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Continuous maximal regularity on uniformly regular Riemannian
manifolds

YUANZHEN SHAO AND GIERI SIMONETT

Abstract. We establish continuous maximal regularity results for parabolic differential operators acting on
sections of tensor bundles on uniformly regular Riemannian manifolds M. As an application, we show that
solutions to the Yamabe flow on M instantaneously regularize and become real analytic in space and time.
The regularity result is obtained by introducing a family of parameter-dependent diffeomorphisms acting
on functions on M in conjunction with maximal regularity and the implicit function theorem.

1. Introduction

Itis the main purpose of this paper to introduce a basic theory of continuous maximal
regularity for parabolic differential operators acting on sections of tensor bundles on
a class of Riemannian manifolds called uniformly regular Riemannian manifolds in
this paper.

This concept was first introduced by Amann in [3]. These manifolds may be non-
compact. As a special case, any complete manifold (M, g) without boundary and with
bounded geometry (i.e., M has positive injectivity radius and all covariant derivatives
of its curvature tensor are bounded) is a uniformly regular Riemannian manifold, see
[3, Example 2.1(f)]. The class of uniformly regular Riemannian manifolds is large
enough in the sense that it satisfies most of the geometric conditions imposed by other
authors in the study of geometric evolution problems. In this paper and a subsequent
one [36], we mainly focus on two kinds of geometric evolution problems, namely the
evolution of metrics and the evolution of surfaces driven by their curvatures. Numerous
results have been formulated for geometric evolution equations over compact closed
manifolds, which are special cases of uniformly regular Riemannian manifolds. Nowa-
days, there is increased interest in generalizing these results for noncompact manifolds
or manifolds with boundary. Most of the achievements in this research line are formu-
lated for complete manifolds with certain restrictions on their curvatures. Within the
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class of uniformly regular Riemannian manifolds, we are able to relax many of these
constraints. One typical instance is the Yamabe flow, a well-known geometric evolu-
tion problem. We will show in Sect. 5 that this problem possesses a local solution as
long as the manifold is conformally uniformly regular. Under appropriate assumptions
on the background metric gg, we will in addition show that solutions instantaneously
regularize and become real analytic in space and time.

d
For a densely embedded Banach couple E; — Ej, we consider the following
abstract linear inhomogeneous parabolic equation:

1.1
u(0) = ug (1.1)

[a,u(t) +Au(t) = f@t), tel,
onl :=1[0,T]. Given I € {[0,T], [0, T)}, I := I\{0}. (Eop, E1) is then called a pair
of continuous maximal regularity for A € L(E|, Ep) if

0+ A, y0) € Lis (Ei(1), Eo(]) x Ey), (1.2)

that is, (d; + A, yp) is a linear isomorphism between the indicated spaces, where
you = u(0), £, := (Eo, El)())/,oo’ and (-, ')3,00 denotes the continuous interpolation
method, see Sect. 2.2. The reader may refer to (3.7) for the definitions of Eq(/) and
E; (7). Equation (1.2) implies that problem (1.1) admits for each (f, uo) € Eo(I) x E,,
a unique solution # which has the best possible regularity, i.e., there is no loss of regu-
larity as d;u and Au have the same regularity as f. The theory of continuous maximal
regularity provides a general and flexible tool for the analysis of nonlinear parabolic
equations, including fully nonlinear problems. In some cases, it can be viewed as a sub-
stitute for the well-known Nash—Moser iteration approach to fully nonlinear parabolic
equations. In addition to providing existence and uniqueness of solutions, maximal
regularity theory combined with the implicit function theorem renders a powerful
tool to establishing further regularity results for solutions of nonlinear parabolic prob-
lems and studying geometric properties of the semiflows generated. Here, we refer to
[16,18,20,21,23] for a list of related work. The theory of maximal regularity has been
well-formulated in Euclidean spaces and used on compact closed manifolds. However,
not until recently was L ,-maximal regularity theory established on noncompact man-
ifolds [6], where the author uses retraction—coretraction systems of Sobolev spaces to
translate the problem onto Euclidean spaces. We will make use of a similar building
block to establish a theory of continuous maximal regularity on uniformly regular Rie-
mannian manifolds without boundary. Here, we should like to mention that Amann’s
result [6] is of much greater generality and remarkably more technical, as maximal
regularity results for parabolic boundary value problems on manifolds with boundary
are obtained. Nevertheless, our result is distinctive in two respects. Firstly, it is the
first maximal regularity theory for Holder continuous functions on uniformly regular
manifolds. Secondly, our result is formulated for tensor-valued problems. This theory
complements the work in [20,21] for the compact case. Although we will not consider
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parabolic boundary value problems in this paper, we nevertheless introduce function
spaces on uniformly regular Riemannian manifolds with boundary. This setup may
prove useful for further studies of geometric evolution equations, say the Yamabe
flow, on manifolds with boundary. There are a few results dealing with (semilinear)
parabolic equations on noncompact complete Riemannian manifolds under various
curvature assumptions, which are based on heat kernel estimates, e.g., Zhang [41,42],
Mazzucato and Nistor [30], Punzo [33], Bandle et al. [10]. The approach developed
in [6] and in this paper does not rely on heat kernel estimates and is, thus, not limited
to second-order equations. It can be applied to a wide array of nonlinear parabolic
equations, including quasilinear (and even fully nonlinear) equations.

A serious challenge in the development of a general and useful theory of function
spaces on uniformly regular manifolds turns out to be the availability of interpolation
results. This difficulty can be overcome by the interpolation result [37, Section 1.18.1]
in the case of Sobolev spaces, but is surprisingly difficult for Holder spaces, which
are natural candidates for the spaces Eq, E1 in (1.1). Thanks to the work of Amann
in [3,4], we are able to build up the theory via a linear isomorphism f defined in
Sect. 2.2.

Section 2 is the step stone to the theory of continuous maximal regularity. Sec-
tion 2.1 is of preparatory character, wherein we state the geometric assumptions and
some basic concepts on tensor bundles and connections from manifold theory. In the
first half of the subsequent subsection, we introduce Holder continuous tensor fields
and the corresponding retraction—coretraction theory of these spaces. This work, as
aforementioned, was accomplished by Amann in his two consecutive papers [3,4]. It
paves the path for the interpolation, embedding, pointwise multiplication and differ-
entiation theorems for Holder continuous tensor fields in the second half of the same
section and Sect. 2.3.

The main theorem of this paper, Theorem 3.3, is then formulated in Sect. 3. Its
proof relies on the retraction—coretraction system established in Sect. 2.2 and a careful
estimate of the lower order terms via interpolation theory. A resolvent estimate for
so-called (&, ¥; [)-elliptic operators acting on tensor bundles is presented therein.
Following the well-known semigroup theory and Da Prato et al.’s work, we then prove
a continuous maximal regularity theory on uniformly regular Riemannian manifolds.
We will present the theory in a general format, that is to say, we establish maximal
regularity for so-called normally elliptic differential operators acting on tensor fields,
with minimal regularity assumptions on the coefficients of the differential operators.
One of the reasons for considering tensor fields, rather than scalar functions, lies in
the fact that this general result is used in a forthcoming paper [36] to prove analyticity
of solutions to the Ricci flow.

In Sect. 4, we give a short introduction to a parameter-dependent translation tech-
nique on manifolds, which combined with maximal regularity theory serves as a very
beneficial tool for establishing regularity of solutions to parabolic equations. The idea
of employing a localized translation in conjunction with the implicit function theorem
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was initiated by Escher et al. [22]. Through the retraction—coretraction systems, we
can thus introduce an analogy for functions over manifolds. We refer the reader to
[36] for more information on this technique.

After importing all the theoretic tools, in Sect. 5, we thus can present an application
to the Yamabe flow. The reader may refer to Sect. 5 for a brief historic account of this
problem. It has been proved that the normalized Yamabe flow on compact manifolds
admits a unique global and smooth solution, for smooth initial data, see [40]. We will
show in this paper that this solution exists analytically for all positive times. Less is
known about the Yamabe flow on noncompact manifolds. To the best of the authors’
knowledge, all available results in this direction require the underlying manifold to
have bounded curvatures, or even to be of some explicit expression, see [7] and [14].
We will formulate an existence and regularity result for the Yamabe flow without
asking for boundedness of the curvatures.

In the rest of this introductory section, we give the precise definition of uniformly
regular Riemannian manifolds and present the existence of a localization system,
which plays a key role in the retraction—coretraction theory established in Sect. 2.2.
After that, we briefly list some notations that we shall use throughout.

1.1. Assumptions on manifolds

In this section, we list some background information on manifolds, which provide
the basis for the Holder, little Holder spaces and tensor fields on Riemannian manifolds
to be introduced below. This fundamental work was first introduced in [3] and [4].

Let (M, g) be a C°°-Riemannian manifold of dimension m with or without boundary
endowed with g as its Riemannian metric such that its underlying topological space
is separable. An atlas 2 := (O, ¢y )req for M is said to be normalized if

m
00|, o
. Ok # 0,
where H" is the closed half space RT x R”~! and B™ is the unit Euclidean ball
centered at the origin in R™. We put B! := ¢,(O,) and ¥, := (pk_l.
The atlas 2( is said to have finite multiplicity if there exists K € N such that any
intersection of more than K coordinate patches is empty. Put

N(k) := {F € &: Oz N O, # 7).

The finite multiplicity of 2( and the separability of M imply that 2( is countable. If two
real-valued functions f and g are equivalent in the sense that f/c < g < cf for some
¢ > 1, then we write f ~ g.

An atlas 2 is said to fulfill the uniformly shrinkable condition, if it is normalized
and there exists r € (0, 1) such that {1, (rB}') : « € R} is a cover for M.

