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Maximal regularity for evolution equations
in weighted Lp-spaces

By

Jan Prüss and Gieri Simonett

Abstract. Let X be a Banach space and let A be a closed linear operator on X. It is shown that
the abstract Cauchy problem

u̇(t) + Au(t) = f (t), t > 0, u(0) = 0,

enjoys maximal regularity in weighted Lp-spaces with weights ω(t) = tp(1−µ), where 1/p < µ,
if and only if it has the property of maximal Lp-regularity. Moreover, it is also shown that the
derivation operator D = d/dt admits an H∞-calculus in weighted Lp-spaces.

Introduction. Let X be a Banach space and let A be a closed linear operator on X with
domain D(A). We consider the abstract Cauchy problem

u̇(t) + Au(t) = f (t), t > 0, u(0) = 0,( 1.1)

where f ∈ L1,loc(R
+; X). In the following we say that the Cauchy problem ( 1.1) has

the property of maximal Lp-regularity if for each function f ∈ Lp(R+; X) there exists a
unique solution u ∈ W 1

p(R+; X) ∩ Lp(R+; D(A)). We define MRp(X) to be the class of
all operators A that admit maximal Lp-regularity for ( 1.1) in X.

Let us recall some well-known facts about this class. If A ∈ MRp(X) for some p ∈
(1, ∞), then A ∈ MRq(X) for all q ∈ (1, ∞). This was first observed by Sobolevskii [9],
and was then rediscovered several times, e.g. by Cannarsa and Vespri [3].

If A ∈ MRp(X) for some p ∈ (1, ∞), then A generates an exponentially stable analytic
C0-semigroup in X. A proof of this fact is contained in Hieber and Prüss [6], see also Prüss
[7, Section 10].

In this note we consider the question of maximal regularity for the weighted Lp-spaces

Lp,µ(R+; X) := {f : R
+ → X : t1−µf ∈ Lp(R+; X)}.

We say that A has maximal Lp,µ-regularity if for each f ∈ Lp,µ(R+; X) there is a unique
function u ∈ Lp,µ(R+; X) such that u̇, Au ∈ Lp,µ(R+; X), and such that u solves ( 1.1).
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We will show that A ∈ MRp(X) implies that A also has maximal Lp,µ-regularity, that
is A ∈ MRp,µ(X), provided µ > 1/p. Moreover, we show that the reverse conclusion is
also true.

The restriction on µ comes from several facts. The first one is the embedding

Lp,µ(R+; X) ↪→ L1,loc(R
+; X),

which is valid for µ > 1/p. The second one is due to Hardy’s inequality which reads

∞∫
0

∣∣∣∣∣∣t
−µ

t∫
0

f (s)ds

∣∣∣∣∣∣
p

dt � 1

(µ − 1/p)p

∞∫
0

|t1−µf (t)|pdt.( 1.2)

It is valid if µ > 1/p. The third reason comes from the fact that functions in W 1
p,µ(R+; X)

have a well-defined trace in case that µ > 1/p.
Having established maximal Lp,µ-regularity, it not difficult to characterize initial data

which lead to solutions in the class E1(R
+) := W 1

p,µ(R+; X) ∩ Lp,µ(R+; D(A)). It is in
fact well-known that

e−tAx ∈ E1(R
+) if and only if x ∈ DA(µ − 1/p, p),

whereDA(µ−1/p, p)denotes the real interpolation space betweenX andD(A)of exponent
µ−1/p. The case p = ∞ has been studied before in the context of functions u which satisfy
t1−µu(t) ∈ BUC((0, T ]; X) with lim

t→0+ t1−µu(t) = 0. It has been shown that this class

allows for maximal regularity if the space X is replaced by (X, D(A))θ,0, the continuous
interpolation space of order θ ∈ (0, 1) between X and D(A). For this theory we refer to
the papers of Angenent [2] and Clément and Simonett [4], as well as to the monograph of
Amann [1].

We refer to Remark 3.3 for a short discussion of our motivation for studying maximal
Lp,µ-regularity.

