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We show that the quasi-stationary two-phase Stefan problem with surface tension
has a unique smooth local solution. In addition we show that smooth solutions exist
globally, provided that the initial interface is close to a sphere and no heat is supplied
or withdrawn.

1 Introduction and main results

The classical Stefan problem is a model of phase transitions in solid-liquid
systems accounting for heat diffusion and exchange of latent heat in a homoge-
neous medium. The strong formulation of this model corresponds to a moving
boundary problem involving a parabolic diffusion equation for each phase and
a transmission condition prescribed at the moving interface separating the
phases. Molecular considerations attempting to explain dendritic growth of
crystals suggest to also consider surface tension on the interface separating the
solid from the liquid region.

In order to state our results, we introduce the following notations. We assume
that Ω1 is a bounded smooth domain in IRn such that its boundary ∂Ω1 con-
sists of two disjoint components, the interior part J1 and the exterior part Γ0.
In addition, let also Ω be a bounded smooth domain in IRn containing Ω1 and
possessing a boundary with two disjoint components. The interior part of ∂Ω
is assumed to coincide with J1 and the exterior part is called J2. Finally, we
let Ω2 := Ω\Ω1. The domain Ω1 is regarded as the region occupied by the fluid
phase and Γ0 is a sharp interface in contact with the solid phase occupying the
region Ω2. Heat is being supplied through the interior boundary J1.

Given t ≥ 0, let Γ(t) be the position of Γ0 at time t, and let V (·, t) and κ(·, t)
be the normal velocity and the mean curvature of Γ(t). Here we use the con-
vention that the normal velocity is positive for expanding hypersurfaces and
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that the mean curvature is positive for spheres. Let Ω1(t) and Ω2(t) be the two
regions in Ω separated by Γ(t), with Ω1(t) being the interior region. Moreover,
let ν(·, t) be the outer unit normal field of Γ(t) with respect to Ω1(t).
Then the strong formulation of the two-phase Stefan problem with surface
tension consists of finding (u1, u2,Γ) satisfying

ci∂tu
i − ki∆ui = 0 in Ωi(t)

Bu1 = g on J1

∂nu
2 = 0 on J2

ui = σκ on Γ(t)
lV = −[k∂νu] on Γ(t)

ui(0) = ui0 in Ωi(0)
Γ(0) = Γ0 .

(1.1)

The constants c1, c2 are the conductivity coefficients, k1, k2 are the diffusion
coefficients, l is the latent heat, and σ is the surface tension. Moreover,

[k∂νu] := k1∂νu
1 − k2∂νu

2

denotes the jump of the normal derivatives of k1u
1 and k2u

2 across the bound-
ary Γ(t). Finally, B is either the Dirichlet or the Neumann boundary operator
on the fixed boundary J1 and g is a given function.
The condition u = σκ on the free interface is usually called the Gibbs-Thomson
relation, see [?, ?, ?, ?, ?, ?] and [?, ?, ?, ?].
If u2 on Ω2(t) is replaced by a constant while all the other aspects of the
problem are left unchanged, then the modified problem is called the one-phase
Stefan model with surface tension.

If the interface moves slowly in comparison to the time scale for heat conduc-
tion, then the conductivity coefficients c1 and c2 are negligible and we obtain
the quasi-stationary Stefan problem with surface tension

∆ui = 0 in Ωi(t)
Bu1 = g on J1

∂nu
2 = 0 on J2

ui = σκ on Γ(t)
lV = −[k∂νu] on Γ(t)

Γ(0) = Γ0 .

(1.2)

This paper will address existence, uniqueness, and regularity of classical solu-
tions for the quasi-stationary problem. A major difficulty in solving the set of
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equations in (1.2) comes from the fact that the problem has a nonlocal char-
acter, since the solution of an elliptic boundary value problem is needed in
order to determine the normal velocity V of the moving interface Γ(t). On the
other side, the elliptic problem cannot be solved independently without having
information on Γ(t). Therefore (1.2) contains a coupled set of equations which
have to be solved simultaneously. In the following we assume that g ∈ C∞(J1)
and that σ = 1.