Following Amann [3,4], we say that (M, g) is a uniformly regular Riemannian
manifold if it admits an atlas 2 such that
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(R1) 2Ais uniformly shrinkable and has finite multiplicity.

(R2) llgn o Yicllk,oo < k), k € R, 1 € N(k), and k € No.

(R3) ¥fg ~ gm,«k € R. Here g, denotes the Euclidean metric on R” and ;g
denotes the pull-back metric of g by V.

R4) [¥gllk.co < c(k), k € Rand k € Ny.

Here, |[u|lx,00 1= maX|q|<k [[0%u]ls0, and it is understood that a constant c(k), like in
(R2), depends only on k. An atlas 2 satisfying (R1) and (R2) is called a uniformly
regular atlas. (R3) reads as

€1 /c < YFg(x)(£,€) < clg|?, forany x € B", & € R™, k € Rand somec > 1.

We refer to [5] for examples of uniformly regular Riemannian manifolds.

Given any Riemannian manifold M without boundary, by a result of Greene [24],
there exists a complete Riemannian metric g. with bounded geometry on M, see [24,
Theorem 2’] and [32, Remark 1.7]. Hence, we can always find a Riemannian metric g,
making (M, g.) uniformly regular. However, this result is of restricted interest, since
in most of the PDE problems we are forced to work with a fixed background metric
whose compatibility with the metric g. is unknown.

A uniformly regular Riemannian manifold M admits a localization system subordi-
nate to 2, by which we mean a family (7, {)ceq satisfying:

(L1) m, € D(O,, [0, 1]) and (JT,g),(Eﬁ is a partition of unity subordinate to 2.

(L2) & := ¢i¢ with ¢ € DB™, [0, 1]) satisfying ¢ |[supp(yr) = 1,k € K.

(L3) 1Y emellk.oo < c(k), fork € &, k € No.

The reader may refer to [3, Lemma 3.2] for a proof. In addition to the above conditions,
we will find it useful to define the following auxiliary function

wy = grw withw € DB™, [0, 1]) satistying that @ |suppc) = L. (1.3)

Lastly, if, in addition, the atlas 2 and the metric g are real analytic, we say that (M, g)
is a C®-uniformly regular Riemannian manifold.

1.2. Notations

Let K € {R, C}. For any open subset U € R™, we abbreviate §* (U, K) to §*(U),
where s > 0 and § € {bc, BC}. The precise definitions for these function spaces
will be presented in Sect. 2. Similarly, §* (M) stands for the corresponding K-valued
spaces defined on the manifold M.

Let |- |loo and || - || 5,00 denote the usual norm of the Banach spaces BC(U), BC*(U),
respectively. Likewise, their counterparts defined on M are expressed by || - || '\él, where
| - |z stands for either of the norms defined on U.

Given o, T € Ny,

ToM := TM®? ® T*M®"
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is the (o, 7)-tensor bundle of M, where TM and 7*M are the tangent and the cotangent
bundle of M, respectively. We write 7.” M for the C *° (M)-module of all smooth sections
of T2 M and I'(M, T2 M) for the set of all sections.

For abbreviation, we set J° := {1,2,...,m}°, and J° is defined alike. Given local
coordinates ¢ = {x!, ..., x™}, (i) := (i1,...,iy) € J° and (j) := (j1,..., jz) €
JT, we set

0 0

9 . . .
= ® e ® — N =0 000 D—dxi' @ Je
3@ = oph ® ® Sxie’ diy:=0; o 09, dxV:=dx'® ® dx
with 9; = %. The local representation of a € I'(M, T7 M) with respect to these
coordinates is given by

L9 )
— @ @)
a_a(j)ax(i) ® dx (1.4)

with coefficients ag)) defined on O,.

For a topological set, U, U denotes its interior. If U consists of only one point, we
set U := U. For any two Banach spaces, X, Y, X = Y means that they are equal in the
sense of equivalent norms. The notation £ is (X, Y) stands for the set of all bounded
linear isomorphisms from X to Y.

2. Function spaces on uniformly regular Riemannian manifolds

Most of the work in Sects. 2.1 and 2.2 is laid out in [3] and [4] for weighted
functions and tensor fields defined on manifolds with “singular ends” characterized
by a “singular function” p € C*°(M, (0, c0)). Such manifolds are uniformly regular
iff the singular datum satisfies p ~ 1p. Because of this, we will state some of the
results therein without providing proofs below.

2.1. Tensor bundles

Let A be a countable index set. Suppose E, is for each @ € A a locally convex
space. We endow [ [, E, with the product topology, that is, the coarsest topology for
which all projections prg : [[, E« = Eg, (ex)a — eg are continuous. By @, Eq,
we mean the vector subspace of [[, E, consisting of all finitely supported elements,
equipped with the inductive limit topology, that is, the finest locally convex topology
for which all injections Eg — €, E, are continuous.

We denote by V = V, the Levi-Civita connection on 7M. It has a unique extension
over 77 M satisfying, for X € 761 M,

() Vxf=1(df.X), feCxM),
(i) Vx(@a®b) =Vxa®b+a®Vxb, acT]'M,beTM,
(iii) Vx(a,b) = (Vxa,b)+ (a,Vxb), acTM,bec 1M,
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where (-,-) : T7°M x 7TTM — C°(M) is the extension of the fiberwise defined
duality pairing on M, cf. [3, Section 3]. Then, the covariant (Levi—Civita) derivative
is the linear map

V:T'M— T° M,a — Va
defined by
(Va,b® X) := (Vxa,b), beT'M, X e T'M.
For k € Ny, we define
VKL TOM — T, M, a — Va

by letting V% := a and V¥*!g := V o V¥a. We can also extend the Riemannian
metric (-|-), from the tangent bundle to any (o, 7)-tensor bundle 7,7 M such that (-|-), :
T?M x TYM — K by setting

o T
(Vg i@ ... a5, b1, ... .bo)x(cl,....codr, ... de) > [ J(ailen) ] J(bildi) e

i=1 i=1
wherea;, ¢c; € TM, b;, d; € T*Mand (:|-)¢+ denotes the induced contravariant metric.
In addition,

[-1g : TPM — C®(M), a — /(ala)g

is called the (vector bundle) norm induced by g.
We assume that V is a K-valued tensor bundle on M and E is a K-valued vector
space, i.e.,

V=V :={TIM,(|),}, and E =E? := {K’"“X"”, (~|-)},

for some o, T € Ny. Here, (a|b) :=trace(b*a) with b* being the conjugate matrix of
b. By setting N = m°*7, we can identify §* (M, E) with §*(M)V.
Throughout the rest of this paper, we always assume that

e (M, g) is a uniformly regular Riemannian manifold.
o (7, Lk )res 1 a localization system subordinate to 2.
o 0,7 €N, V=V :={TIM, ()¢}, E = EY := (K", (-])}.

For K C¢ M, we put Rx := {k € R: O, N K # @}. Then, given k € &,

R™ if k € R\Rym,
X =
H™ otherwise,

endowed with the Euclidean metric g,,.
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Given a € T'(M, V) with local representation (1.4), we define v a € E by means
of Yyfa = [ag.))], where [ag.))] stands for the (m® x m")-matrix with entries a((;.)) in the
(@), (j)) position, with (i), (j) arranged lexicographically.

For the sake of brevity, we set L joc(X, E) := [, L1,1oc(Xk, E). Then, we intro-

duce two linear maps for « € &:

Ryt Lijoc(M, V) = Lijoc(Xe, E), u > ¢ (meu),
and

Rt Lijoc(Xe, E) = Lijtoc(M, V), v = v

Here, and in the following, it is understood that a partially defined and compactly
supported tensor field is automatically extended over the whole base manifold by
identifying it to be zero outside its original domain. Moreover,

RE: Lijoc(M, V) = Ly j0e(X, E), u — (R;M)Kv
and

R : Lijoc(X, E) > Lijoc(M, V), (W) > D Rty
K

2.2. Holder and little Holder spaces

Before we study the Holder and little Holder spaces on uniformly regular Riemann-
ian manifolds, we list some prerequisites for such spaces on X € {R™, H"} from

[4].
Throughout this subsection, we assume that k € Ny. For any given Banach space
F, the Banach space BCK(X, F) is defined by

BCK(X, F) := (fu € C*(X, F) : [lullk,oo < 00} I - Ilk,00)-

The closed linear subspace BUC k(X, F) of BCK(X, F) consists of all functions u €
BCK(X, F) such that 8%y is uniformly continuous for all || < k. Moreover,

BC™(X, F) := | BC*(X, F) = (| BUCK(X, F).
k k

It is a Fréchet space equipped with the natural projective topology.
ForO <s < 1,0 <8 <ooandu € FX, the seminorm [~]‘SS’OO is defined by

luG-+h) —u@)|
(U]} o := sup = [ oo =155
he(0,5)m |k
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Letk < s < k + 1. The Héolder space BC* (X, F) is defined as
BC*(X, F) == ({u € BC*(X, F) : lulls,00 < 00}, |l - lls,00)-

where [[uls,00 := [lullk,c0 + Maxjq—k[0%uls—k,occ0-
The little Holder space of order s > 0 is defined by

bc* (X, F) := the closure of BC*°(X, F)inBC*(X, F).
By [4, formula (11.13), Corollary 11.2, Theorem 11.3], we have
bk (X, F) = BUCK(X, F), (2.1
andfork <s <k+1

u € BC*(X, F)belongs to bc* (X, F) iff gi_% [0°u1) (.00 = 0. o] = [s].

