‖πsρ0 − γ(πcρ0)‖h1+β

for t > T. According to step (vi), (z0, γ(z0)) is a sphere and the proof is complete.
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