2. Maximal Lp,µ-Regularity. Let X be a Banach space and assume that p ∈ (1, ∞) and
1/p < µ � 1. We set

Lp,µ(R+; X) := {f : R
+ → X : t1−µf ∈ Lp(R+; X)}

and equip it with the norm ‖f ‖Lp,µ(R+;X) := (
∞∫
0

|t1−µf (t)|pdt)1/p. We also define

W 1
p,µ(R+; X)

:= {u ∈ Lp,µ(R+; X) ∩ W 1
1,loc((0, ∞); X) : u̇ ∈ Lp,µ(R+; X)}.

W 1
p,µ(R+; X) will always be given the norm

‖u‖W 1
p,µ

= (‖u‖p

Lp,µ(R+;X)
+ ‖u̇‖p

Lp,µ(R+;X)
)1/p,

which turns it into a Banach space.
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In the following we use the notation E ↪→ F if E and F are topological vector spaces
such that E is continuously embedded in F .

Lemma 2.1. Suppose p ∈ (1, ∞) and 1/p < µ. Then

(a) Lp,µ(R+; X) ↪→ L1,loc(R
+; X).

(b) W 1
p,µ(R+; X) ↪→ W 1

1,loc(R
+; X).

(c) Every function u ∈ W 1
p,µ(R+; X) has a well-defined trace, that is, u(0) is well-

defined in X.

P r o o f. (a) The first assertion follows from

T∫
0

|f (t)|dt �




T∫
0

t−p′(1−µ)dt




1/p′ 


T∫
0

|t1−µf (t)|pdt




1/p

� c‖f ‖Lp,µ(R+;X)

which is valid provided that µ > 1/p.
(b) This follows from the definition of W 1

p,µ(R+; X) and from (a).

(c) We conclude from (b) that every function u ∈ W 1
p,µ(R+; X) is locally absolutely

continuous, and this yields the assertion in (c). �

In the following we set

0W
1
p,µ(R+; X) := {u ∈ W 1

p,µ(R+; X) : u(0) = 0}.
It follows that the derivation operator

Dµu(t) := u̇(t) := d

dt
u(t), t > 0, D(Dµ) := 0W

1
p,µ(R+; X)( 2.1)

is well-defined on Lp,µ(R+; X). It is natural to introduce the mapping

�µ : Lp,µ(R+; X) → Lp(R+; X), (�µu)(t) := t1−µu(t), t > 0.

We show that �µ also maps 0W
1
p,µ(R+; X) into 0W

1
p(R+; X), provided µ > 1/p.

Proposition 2.2. Let p ∈ (1, ∞) and let 1/p < µ � 1. Then

(a) �µ : Lp,µ(R+; X) → Lp(R+; X) is an isometric isomorphism.
(b) �µ : 0W

1
p,µ(R+; X) → 0W

1
p(R+; X) is a (topological) isomorphism.

P r o o f. (a) The assertion in (a) is clear.
(b) (i) We will first show that �−1

µ maps 0W
1
p(R+; X) into 0W

1
p,µ(R+; X). In order to

see this, let v ∈ 0W
1
p(R+; X) be given. An easy computation shows that the function tµ−1v

is in W 1
p,loc((0, ∞); X) and that

t1−µ d

dt
[tµ−1v](t) = v̇(t) − (1 − µ)

v(t)

t
, t > 0.( 2.2)
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By means of Hardy’s inequality we can verify that the function v/t belongs to Lp(R+; X).

Indeed, we infer from v(t) =
t∫

0
v̇(s)ds that




∞∫
0

|t−1v(t)|pdt




1/p

=



∞∫
0

∣∣∣∣∣∣t
−1

t∫
0

v̇(s)ds

∣∣∣∣∣∣
p

dt




1/p

� p′



∞∫
0

|v̇(s)|pds




1/p

.( 2.3)

We conclude from ( 2.2)–( 2.3) that �−1
µ v belongs to W 1

p,µ(R+; X), and also that the map-

ping �−1
µ is linear and bounded between the indicated spaces.