In the following context, let F be Banach spaces. Then, we put F := HK F,.. We
denote by /o (F) the linear subspace of F consisting of all x = (x,) such that

1% |70 (Fy := sup llx |l £,
K

is finite. Then, /o (F) is a Banach space with norm || - ||;.. (k).
For § € {bc, BC}, we put § := [[, &5, where § := §*(X,, E). Denote by

loo,unif (bck)

the linear subspace of /(B ck ) of all u = (uy), such that 9%u, is uniformly con-
tinuous on X, for |¢| < k, uniformly with respect to k € K. Similarly, for any
k <s < k + 1, we denote by

loo,unif (bcs)
the linear subspace of /oo unif (bck) of all u = (u,), such that

li %, 18 =0, 22
a%ﬁg[ Uiel§— .00 (2.2)

uniformly with respect to k¥ € K.

f:FX—>HF§, u > f(u):=(pr, ou)

is a linear bijection. Set E, := EY and E := HK E,.Then, [4, Lemma 11.10, 11.11]
tells us that for s > 0

f e Lis (be* (X, I (E)), Lo unif (be”)), 2.3)
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and fors > 0,5 ¢ N
feLlis (BCS(X, loo(E)), loo(BCS)) . 2.4)

Now, we are in a position to introduce the counterparts of these spaces on uniformly
regular Riemannian manifolds. For k € Ny, we define

BCEM, V) = (€ CEML V) : Jlulf < oob 11 I )

where ||u||,'§’,'oo = maxo<; <k [[|V'tt]g [l o
We also set

BC™®(M, V) :=(BC*M. V)
k

endowed with the conventional projective topology. Then,
bk (M, V) := the closure of BC™ in BCF.
Letk < s < k + 1. Now, the Hélder space BCS(M, V) is defined by

BC*(M, V) := (bck(M, V), b (M, V))

s—k,00

Here, (-, -)p,o0 1S the real interpolation method, see [1, Example 1.2.4.1] and [28,
Definition 1.2.2]. It is a Banach space by interpolation theory. For s > 0, we define
the little Holder spaces by

bc* (M, V) := the closure of BC*°(M, V)in BC*(M, V).
THEOREM 2.1. Suppose s > 0. Then, R is a retraction
from lo(BC?) onto BC*(M, V),
and
Srom Lo unit (be*) onto be* (M, V).

Moreover, R€ is a coretraction in both cases.

Proof. See [3, Theorem 6.3] and [4, Theorem 12.1, 12.3, formula (12.2)]. Note that for
s ¢ No, BC*(M, V) andbc* (M, V) coincide with the spaces BS_ (M, V) and b3 (M, V)
defined in [4, Section 12]. O

In the following proposition, (-, -)g’ oo and [, -] are the continuous interpolation
method and the complex interpolation method, respectively. See [1, Example 1.2.4.2,
1.2.4.4] for definitions.

PROPOSITION 2.2. Supposethat0 <6 < 1,0 <59 < syands = (1—60)so+6s;
with s ¢ N. Then,
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(a) (BC*(M, V), BC*' (M, V))g.oc = BC*(M, V)
= [BC*(M, V), BC*I(M, V)]g, for so,s1 ¢ No.

(b) (be*o(M, V), be’' (M, V))g.oo = BC(M, V), for so,s1 € No.

(© (bc™(M, V), be*' (M, V)] o = bc* (M, V) = [bc™®(M, V), be' (M, V)]g, for
50, s1 ¢ No.

(d) (be® (M, V), b (M, V))) o, = bc* (M, V), for so.s1 € No.

Proof. See [4, Corollary 12.2 (iii), (iv) and Corollary 12.4]. ]
PROPOSITION 2.3. Suppose that u € §° (M, V) for § € {bc, BC}. Then,

I ||'\g/|x ~ IR O iz = sup 1(Wg (e )il »
K

Proof. Since R and R are continuous, there exists a constant C > 0 such that for any
u € FM, V), we have &R Ul < lulls = IRRullY < CIR ully, 3
O
For a given « € & and any n € 9(x), we define Sy, : E*1 — E*< by
Sy 1 U > DYLTY LU
LEMMA 2.4. Suppose that § € {bc, BC}. Then,
Spe € L(Fy, ) and ||Syell < c,

for n € N(k). Here, the positive constant c is independent of k and n € N(k). The
statement still holds true with @ replaced by ¢ in the definition of Sy, or m; being
replaced by ¢).

Proof. The case that s € Ny follows from the pointwise multiplication result on X,
the chain rule, (R2) and (L3). The gaps left can be filled in by interpolation theory. [J

An alternative of the spaces §° (M) can be defined as follows:
F M = (€ Lijoe) : 72 € F0 1 o ) -
where § € {be, BC) and ||ullz, g, = || (riu) | o (5"
PROPOSITION 2.5. & (M) = 3*(M).
Proof. The proof is straightforward. Indeed,
Nl seqny = 105 G2 e ) < MRSl g < Mull.
To obtain the other direction, we adopt Lemma 2.4 to compute

> 2 2
IReulgs < D IWimea Yl @mwlg <M D IIWrGrwlg < Milulz -
neN(k) neN(x)

O
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2.3. Basic properties

In this subsection, we will list some basic properties of the function spaces and
tensor fields introduced in the previous subsections. These properties are well known
to be enjoyed by their counterparts in Euclidean spaces or on domains with smooth
boundary. By using the interpolation and retraction properties setup above, we can
verify them on a uniformly regular Riemannian manifold M.

PROPOSITION 2.6. §' (M, V) fi> bc* (M, V), wheret > s > 0and§ € {bc, BC}.

Proof. This result is a direct consequence of interpolation theory and the dense em-
d
bedding BC® (M, V) — bc* (M, V). U

Let V; = ng = {T,(ij, ()¢} with j = 1,2, 3 be K-valued tensor bundles on
M. By bundle multiplication from V; x V; into V3, denoted by

m: Vi x Vo — V3, (v1,v2) = m(vy, v2),
we mean a smooth bounded section m of Hom(V; ® V,, V3), i.e.,
m € BC® (M, Hom(V| ® Va2, V3)), (2.5)
such that m(vy, v2) := m(v; ® va). Equation (2.5) implies that for some ¢ > 0
Im(v, ©2)lg < clvilglvalg, vi € T(M, V;) withi =1,2.
Its pointwise extension from I'(M, V| @ V) into I'(M, V3) is defined by:

m(vi, v2)(p) = M(p)(vi(p), v2(p))

forv; € I'(M, V;) and p € M. We still denote it by m. We can also prove the following
pointwise multiplier theorem for function spaces over uniformly regular Riemannian
manifolds.

PROPOSITION 2.7. Letk € No, and V; = V¢ := {T{/ M, (-|-)g} with j = 1,2, 3
be tensor bundles. Suppose that m : Vi x Vo — V3 is a bundle multiplication. Then,
[(v1, v2) = m(vy, v2)] is a bilinear and continuous map for the following spaces:

FM, V) xFM, Vo) — F (M, V3), wheres > 0and § € {bc, BC}.

Proof. This assertion follows from [4, Theorem 13.5], wherein pointwise multiplica-

tion results for anisotropic function spaces are presented. For the reader’s convenience,
we will state herein a brief proof for the isotropic case.

(i) Let (M, g) = (X¢, gm)- Set E; = E7/ := (K" ()} with j = 1,2, 3.

Suppose b, € L(E1, E»; E3), the space of all continuous bilinear maps: E| x

E> — Es3, and denote its pointwise extension by m,. The case s € N follows
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(ii)

(iii)

from the product rule. For the same reason, it suffices to prove the case 0 < s < 1.
One may check that

[Me(1. 021 o < € ([V1T 001020100 + [0218 o 101 l100) (2.6)
forv, e E I.X “. Now it is an immediate consequence of the continuity of b, that
m, € L (SS(XKa Ey), SS(X/U Ey); SS(X/U ES)) .

Suppose that b, € §* (X, L(E1, E»; E3)) and denote its pointwise extension by
m,,i.e.,

me : Efg” X E;‘{” — Eig” : (v1, 1) = b.(x)(v1(x), V2 (x)).
Consider the multiplications:
b1 € LIL(EY, E2; E3), Er; L(E2, E3)), (fiv1) = f(vi,),
and
by € L(L(E2; E3), Ez; E3), (8, v2) > g(v2),

where v; € E;. Denote by m; the pointwise extension of b;. Then by step (i), we
deduce that

m; € L (3 Xe, L(E1, E2; E3)), § (X, ED; § (X, L(E2, E3))),
and
my € L(§ Xy, L(E2, E3)), §* (Xe, E2); §° (X, E3)).
Since m,(vy, v2) = ma(Mmy(b,, vy), v2), it yields
me € L(§' (X, E1), ' X, E2); §* (X, E3)).

Moreover, the norm of m, only relies on ||b,||5,co-
We define m, by

M, (§1, &) = ¥ (GeM(peé1, 9i62))
for&; € E;X”. Now it is a consequence of (L3), (2.5) and [3, Lemma 3.1(iv)] that
M, € BC* (X, L(E1, Ex; E3)), M llk00 < c(k)

for each k € Ny and the constant c(k) is independent of «. Thus m, is a bundle
multiplication. Now we conclude from (ii) that

m, € »C(SS(XM Ey), gs(xfca E>); 'S’S(XKs E3)).

Moreover, the norm of m, is independent of the choice of «.
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(iv) Given vy € (M, V) and vy € (M, V,), we have

Ry (M(vi, v2)) = ¥ (mem(v1, v2))

D> Me(Revi, @y (mv)).

neN(x)

The discussion in (iii) shows that

IREM1, v)) 500k, < D, IMe(REV1, @ (702D 5,005,
neN(x)

2
<c D IRlscox, @V (T702) 15,00,
neN(k)

<c D IRl oox, IRy v2ll500.%,
neN(x)

- M
=< cKIRvills 00, %, V21l 00

The penultimate line follows from the pointwise multiplication result in X, and
Lemma 2.4. The last line is a straightforward consequence of (R1). Thus Theorem
2.1 implies that

m e L& M, V1), 3* (M, V2); BC* (M, V3)).