Theorem 1.1. Assume α ∈ (0, 1) and let Γ0 ∈ C2+α be given. Then

a) The quasi-stationary Stefan problem with surface tension has a unique
local classical solution (u1, u2,Γ) on some interval (0, T ). Given t ∈ (0, T ),
the interface Γ(t) is smooth and Γ(·) depends smoothly on t ∈ (0, T ).
Moreover,

ui(·, t) ∈ C∞(Ω̄i(t)), t ∈ (0, T ), i = 1, 2.

b) Assume that B = ∂n and g = 0. If Γ0 is sufficiently close to a sphere
in the C2+α-topology, then the solution exists globally and converges to a
sphere exponentially fast in the Ck-topology, where k ∈ IN is an arbitrary,
fixed number.

Remark 1.2. a) Although the system (1.2) is well established in applications,
surprisingly few analytic results are available, and even weak solutions were not
known to exist in the general setting presented here. In the case k1 = k2 local
classical solutions are constructed in [?, ?] and, independently, in [?]. Part b)
of Theorem 1.1 is a generalization of results obtained in [?]. Finally, in two
space dimensions and still in the case k1 = k2 the existence of weak solutions
and the convergence of small perturbations of circles are shown in [?]. The
methods employed in [?] rely on potential theory and the condition k1 = k2 is
essential.
b) Suppose we start with a truly non-convex initial geometry so that the mean
curvature κ0 of Γ0 takes positive and negative values. Since the function κ0

enters in the elliptic problems contained in (1.2), it is impossible to use any
elliptic comparison principle in this situation. This explains to some extent
the fact that even weak solutions to problem (1.2) were not known to exist.
c) The quasi-stationary Stefan problem with surface tension can be viewed as
a nonlocal generalization of the classical mean curvature flow V = −κ. More
precisely, let F (κ) := −l−1[k∂νuκ], where uκ satisfies the first four equations
in (1.2). Then the last two equations in (1.2) imply that the moving boundary
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Γ(·) evolves according to the law

V = F (κ), Γ(0) = Γ0. (1.3)

F is a nonlocal, nonlinear operator of first order.

2 Proof

Let us first sketch the proof of part a) of Theorem 1.1. The basic idea is
to transform problem (1.3) in a neighbourhood of Γ0 into an evolution equa-
tion for the distance of the unknown interface to a fixed smooth hypersurface.
More precisely, given Γ0 ∈ C2+α, we find a smooth hypersurface Σ, a positive
constant r > 0, and a function ρ0 ∈ C2+α(Σ) such that

X : Σ× (−r, r)→ IRn, X(s, λ) := s+ λν(s)

is a smooth diffeomorphism onto its image Y := im(X) and such that θρ0(s) :=
X(s, ρ0(s)) is a C2+α−diffeomorphism mapping Σ onto Γ0. Here, ν also denotes
the outer normal at Σ with respect to the part of IRn being diffeomorphic to
Ω1. It is convenient to decompose the inverse of X into X−1 = (S,Λ), where

S ∈ C∞(Y,Σ) and Λ ∈ C∞(Y, (−r, r)).

Note that S(x) is the nearest point on Σ to x, and that Λ(x) is the signed
distance from x to Σ (that is, to S(x)). Moreover, the neighbourhood Y consists
of those points with distance less than r to Σ.

Let T > 0 be a fixed number. We assume that Γ(t) is a family of hypersurfaces
given by

Γ(t) := {x ∈ IRn ; x = X(s, ρ(s, t)), s ∈ Σ}, t ∈ [0, T ],

for a function ρ : Σ × [0, T ] → (−r, r). Note that the hypersurfaces Γ(t) are
parameterized over Σ by the distance function ρ. In addition, Γ(t) is the zero-
level set of the function

φρ : Y × [0, T ]→ IR, φρ(x, t) := Λ(x)− ρ(S(x), t).