By adopting a density argument based on Proposition 2.6, we can show that in
fact

m e L(bc* (M, V1), be* (M, V2); be' (M, V3)).

Indeed, pick an arbitrary ¢ > s. For each v; € bc*(M, V;) withi = 1, 2, there
exist (u;)j € BC'(M, V;) converging to v; in BC*(M, V;). Then by the above
discussion and the triangle inequality, we deduce that m(u}., u%) e BC'(M, V3)
and m(u}., u?) — m(vy, v2) in BC*(M, V3), which implies that m(vy, vy) €
bc*(M, V3). 0

Let s > 0 and / € Ny. A linear operator A : C*°(M, V) — I'(M, V) is called

a linear differential operator of order / on M, if we can find that a = (a"), €
[T _o T(M, V574 such that

1
A= A(a) :=ZC(a’, V). .7
r=0

Here, the complete contraction

C:T (M, VI xvZ,) =T (M, V?): (a,b) — C(a, b)
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is defined as follows. Let (i1), (i2), (i3) € J7, (j1), (j2), (j3) € J* and (ry), (r2) € J".

ia: 1 ad ad . )
C(a,b)(p) = C(a(l3’jl’rl) ®dx" @ dx@,

9
Ui @ @ gxn & grim

: 3 .
(12) (j2) (r2)
bljzirn gy © 4% ¥ ®dxT)(p)

_ 351 4, (61)
= Ajsin b(jl:rl)ax(i3)

® dx (J3) (p),
in every local chart and for p € M. The index (iy; ji; r1) is defined by

(3 J1571) = (3,15 -2 3,65 J1,1s -+ o5 JLTs 1Ly oo o5 L)

The other indices are defined in a similar way. Amann [4, Lemma 14.2] implies that
C is a bundle multiplication. Making use of [3, formula (3.18)], one can check that
for any /th order linear differential operator so defined, in every local chart (O, ¢y ),
there exists some linear differential operator

Ae(x, d) = Z a(x)a%, witha e L(E)® (2.8)

o<l

called the local representation of A in (O, ¢, ), such that for any u € C*°(M, V)

Ve (Au) = Ac(Yu). 2.9

What is more, the A, ’s satisfy

UroiAcior = Ay, n € No). (2.10)

Conversely, suppose that A is a linear map acting on C*°(M, V), and its localizations
satisfy (2.8)—(2.10). Then, A is a well-defined linear operator from C*°(M, V) to
(M, V). Moreover, one can show that A is actually a linear differential operator of
order [ with expression (2.7). Indeed, we can construct @ = (a"), in a recursive way
as follows. For notational brevity, we express 4, as

Ac =a"d,), (r) el withs <[, anda” e L(E)E.

Then, we write the coefficients a.” of AZ, the principal part of A,, in the matrix form
(agz(;jél.}f;), where a,((lz(]fl:; is the entry of a.” in the (i; ji)th column and (i»; jo)th
row with indices ordered lexicographically. Here, (i1), (i2) € J?, (j1), (j2) € J* and

(r) € J'. Then, we define

l . (i2jisr) 9 9 0 i i
alo, = Qe (jaiin) gr@ ® x0T ® FrGl ® dx(7) ® dx™ (2.11)

on the local patch O,. It follows from [3, formula (3.18)] that

iCd, Viu) = ATy u + Beylu,
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where A7 is the principal part of A, and B, is a linear differential operator of order
at most / — 1 defined on B!”. By the above argument, .A is well defined only if for all
local coordinates ¢, = {x1, ..., Xy} and ¢, = {y1, ..., ym} With n € N(x)

d d
* % (r) * _ 2 (r) *
1//71 Prc 2 / a, ® I'//K ax(r) - aﬂ ® 1//71 ay(r)
(el (el

only if ¢’ is invariant. Hence, @' is globally well defined. Therefore,
Au = Au — C(d', V'u)

is a well-defined linear differential operator of order at most / — 1. Then, we repeat
this process to lower the order of A till it reduces to zero. We find

I
a=(a),e[]r M v (2.12)
r=0
such that A can be formulated in the form of (2.7).

In the rest of this section, we assume that A is a linear differential operator of
order / over M with local expressions A, (x, d) := Zlalsl al (x)0%. We first state
a useful proposition concerning the equivalence of regularity of local versus global
coefficients.

PROPOSITION 2.8. If (aX), € Ip(F* (B, L(E)) for every |a| <[ withb = “00”
for § = BC, or b = “co,unif” for § = bc, then a in (2.12) belongs to the class
le:() FM, VZITH), and vice versa.

Proof. (a%). € I,(F° (B", L(E))) implies that (a27""), € 1,(F (B™)). By (2.11),

w,(j23i1)
we attain R¢a' = 1//:71,(61,((’) v axdm with (r) € J'. The pointwise multiplication
results on B} yield

Real < 1y (3 (B EZET)).

By Theorem 2.1, we have that a e F(M, Vf J:f“ ). The rest of the proof, including
the converse statement, follows from the recursive construction of a” above and [3,
formula (3.18)]. O

PROPOSITION 2.9. Suppose that a = (a”), € [\ be* (M, VIETTT). Then,
Aerl (bc”l(M, V), be* (M, V)) .
Proof. By [4, Theorem 16.1], we have
Ve LT M, V), be* (M, VZ,))), s ¢ No. (2.13)

The case thats € Np follows by the definition of Holder spaces and a density argument.
Since C is a bundle multiplication, the statement is a straightforward conclusion of
Proposition 2.7. 0
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The following corollary is a special case of Proposition 2.9.

COROLLARY 2.10. Suppose that a = (a”), € [[._y BC'(M, V7). Then,
AL (3 M YV).FM V).

Here, we choose t > s for § = bc, ort > s for § = BC.

REMARK 2.11. Leta = (a”), € [[L_o & (M, VZET) with § € {be, BC). Then,
due to (2.13) and Proposition 2.7, we deduce that

I
[a— A(a)] € .c(H 3 (M, vty L (sS” M, V), M, V))).

r=0

3. Analytic semigroups and continuous maximal regularity on uniformly
regular Riemannian manifolds without boundary

Let X be a Banach space. Given some £ > 1 and ¢ € [0, 7), a linear differential
operator of order /,

A= A(x, ) := Z g (x)9°,

| <l

defined on an open subset U C H" withay : U — L(X)issaidtobe (£, ¥; [)-elliptic
if its principal symbol

GAT(x,8): U x R" - L(X), (x,&) 1~ Z ag(x)(—i&)*

|| =l

satisfies

[20 ‘= {zeC: largz| < 9} U{0) C p(—GA" (x, §)) G

L+ ADIRM, =6 AT (x, E)llcx) =&, A€ Ty,

and all (x, &) € U x R™ with |£| = 1. The constant £ is called the ellipticity constant
of A. 6 A™ (x, &) is considered as an element of £(X). Here, i is the complex identity,
if necessary, we consider the complexification of X. In particular, A is called normally
elliptic of order [ if it is (&, %; [)-elliptic for some constant £ > 1. We readily check
that a normally elliptic operator must be of even order. This concept was introduced
by H. Amann in [2].

If X is of finite dimension, then A is (£, ¢; [)-elliptic on U iff there exist some
0 <r(&, ) < R(E, ) such that the spectrum of 6 A(x, &) is contained in

{ze(C:r<|z|<R}ﬂ§°]n_,9



228 Y. SHAO AND G. SIMONETT J. Evol. Equ.

for all (x,&) € U x R™ with |£] = 1. In particular, in the case that X = K, A4 is
normally elliptic of order / on U if there exist 0 < r (&, ) < R(E, ¥) such that

R> Re(6 A(x,&) >r, (x,&)eU xR", with || =1.

It is worthwhile mentioning that the concept of normal ellipticity is usually referred
to as uniformly strong ellipticity in the scalar-valued case.

LetC: I'(M, vZ j;”'l X VIO) — Hom(V) be the complete contraction. A linear
operator A := A(a) : C*°(M, V) — I'(M, V) of order [ is said to be (&, ©; I)-elliptic
with € > 1 if there exists a £ > 1 such that its principal symbol

GAT(p, £(p) = Ol (—i)®)(p) € £ (T, M & T;M%")
satisfies that S := ¥y C p(—a A" (p, &(p))) and
I+ ADIRG, =6 A™ (p, EpM e mererymery <&, A €S,

forall (p, §) € MxTI'(M, T*M) with | |g« = 1. This definition is a natural extension
of its Euclidean version. In fact, the following proposition holds true.

PROPOSITION 3.1. A linear differential operator A of order l is (€, ¥; 1)-elliptic
iff all its local realizations

A (x,0) = Z ag (x)9%

la|=!
are (€', 9; )-elliptic on B! with uniform constants £', ¥ in condition (3.1).

Proof. We first show the “only if” part. In every local patch (O, ¢, ), by definition
we have

[
CAL . &)= D ay(0(=i8)" = >, al(0)(=i) =y;C (al» (~ieM)” ) ()

Je|=l el

with x € B, & € R” and p = ¥, (x). Here, a' is defined in the same way as in
(2.11), and €M lo, =¢ jdxf can be considered as the restriction of a 1-form onto O,.
In light of the equality C(¢;T, pfv) = ¢ Tvfor T € L(E)® and v € EBY, one
readily verifies that, letting S := Xy,

S C p(~6 AT (x, ) iff SCp (—C (al, (—is"")@) (p)) . (3.2)

The resolvent estimates of —& A7 (x, &) can be obtained as follows. Taking & € sm-1

and letting ¢ = |§M(p)|fg(p), forevery A € S,n,y € Ewithy = (A + 6 A% (x,€))n

(L+IADIR(, =6 AL (x, )Y llg,, = (L4 [ADInllg, = M1+ [ADIdY()nllgp)

L+ ||~ ; (—ig")®
< MEl e ‘ [C +C(a , . (p) | d¥c ()m

g(p)
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< me 1 o (ol e (] wcon|

<N+ GAT (L 8)nllg,
by virtue of (R3) for some &’. The “if” part follows by a similar argument. 0

A is called normally elliptic of order 1, if Ais (€, %; I)-elliptic for some constant
&€ > 1. Analogously, the constant & is called the ellipticity constant of A defined on
M.

For the proof of the main theorem, we first quote a result of Amann.

PROPOSITION 3.2. [2, Theorem 4.2, Remark 4.6] Let s > 0,s ¢ N and X be a
Banach space. Suppose that A = Z\alfl ay, 0% is a (€, 9; I)-elliptic operator on R™
with

ag € b’ R™, L(X)), and |lag|ls.co < K forall || < 1.

Then, there exist constants w (€, K), N(E, K) such that § := w + £y C p(—.A) and
|)\.|1_j ”R()\., _A)”E(SS(]R’”,X),SHU(R”‘,X)) S N7 fOV)\. € S’ .] = 09 17
with § € {bc, BC}. Here, & is the ellipticity constant of A.

THEOREM 3.3. Let s > 0 and s ¢ N. Suppose that M is a uniformly regular
Riemannian manifold without boundary, and A is a (€, ©; 21)-elliptic operator with
a= (@) € Hflzo bc* (M, VZEEE"). Then, there exist constant w(E, K), N'(E, K)
such that § :== w + Xy C p(—A) and

MR =Dl oz mvyz2imyy <N foraeS, j=0,1
with § € {bc, BC}. Here, £ is the ellipticity constant of A and K := max, ||a” ||2{'OO.
Proof. To economize notations, we set
Eg=3", Eg=3""" and E| =F".

In virtue of Proposition 2.8 and the discussions at the beginning of this section, we
know that there exist constants £ and K’ such that all localizations A, ’s are (&', ©; 21)-
elliptic and their coefficients satisfy

(ag)k € loounif (be* (B, L(E))) with max sup llag lls.00 < K'.
K

lor| < N
Without loss of generality, we may assume that £ = &’ and K = K.

(i) For simplicity, we first assume that s € (0, 1). It can be easily seen through step
(ii) of [2, Theorem 4.1] that this assumption will not harm our proof. Define
h:R™ — B™: x — ¢(x)x.Itis easy to see that h € BC*°(R™, B"). Let

Acx,d) := D as(0)d” = D (al o h)(x)d*.
|| <21 | <21

It is not hard to check that (a%), € loo unif (bc’ (R™, L(E))) and Acis (€, 09:2)-
elliptic on R™.
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(i) For any A € C and u € E, consider

(iii)

REG A Au — O+ ADREu = Y (e (0 + Au) — (0 + AV (o)
= W:ﬂx()» + AK)I/I:M - ()\4 + AK)‘/I:(”KM)
= Yime AcWiu — Al (meu)

=-2 2 (;)553“_’3(§1/f:u)8’3(w,;“m).

|a|<2] 0<B<«
In the rest of the proof, we always conventionally put
b =“c0" for§ = BC, or b ="“co,unif” for § = bc.

Using the proof of [4, Theorem 12.1] and interpolation theory, one readily checks
that fort > 0

[u > (CYiu)e] € LG (M, V), 1,(F)). (3.3
By Proposition 2.7, the following map is bilinear and continuous for § € {bc, BC}

@ ®R™, L(E)), §' R, E)) — §F' (R", E)
[(F.v) = [x = F) ()] (3.4)

for t > 0. In view of (3.3) and (3.4), we conclude that

Ri((A+A)) — A+ AIRL() = Be(-) € LIEo(M, V), Eo(R", E)).
Analogously, we can verify that

A+ DR () = RO+ Ao)) =: Ce() € L(Eg(R™, E), Eo(M, V).

Set A : Ihb(Ey) — HK Fo (U (At ). By Proposition 2.7 and (2.6),
one attains

A€ LUy(E1), p(Eo)).

Putu = (u,), anda, = (&;)K.DeﬁneA: E{(R",[(E)) - Eg(R™, [ (E))
by

A= Z F N aqg)d”.
| <2l
Then by [4, formula (11.29)], we obtain
A = Af )y = D f @) f ). (3.5)

| <21

Theorem 2.1 implies that fNay) € be* (R, Ioo(L(E))) — be' (R, L(lso
(E))). By the (£, 9; 2I)-ellipticity of A, and the uniform ellipticity constant £
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(iv)

in (3.1), we conclude that Ais (&', 9; 2D)-elliptic, i.e., for all (x, &) € R™ x R™
with [§] =1

A+ ADIRG. =6 A7 (x, €)ll 2y <& A € Ty,

for some & > 1. Its proof follows in a similar manner to that of Proposi-
tion 3.1 Without loss of generality, we assume again that &’ = &. Set E j o=
E;R™,l(E)) for j = 0, 1. Proposition 3.2 now yields the existence of con-
stants wg and My such that Sy := wg + Xy C p(—f_l) and

IR =)l gy g,y < Mo, h€ So. j=0.1.
Pick u € [,(E1). By (2.3) and (3.5) we have for every A € Sy
FO+AT o+ ADu=fo+ D0+ A u=u
Similarly, by [4, formula (11.29)]
C+ADAfO+ A flu=fo+ D0+ flu=u.
Thus Sy C p(—A). Furthermore, (A + A)~! = f(1 + fl)_lffl and
T IROS =) 2ay(Eoip ) < Koo A€ S, j=0,1 (3.6)

for some Ky > 1.
Define B : Eg(M, V) — [], &5: u — (Bcu),. By (3.3), we have

B e L(Ey(M, V), I,(Ep)).

By Theorem 2.1, we have that BR € L(I,(Eyg), [(Ey)). It follows from (2.3),
(2.4) and [1, Proposition 1.2.3.2] that

Ip(Eg) = (p(Eo), Ip(E1))e,

where either (-, -)g = (-, ')2,00 for§ = bc,or (-, -)o = (-, )p.00 for § = BC, and
0 = 1—1/(2l). Thus BR is a lower order perturbation. For each u € I, (Ey)
and A € Sy, one computes

IBRO A+ A~ ully, k)

< Me| O+ ully,iE) + MCEIG A+ A ull, iy

Ko
< MKoellully, ey + MC(S)m”u”lb(Eg)-

The penultimate line is a consequence of interpolation theory [ 1, formula (1.2.2.2)].
The last inequality follows from (3.6). By choosing & small enough and a suf-
1

ficiently large @; > wp, we can conclude that | BR(A + A)~!|| < 5-Bya

Neumann series argument, we infer that S; := w1 + Xy C p(—fl — BR) and

IR, = A= BR)| 2oy Eoy by < Mi. A €St j=0.1,
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for some M. Forany A € S1, (A + A+ BR)_l exists. Moreover,

ROA+A+BR)'RCA+A) =R+ A+ BR)™!
x(A + A+ BRYRC = idg,m.v)-
Therefore, A + A is injective.
(v) Define C : I,(Eg) — Eo(M, V): (uc)e — 2, Cic(ui). Then analogously we
can verify that C € L(,(Ep), Eo(M, V)) andinturn R°C € L(I,(Ep), lp(Ep)).
For any u € [,(E1), we have

A+ ADRu =R+ ADu +RRCu = R(L + A+ RO)u.
An analogous argumerlt to (iv) reveals that there exist w > w; and V' > M such that
S:=w+ %Xy C p(—A—"R°C) and
ARG, A= REO) | cayEBorinE,y <N A €S, j=0.1.
Moreover, these constants depend only on € and K. Forany A € S, (A +A+R°C)~!

exists and (A + AR + A+ RC)"IR = idgym,v)- Thus, (A 4 A) is surjective.
Now, we conclude that S C p(—.A), and forevery A € S, u € Eg(M, V)

IR Al = AT IRRO, —A = REORCulY,
< ColAl" R, —A = REORCullyy (ke < CGN ullf .
O

REMARK 3.4. With the necessary modification, the above proof also works for
Banach-valued functions defined on a uniformly regular manifold without boundary,

provided the counterparts of these spaces, and the elliptic conditions are properly
defined.

Recall an operator A is said to belong to the class H(E1, Eg) for some densely

d
embedded Banach couple E; — Ej, if —A generates a strongly continuous ana-
Iytic semigroup on Ep with dom(—A) = Ej. By the well-known semigroup theory,
Theorem 3.3 immediately implies

THEOREM 3.5. Suppose A is normally elliptic of order 21 and the coefficients
a = (a"), satisfy the conditions in Theorem 3.3. Then

A e HbATHM, V), be* (M, V)).