If ρ is differentiable with respect to the time variable then we can express the
normal velocity V of Γ(t) at the point x = X(s, ρ(s, t)) as

V (s, t) = − ∂tφρ(x, t)
|∇xφρ(x, t)|

∣∣∣∣∣
x=X(s,ρ(s,t))

=
∂tρ(s, t)
|∇xφρ(x, t)|

∣∣∣∣∣
x=X(s,ρ(s,t))

.
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Since the outer unit normal field on Γ(t) is given by ν(t) = ∇φρ(·, t)/|∇φρ(·, t)|
we conclude that equation (1.3) which governs the motion of Γ(t) takes the form

∂tρ(s, t) = −(k1∇u1
κ − k2∇u2

κ|∇φρ)|X(s,ρ(s,t)), ρ(s, 0) = ρ0(s). (1.4)

Let Φ(ρ) be the transformed version of (k1∇u1
κ − k2∇u2

κ|∇φρ)|X(s,ρ(s,t)). Then
Φ is a quasilinear pseudo-differential operator of third order. Moreover, as in
[?] Theorem 4.1, one shows by means of Fourier multiplier representations of
Poisson operators and subtle perturbation arguments that the principal part
of the linear part of Φ generates a strongly continuous analytic semigroup on
an appropriate subspace of Cα(Σ). Once this generation property is verified, a
unique classical solution ρ ∈ C∞((0, T )×Σ) of (1.4) is guaranteed by the gen-
eral results of H. Amann, cf. [?], Section 12, and by a bootstrapping argument.
The unique classical solution of (1.3) is then given by

Γ(t) := {x ∈ IRn ; x = X(s, ρ(s, t)), s ∈ Σ}, t ∈ [0, T ].

Since the interface Γ(t) is now determined, the regularity of the temperature
distributions can be obtained by standard elliptic theory.
Let us also mention that the unique solution ρ(·, ρ0) of (1.4) governs an infinite-
dimensional dynamical system ϕ on an appropriate phase space V ⊂ C2+α(Σ)
by letting ϕ(t, ρ0) := ρ(t, ρ0).

Once the existence of classical solutions is established, it is easy to see that the
homogeneous quasi-stationary Stefan problem preserves the volume of Ω1(t)
and minimizes the area of Γ(t). In order to see this, assume that g = 0 and
that B = ∂n. Moreover, let Vol(t) denote the volume of Ω1(t) and let A(t) be
the area of the moving hypersurface Γ(t). Then we can calculate

d

dt
Vol(t) =

∫
Γ(t)

V dσ = −
∫

Γ(t)

[k∂νuκ] dσ

= −
∫

Ω1(t)

k1∆u1
κ dx−

∫
Ω2(t)

k2∆u2
κ dx = 0

and
1

n− 1
d

dt
A(t) =

∫
Γ(t)

κV dσ = −
∫

Γ(t)

uκ[k∂νuκ] dσ

= −
∫

Ω1(t)

k1|∇u1
κ|2 dx−

∫
Ω2(t)

k2|∇u2
κ|2 dx ≤ 0,
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see [?] for more details. Notice that every Euclidean sphere is an equilibrium
for problem (1.3). Hence the isoperimetric inequality suggests to analyze (1.3)
near spheres. However, none of these equilibria are isolated. Thus the dynamic
behaviour of the flow ϕ is quiet copious.

The proof of part b) of Theorem 1.1 consists of two steps. Suppose Σ is a fixed
Euclidean sphere. We first show that the corresponding semiflow ϕ admits
an asymptotically stable (n + 1)-dimensional local centre manifold Mc. In
particular, this means thatMc is a locally invariant manifold, thatMc contains
all small global solutions of ϕ, and thatMc attracts at an exponential rate all
solutions which are C2+α-close to Mc, see [?]. In a second step we then prove
that Mc coincides with the set of all Euclidean spheres which are sufficiently
close to Σ.
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