The reader should be aware that Theorem 3.5 does not apply to Holder spaces, since
BC*t2(M, V) is not densely embedded into BC*(M, V).
For some fixed interval I = [0, T'], y € (0, 1) and some Banach space X, we define

BUC (I, X) :={ueCU,X); [t t'"ul € CU, X), lir(1)1+tl_”||u(t)||x =0},
t—

. 1-
lullc,_, = supt " Vllu@®lx,
tel
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and
BUC|_,(I.X):={ueC'(I,X):u,iie BUC,_,(I, X)}.
Recall that in the above definition / = I \{0}. Moreover, we put
BUC((1, X) := BUC(I, X) and BUC{(I, X) := BUC'(I, X).
In addition, if I = [0, T) is a half open interval, then
Ci—y(I,X) :={veCd,X):veBUC_,(0,1],X), t <T},
Cl,(I.X):={veC'(I,X):v,beCi,( X))

We equip these two spaces with the natural Fréchet topology induced by the topology
of BUC1— ([0, t], X) and BUCll_y([O, t], X), respectively.
d
Assume that £ — E| is a densely embedded Banach couple. Define
Eo(I) := BUC1-,, Ey), Ei(I):=BUCi_,, E;)N BUCllfy(I, Ep).
(3.7

For A € H(E1, Eyp), we say (Eo(7), E{ (1)) is a pair of maximal regularity of A, if

d
(5 + A, Vo) € Lis(Ei (), Eo(I) x Ey),

where yy is the evaluation map at 0, i.e., yo(u) = u(0), and E, := (Ejp, El)())/,oo‘
Symbolically, we denote it by

A€ My(El, Ep).

Let Ep := (dom(A?), || - | £,), where || - |z, :== A - llg, + || - Il ;- Put
o Eiyg:=(E1, E2)j o, 0€(0,1),
e Ay := the maximal Ey-realization of A.

The next step is to conclude a maximal regularity result for normally elliptic operators.
To this end, we quote a famous theorem, which was first proved by Da Prato and
Grisvard [17], and then generalized later by Angenent.

THEOREM 3.6. [8, Theorem 2.14] Suppose A € H(E1, Eg) and let y € (0, 1].
Then,

(Eo(1), Evo(1)) = (BUC1_ (I, Eg), BUC\_ (I, Ex+4) N BUC|_, (I, E0))

is a pair of maximal regularity for Ay, that is,

d .
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THEOREM 3.7. Lety € (0, 1]and s ¢ Ny. Suppose that A satisfies the conditions
in Theorem 3.5. Then,

Ae My(El, Eop)

with Eg := bc* (M, V) and E; := bcs T2 (M, V).

Proof. Pick max{0,s — 2I} < a < s with a ¢ Ny. Let Fp = bc*(M, V), F| =
b2 (M, V). Set 6 = 57~ By Proposition 2.2(c), we have Fy = Eo and A €
H(F1, Fo).

By the preceding theorem, we infer that Ay € M., (Fi14, Eo). In particular, Ag €
H(Fi19, Eo). Note that dom(A) = dom(Ay).

By analytic semigroup theory, there exists a A > 0 such that

A+ Ae Lis(Fiyg, Eg) N Lis(Ey, Ep).

Consequently, it implies that Fj19 = E1. This completes the proof. g

PROPOSITION 3.8. Suppose that all the local representations A = 3, <a; dg0“
of A are normally elliptic (or (£, ©¥; 21)-elliptic with uniform constants £, ¥, respec-
tively), and their coefficients satisfy

(02), € Lo (BC' (B £(E)))

for some t > s. Then, the assertions in Theorem 3.5 and 3.7 (or Theorem 3.3,
respectively) hold true.

4. Parameter-dependent diffeomorphisms on uniformly regular Riemannian
manifolds

The main purpose of this section is to introduce a family of parameter-dependent
diffeomorphisms induced by a truncated translation technique. As will be shown later,
this technique combined with the implicit function theorem serves as a crucial tool to
study regularity of solutions to parabolic equations on uniformly regular Riemannian
manifolds. The idea of a family of truncated translations was introduced by Escher
et al. [22] to establish regularity for solutions to parabolic and elliptic equations in
Euclidean spaces. The major obstruction of bringing in the localized translations for
uniformly regular Riemannian manifolds lies in how to introduce parameters so that
the transformed functions and differential operators depend ideally on the parameters
as long as they are smooth enough around the “center” of the localized translations.
Thanks to the discussions in the previous section, we are able to set up these properties
based on their counterparts in [22].

Suppose that (M, g) is a uniformly regular Riemannian manifold, with a uniformly
regular atlas 2(. Given any point p € M, there is a local chart (Oxp» 9iy) € 2Acontaining
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p- Let xp := ¢, (p) and d := dist(xp, 8]]3%?’)). We define a new local patch (O,, ¢,)
around p by means of

Prp (q) — Xp
g
Then, ¢,(p) = 0 € R™, ¢,(0,) = B™, and the transition maps between (O,, ¢,) and
(Oup» ¢i,) are given by

O, == Vi, Bxp, D). @u(q) := q€0

Kp*

Yy —Xp
d 9

Choose gp > 0 small such that 5¢g < 1 and set

@0 Y, (v) = O o Yui(x) =dx +xp, x € B", y € B(xp, d).

B; :=B"(0,igg), fori=1,2,..,5.

As part of the preparations for introducing a family of parameter-dependent diffeo-
morphisms on M, we pick two cut-off functions on B"”:

e x € D(B», [0, 1]) such thatx|B| = 1.

e ¢ € D(Bs, [0, 1]) such that g|B = 1. We write ¢ = ¢;¢.

We define a rescaled translation on B" for any © € B(0,r) € R”™ withr > 0
sufficiently small:

Ou(x) :=x 4+ x(x)u, xeB™.

This localization technique in Euclidean spaces was first introduced by Escher et al.
[22]. 6,, induces a transformation ®, on M by:

ACH (A 0.,
@M(q)z[j(u(m))) g€

q ¢ 0.

In particular, we have ©,, € Diff (M) for u € B(0, r) with sufficiently small r > 0.
We may find an explicit global expression for ®7, i.e., the pull-back of ®,,. Given
uel (M, V),

OLu =@ 0 (cu) + (1 — ¢)u.
Likewise, ®% can be expressed by
Oku = @0y (su) + (1 = oHu.

Let I =[0,T], T > 0. Assuming that 7y € [ is a fixed point, we choose &g so small
that B(fy, 3g0) C I. Next pick another auxiliary function

& € D(B(10, 280), [0, 1]) with &|B(,e0) = 1.

The above construction now engenders a parameter-dependent transformation in terms
of the time variable:

o) :=t+&@)), forany relandXeR.
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Now, we are in a situation to define a family of parameter-dependent transformations
on x M. Given a functionu : I x M — V, we set

MA.,ILL(tﬂ ) = @:’MM(I, ) = T[,L(t)g;\ku(t’ ')7

where T),(t) := (”);(z)u and (A, ) € B(O, r).

It is important to note that uy (0, -) = u(0, -) for any (A, u) € B(0, r) and any
function u. Here and in the following, I will not distinguish between B(0, r), B (0, r)
and B”1(0, r). As long as the dimension of the ball is clear from the context, we
always simply write them as B(0, r).

The importance of the family of parameter-dependent diffeomorphisms {©7 w
(A, n) € B(0, r)} lies in the following results. Their proofs and the additional prop-
erties of this technique can be found in [36]. Let w be the symbol for real analyticity.
It is understood that under the condition that k = w in the following theorems, M is

assumed to be a C“-uniformly regular Riemannian manifold.

THEOREM 4.1. Let k € N U {oo, w}. Suppose that u € BC(I x M, V). Then,
ue C( x M, V) iff for any (to, p) € I x M, there exists r = r(to, p) > 0and a
corresponding family of parameter-dependent diffeomorphisms ®K7 M such that

[(,\, 1) > @;Mu] e CKB(0, r), BC(I x M, V).

Henceforth, assume that § € {bc, BC}.Let Eq:=F° (M, V)and E1 := FH (M, V)
with / € N. Define E; (/) as in (3.7) by fixing y = 1.
PROPOSITION 4.2. Suppose that u € Ey(I). Then, uy_, € E(I), and
Olup ] = (A +&00F ur + By, (h,p) €BO,r),

where [(A, u) — By ] € C°BO,r),C, E(&SJFI(M, V), (M, V)))). Further-
more, By o = 0.

PROPOSITION 4.3. Letn > 0,k € Ng U {oo,w}, and p € M. Suppose that
A = A(a) is a linear differential operator on M of order [ satisfying

i
a=(a"), e Hbcs (M, Vf_;;”r) ncrtk (O, ij;”) , fors €[0,n],
r=0

where O is an open subset containing p. Here, n + o0 := 00, n + w := w. Then, for
sufficiently small ey and r

[u > TMATH_I] e ck (]B%(O, r), C(I, L(besT (M, V), be* (M, V)))).
REMARK 4.4. The conditions in Proposition 4.3 can be equivalently stated as
as’ € C" (9, (0N Oy, L(E)),  aly € lo,unit (be* (B, L(E))), ee| <1,

for the local expressions A, (x, 3) := Z|a|gl al (x)o“.
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PROPOSITION 4.5. Letl € Ny and k € Ny U {00, w}. Suppose that
ue CHO,V)NF M, V),

where either s € [0,1]if § = bc, or s =1 if § = BC. O has the same meaning as in
Proposition 4.3. Then, for sufficiently small &y and r, we have

[+ Tyul € CKMBO, r), CU, M, V))).

REMARK 4.6. As a first application of the parameter-dependent diffeomorphism
method and our main theorem, following the proof in Sect. 5, on a given closed C*-
uniformly regular Riemannian manifold (M, g), we can show that the solution to the
heat equation

ou = Agu,
u(0) = uo,

with A the Laplace—Beltrami operator with respect to the metric g, immediately
becomes analytic jointly in time and space for any initial value ug € bc®*(M), s > 0.

5. The Yamabe flow

A well-known problem in differential geometry is the Yamabe problem. In 1960,
Yamabe [39] conjectured the following:

Yamabe Conjecture Let (M, g) be a compact Riemannian manifold of dimension
m > 3. Then, every conformal class of metrics contains a representative with constant
scalar curvature.

The proof for Yamabe’s conjecture was completed by Trudinger [38], Aubin [9],
Schoen [34] using the calculus of variations and elliptic partial differential equations,
see [27] for a survey. The normalized Yamabe flow can be considered as another
approach to this problem, which asks whether a metric converges conformally to one
with constant scalar curvature on a compact manifold under the following flow:

{(%g = (sg — Ry)g, 5.1)

8(0) = go.

where R, is the scalar curvature with respect to the metric g, and s, is the average
of the scalar curvature. It was introduced by R. Hamilton shortly after the Ricci flow,
and studied extensively by many authors afterward, among them Hamilton [25], Chow
[15], Ye [40], Schwetlick and Struwe [35], Brendle [11-13]. A global existence and
regularity result was presented by Ye in [40]. The author asserts that the unique solu-
tion to (5.1) exists globally and smoothly for any smooth initial metric. R. Hamilton
conjectured that on a compact Riemannian manifold, the solution of (5.1) converges
to a metric of constant scalar curvature as t — o0o. Chow [15] commenced the study
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of Hamilton’s conjecture and proved convergence in the case when (M, go) is locally
conformally flat and has positive Ricci curvature. Later, this result was improved by
Ye [40], wherein the author removed the restriction on the positivity of Ricci curva-
ture by lifting the flow to a sphere and deriving a Harnack inequality. In the case that
3 < m < 5, Schwetlick and Struwe [35] showed that the normalized Yamabe flow
evolves any initial metric to one with constant scalar curvature as long as the initial
Yamabe energy is small enough. In [12], S. Brendle was able to remove the smallness
assumption on the initial Yamabe energy. A convergence result is stated in [13] by the
same author for higher dimension cases. Finally, it is worthwhile to point out that for
two-dimensional manifolds, the Yamabe flow agrees with the Ricci flow.

As claimed in the introductory section, we will establish a regularity result for
(5.1) to show that for any initial metric go belonging to the class C* with s > 0 in
a conformal class containing at least one real analytic metric, the solution to (5.1)
immediately evolves into an analytic metric. We shall point out here that not every
conformal class contains a real analytic metric, but these conformal classes are in no
sense trivial nevertheless. For instance, if g is a real analytic metric and f € C®(M)
has sufficiently small gradient, then we can also construct another real analytic metric
bygr=g+Vf®Vf. Ingeneral, g; ¢ [g].

In Sect. 5.1, we first study a generalization of the (unnormalized) Yamabe flow on
noncompact manifolds. In recent years, these problems have been studied by several
mathematicians, including An and Ma [7], Burchard et al. [14]. In comparison with
the existing results, we do not ask for a uniform bound on the curvatures of the initial
metric.

5.1. The Yamabe flow on uniformly regular manifolds without boundary

Let (M, go) be a C*-uniformly regular Riemannian manifold without boundary of
dimension m > 3. The Yamabe flow reads as

Hal‘g = _Rgg’

(5.2)
g(0) = g°,

where Ry is the scalar curvature with respect to the metric g, and g% € [go], the
conformal class of the real analytic background metric gg of M. Note that on a compact
manifold M, (5.2) is equivalent to (5.1) in the sense that any solution to (5.2) can be
transformed into a solution to (5.1) by a rescaling procedure.

We seek solutions to the Yamabe flow (5.2) in [go]. Define c(m) := % and the
conformal Laplacian operator L, with respect to the metric g as:

Lgou := Agu — c(m)Rgu.

4
Let g = um=2go for some u > 0. It is well known that
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where L := Lg,, see [40, formula (1.5)]. By rescaling the time variable, Eq. (5.2) is
equivalent to

4
oru = u m=2Lou,
i U =u ou (5.3)

u(0) = ug

with a positive function ug, see also [29, formula (7)]. In the following, we will use the
continuous maximal regularity theory in Sect. 3 to establish existence and uniqueness
of solutions to (5.3). (R4), Theorem 2.1 and Remark 6.5(b) imply that

g0 € BC®(M, V9 n c® (M, VZO) . gl e BC® (M, V02) nce (M, voz) . (54

By the well-known formula of scalar curvature in local coordinates,

U ki i
Ry = 8 87 (gjkti + &itkj — &jlki — &ik.lj)
see [26, formula (3.3.15), Definition 3.3.3]. This, combined with (5.4), thus yields
Rg, € BC®(M) N C*(M). 5.5
Put
P(u)h = —u" 77 Agoh, and Q(u) = —c(m)un=? Ry,.
Givenany 0 < s < I, wechoose 0 <@ < s,y = *5%,and b > 0. Let V = K and

Eo = bc*(M), E; :=bc**(M), and E, = (Eo, El)?/,cxr

Proposition 2.2 implies that E,, = bc*(M). We put W) := {u € bc*(M) :inf u > b}.
By Proposition 6.3, for each 8 € R, we have

Pg i [u > uPle C” (W, be* (M), (5.6)
which together with (5.5) and Proposition 2.7 now shows that
Q(u) = —c(m)un=? Ry, € Eg, u e W;. 5.7)
In every local chart, the Laplace-Beltrami operator Ay, reads as
" ,
Agy = 8 <3j3k - F}kai) :
where I‘; « are the Christoffel symbols of go. By (5.4) and Corollary 2.10, we obtain
Agy €L (bc2+°'(|\/|, V), be® (M, V)) . (5.8)
Then, it follows from Proposition 2.7, (5.6)—(5.8) that

(P, Q) € C® (W}, L(E1, Eo) x Ep).
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One verifies that the symbols of the principal parts for the local expressions (P (u)),
in every local chart (O, ¢, ) satisfy

4

2(0)gY ()EE = C, ue W,

6(})(’/‘)),7(r x, &) = (w:u)_m

for any & € R™ with || = 1, and some C > 0 independent of «. It follows from
Theorem 3.7 that

P(u) e M, (E1, Ey), ueWwp. 5.9)
Now, [16, Theorem 4.1] leads to

THEOREM 5.1. Ifug € Wy :={u € bc*(M) :infu > b} with0 < s < 1 and
b > 0, then for every fixed a € (0, s) Eq. (5.3) has a unique local positive solution

it € C{_, (J (o), be® (M) N C1—y (J (o), be> T (M) N C(J (ug). Wy)

existing on J (uo) := [0, T (uo)) for some T (ug) > 0 with y = *5%.

From now on, we use the notation # exclusively for the solution in Theorem 5.1.
Next, set G(u) := P(w)u — Q(u),u € Wi N Ey. For any (19, p) € J(ug) x M, we
find a closed interval I :=[g, T] C J (ug) and ty € I. We define two function spaces
as follows:

Eo(I) := C(I, Eg). Ei(I):=C(I, E;)NC'(I, Ep).
and an open subset of E1 (/) by
Ul) :={u e E;(I) : infu > b}.
Letu := ©F it = i; ;. By Proposition 4.2, one computes that
ur = iy ] = (1 +&E1)OF s + By (u)
=—(+ E/)»)@);HG(I/A!) + By u(u)
= —(14+&§MT,G(0}i) + By u(u)
= —(1+&NT,GT; w) + B, (w).
Thus, we define amap ® : U(/) x B(0,r) — Eo(/) x E| by

v+ (1+&0T,G(T,; " v) - wa))

S, (4, 1)) =( i

where y; is the evaluation map at ¢, i.e., . (v) = v(¢). Now, the subsequent step is to
verify the conditions of the implicit function theorem.

(i) Clearly, @ (i, 4, (A, 1)) = (8) for any (A, 1) € B(0, r). On the other hand, we
have

D1, (0,0)w = (a,w + DG(ﬁ)w).

YeW
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(ii)

One verifies that the symbol of the principal part for DG (i) agrees with that of
P (it). By Theorem 3.7, in (5.9) we have the freedom to choose y. Thus choose
y = 1. It yields

D ®(ua(t, ), (0,0)) € Lis(E;(1),Eq(I) x E;), foreveryt e I.

Set A(t) := DG (u(t)). The above formula shows that

d
(E + A(s), ys) e Lis(E((1),Eq(I) x E1), foreverys € I.

It follows from [16, Lemma 2.8(a)] that

d
D@ (i, (0,0)) = (E + A, yg) e Lis(Ey(1),Eo(I) x Ey).

The next goal is to show that
® e CY(UU) x B, r), Eo(1) x Ey). (5.10)

By Proposition 4.2, By ,, € C*(B(0, r), C(I, L(E1, Ep))). We define a bilinear
and continuous map f : C(I, L(Ey, Eg)) x E{(I) — Eo(1) by:

(@@, u@)— TEu).

Hence [(v, (A, ) = f(By,u,v) = By p(v)] € C?(UWU) x B(O, r), Eo(1)).
By Proposition 6.4, the pointwise extension of Pg on /I, ie., Pg(u)(t) =
Pg(u(1)), fulfills

Pg e C”(CU, W,),C, Eyp)). (5.11)
In virtue of Proposition 4.5, we get
[ TuRg 1 € C*BO, r), Eo(1)).

By noticing T}, Q(Tl;1 u) = —c(m)uﬁ%g T, Rg,, Proposition 2.7 and (5.11) hence
imply that

[(u, ) —~ T, QT w)] € C(U) x B, r), Eo(1)).
On the other hand, in light of Proposition 4.3, we infer that
[ — TMAgOTM_I] € C°(B(0,r), C(I, L(E1, Ep))).
It follows again from Proposition 2.7 and (5.11) that
[, p) > Ty P(T'w)T,; ' € COUU) x B, r), LE (1), Eo(1)).

The rest of proof for (5.10) follows straight away. Consequently, we have proved
the desired assertion. Now we are in a position to apply the implicit function
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theorem. Hence there exists an open neighborhood, say B(0, rg) C B(0, r), such
that

[, 1) = 5.1 € C¥(BO, ro), Ei ().

As a consequence of Theorem 4.1, we deduce that

THEOREM 5.2. For each up € Wy :={u € bc*(M) :infu > b} with0 < s < 1
and b > 0, Eq. (5.3) has a unique local positive solution

i€ C?(J(up) x M)

for some interval J(uo) := [0, T (uo)). In particular,

g§= ﬁmiZgo eC” (j(uo) x M, VZO).

REMARKS 5.3.  (a) In general, the presence of a metric gg € BC*®®(M, VZO) n
Cce(M, VZO) is unnecessary. As long as there is a metric gg € bete (M, Vzo) N
ckwm, V20) with k € {oo, w}, the solution to (5.2) on M immediately evolves
conformally in [go] into the class C¥ (J (1) x M, VZO).

(b) For any Riemannian manifold M without boundary, by [32, Theorem 1.4, Corol-
lary 1.5], in every conformal class containing a C*-metric with k € {00, w}
there exists a CX-metric go with bounded geometry, which makes (M, go) com-
plete. It then follows that (M, go) is uniformly regular. Choosing go as the
background metric, we can infer from the proof above that the solution to

. _4_
(5.2) belongs to C¥(J (ug) x M, Vy) for any initial metric g° = uj > gy with
ug € Wy :={bc*(M) : inf u > b}.

5.2. The normalized Yamabe flow on compact manifolds

Next, we consider regularity of the normalized Yamabe flow on compact manifolds.
Let (M, go) be a connected compact closed m-dimensional C°°-Riemannian manifold
with m > 3. By a well-known result of H. Whitney, M admits a compatible real
analytic structure. The existence of a real analytic metric on M follows from [31].
Without loss of generality, we may assume that the atlas 2 and the metric g¢ are real
analytic.

The normalized Yamabe flow reads as

[ag==@g—-Rgg, 5.12)

g(0) = g°,

where g% € [go], V(g) = [, dV, and

|
5e = —— | R,dV,.
# V(g)/Mg #
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The normalized Yamabe flow preserves the volume, that is, V(g) = V(go). This can
be easily verified by checking the time derivative of V (g).
As in the above subsection, we can reduce Eq. (5.12) to the following form.

du = u_ﬁ[Lou + C(m)sg”%]’ (5.13)
u(0) = uop.
Put
m+2
P@h = —u 7 | Agh— 2 [ 3 1ohay,
-= - m-— T YN " O ’
T V(g Iu ’
and

O(u) = —c(m)un=3 Ry,

Given 0 < s < I, we choose 0 < o < s and y = *5%. Set Eo, E| and E,, as in
Sect. 5.1. Additionally, we put W* := {u € bc*(M) : u > 0}. Let

1 m+2 1
A(u)h = —/ u m=2LohdV, = #/ uLohdV,,. (5.14)
V(g) Jm ¢ fM”% AV, /M £

By Corollary 2.10 and Proposition 6.3, for each 8 € R
Ay, € L(BC*(M), BC(M)), and Pg e C(W*, bc* (M)). (5.15)
One readily checks that (5.14), (5.15) and Remark 6.5(a) imply that
A € C®(W*, L(BC*(M), R)).
It yields
(P, Q) € C”(W*, L(E1, Eo) x Eo).

We verify that the symbol of the principal part for the local expression of Ifﬁ Ag,
in every local chart (O, ¢, ) satisfies

4

6T Mgy )T (x, 6) = u” 72 (0087 (0E'E > C, we W

for any & € R™ with |§€] = 1, and some C > 0 by the compactness of M. Thus,
4
u~ m=2 Ay, is normally elliptic for any u € W*. Since uA(u) is a lower order pertur-

bation compared to u_ﬁA g for every u € W¥, it follows from Theorem 3.7 and
[16, Lemma 2.7] that

P(u) € M, (E1, Ey), uec W', (5.16)

Then, [16, Theorem 4.1] implies that
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THEOREM 5.4. Ifug € W* := {u € bc*(M) s infu > 0} with0 < s < 1, then
for each fixed a € (0, s) Eq. (5.13) has a unique local positive solution
it € Cl_,(J (o), be® (M) N C1—y (J (o), be* ™ (M) N C(J (ug), W*)

S—o

existing on J (ug) := [0, T (uo)) for some T (up) > O withy = *5=.

Next, set G(u) = P(u)u — Q(u),u € W* N Ey. For any closed interval I :=
[e, T] C J (u0), the function spaces Eg(7), E{ (/) and U(/) have the same definitions
asin Sect. 5.1 with b = 0. The map ® : U(/) x B(0, r) — Eo(I) x E; is defined by

dv+ (1 +&MNT,G(T'v) — B
e |
VeV — U(e)
Clearly, ® (i 0, (A, n)) = (8) for any (A, ) € B(0, r). On the other hand, we have

Do, (0,0)w = (3rw + DG(u)w)'

YeW

Since DA(i) € L(BC%(M), R), it follows from a similar argument to the previous
problem that

D1 ® (4, (0,0)) € Lis(UU), Eo(I) x Ey).

Now, it remains to show that ® € C*(U(I) x B(0,r), Eo(I/) x E;). Following the
previous proof, we only need to consider A(u) := A(u)u. Note that

_ 1

-1 -1 —1

T”A(TM u) = ST /MTH uLoTM udVg,.
ST w)m=2 d Vg,

An analogous argument as in [36, Proposition 6.2] yields
[(u, u) — TMA_(TM_IM)] e CY(UU) x B, r), Eo(D)).

The rest follows by a slight change of step (ii) in Sect. 5.1 and [22, Lemma 5.1]. Then,
we adopt the implicit function theorem and get

THEOREM 5.5. Ifug € W* := {u € bc*(M) :infu > 0} with0 < s < 1, then
Eq. (5.13) has a unique local positive solution

i€ C?(J(up) x M)

for some interval J (ug) := [0, T (uo)). In particular,

g =inzgy e C¥Uuo) x M, V9).

REMARKS 5.6. (a) We shall point out the global existence of the real analytic so-
lution obtained above. By [16, Theorem 4.1(d)], it suffices to show that
dist(u(z, ), 9W?*) > 0 and there exists a @ € (y, 1] such that ||ii|| g, is bounded
in finite time. Actually, this is guaranteed by [40, Theorem 3, Lemma 4].
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(b) It follows from Theorem 5.5 that the equilibria in the conformal class [go], that
is to say, those of constant scalar curvature, must be analytic. This implies that
the solution to the Yamabe problem in any conformal class possessing at least
one real analytic metric is analytic.
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6. Appendix

LEMMA 6.1. Letk € Nand s € [0, k. Suppose that f € CX(U, R) for some open
interval U CRandu € W :={u € bc*(M) : im(u) CC U}. Then f(u) := fou €
bc* (M).

Proof. Tt suffices to prove the assertion for 0 < s < 1, since the other cases are
direct consequences of the chain rule. Clearly, f (1) € BC(M). On the other hand, for
|x — y| < & for some sufficiently small &

[V )Y f () (x) — Yéme DY f ) ()]

|x — yI*
_ 1//:]TK(y)Illfkf(u)(x) — Y f ()l I F@) @) [Wime (x) — Yime (y)]
lx — yI lx — y|*

1
< YT (y) /O () + 1) — YEu )

o 0 OV 44 81 Il o5 1 @)l

<MYl o + 8" IV Tl 005 N f 1) lloo-

The validity of the last step is supported by (L2). By (2.2) and (3.3), we attain

Rcf(u) € loo,unif(bcs)~
Now, the assertion follows from Theorem 2.1. O
Henceforth, we assume that € R, s > 0and b > 0.

LEMMA 6.2. Suppose that W}, := {u € bc*(U) : inf u > b} for some open subset
U C R™. Then,

[u — u®] € CP(Wg, bc* (U)).
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Proof. We only need to show the case 0 < s < 1, and the rest follows from knowledge
of calculus. Put W := {u € bc*(U) : |lulloo < 1}. It is well known that

4w => (:)u foru € W, 6.1)

n

converges in BC(U). Equation (2.6) and induction imply [u”]gOo < n||u||go’1 [u]f’oo.

Hence,

o n o n § a—1 n
; (n)nu lls.00 < Z (n)nunoo +a[u]s,oo;( . )nunoo < o0.

By Lemma 6.1, (6.1) converges in bc* (U).
For each u € W}, choose ¢ < inf(u — b). Then, for any v € Byes ) (u, &) C Wy,

o _ o V—U 4 o v—Uu n_ o (@—n) (R
v =u"(1+ 0 )Y'=u Zn:(n)( . ) —;<n)u (v—u)".

By Proposition 2.7 and Lemma 6.1, the series converges in bc* (U). 0

PROPOSITION 6.3. Suppose that Wy := {u € bc*(M) :inf u > b}. Then, Py, :=
[u — u“] € C*(W;, bc* (M)).

Proof. Foreach u € Wg, choose ¢ < inf(u — b) sufficiently small. By Lemma 6.2,
(3.3) and (3.4), for any v € B (u) C W,

R = yime ) (Z)(;ﬁu)(a—")(w:v —{Yew)”

n

— « * * N (—n) * BN
=> (n)wknx(wkw Wiv — Yru)

converges in bc; uniformly with respect to k. One can check that
RoPy € Cw(W;f, loo,unif(bcs))~
The assertion follows from Theorem 2.1, and the fact that R is real analytic. 0

A slight modification of the above proofs now implies the pointwise extension of
Proposition 6.3.

PROPOSITION 6.4. Let X := be* (M) and Wi(I) := {u € C(I, X) : infu > b}.
Then P, € CO(WS(I), C(I, X)).

REMARK 6.5. The estimates in Lemmas 6.1 and 6.2 show that the case bc replaced
by BC is admissible. So Propositions 6.3 and 6.4 still hold true for BC*(M) and
C(I, BC*(M)), respectively.
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