(ii) Next we show that u = �−1
µ v has trace zero. Observing that

u(t) = tµ−1v(t) = tµ−1

t∫
0

v̇(s) ds

we obtain by Hölder’s inequality that |u(t)| � tµ−1/p(
t∫

0
|v̇(s)|pds)1/p. This shows that

u(t) → 0 as t → 0+.
(iii) Similar arguments show that �µ maps 0W

1
p,µ(R+; X) into 0W

1
p(R+; X), and that

the mapping is bounded and linear. �

Before we can state our main result we need some additional preparation.

Proposition 2.3. Let p ∈ (1, ∞) and let 1/p < µ � 1. Let Y be a Banach space and
suppose that K ∈ C((0, ∞); L(X, Y )) satisfies |K(t)|L(X,Y ) � M/t for t > 0, where M

is a positive constant. Let

(Tf)(t) :=
t∫

0

K(t − s)[(t/s)1−µ − 1]f (s) ds, f ∈ Lp(R+; X).( 2.4)

Then T ∈ L(Lp(R+; X), Lp(R+; Y )) and ‖T ‖ � cM, where c = c(p, µ).

P r o o f. Let f ∈ Lp(R+; X) be given. To shorten notation we set

ϕ(r) := (1 + r)1−µ − 1.

It is not difficult to establish the elementary estimate

ϕ(r) � min{r1−µ, (1 − µ)r}, r > 0.( 2.5)
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Observe that

|(Tf)(t)|Y � M

t∫
0

1

(t − s)
ϕ

(
t − s

s

)
|f (s)|X ds.

Therefore, T is pointwise bounded by the scalar integral operator S given by

(Su)(t) := M

t∫
0

1

(t − s)
ϕ

(
t − s

s

)
u(s) ds, u ∈ Lp(R+).

Hölder’s inequality then yields

|(Su)(t)| � M‖u‖p




t∫
0

[
ϕ

(
t − s

s

)
1

(t − s)

]p′

ds




1/p′

= M‖u‖p




1∫
0

[
ϕ

(
1 − σ

σ

)
1

(1 − σ)

]p′

dσ




1/p′

· t−1/p

for any u ∈ Lp(R+). Here we have to observe that the integral
1∫

0
[ϕ( 1−σ

σ
) 1
(1−σ

)]p
′
dσ is

finite. In fact, this follows from ( 2.5) due to

1/2∫
0

[
(1 − σ)1−µ

σ 1−µ
· 1

1 − σ

]p′

dσ + (1 − µ)

1∫
1/2

[
1 − σ

σ
· 1

1 − σ

]p′

dσ

� c(p, µ).

We conclude that S : Lp(R+) → Lp,weak(R
+) is bounded for each p > 1/µ. By the

Marcinkiewicz interpolation theorem, S is bounded in Lp(R+) for each p > 1/µ, with
bound dominated by c(p, µ)M , where c(p, µ) depends only on p and µ. Consequently, T
is bounded with the same bound. �

We are now ready for the main result of this section.

Theorem 2.4. Let p ∈ (1, ∞) and let 1/p < µ � 1. Then

A ∈ MRp(X) if and only if A ∈ MRp,µ(X).

P r o o f. In the following we shall use the notation X0 := X and X1 := D(A), where X1
is equipped with the norm ‖A ·‖X0 . It follows that X1 is a Banach space which is densely
embedded in X0.
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(i) Suppose that A ∈ MRp(X). Then we know that −A generates a bounded analytic
semigroup {e−tA; t � 0} on X0. Let f ∈ Lp,µ(R+; X0) be given. Let us consider the
function u defined by the variation of constants formula

u(t) :=
t∫

0

e−(t−s)Af (s)ds, t > 0.( 2.6)

It follows from Lemma 2.1(a) that this integral exists in X0. We will now rewrite equation
( 2.6) in the following way

u(t) = tµ−1

t∫
0

e−(t−s)As1−µf (s)ds

+ tµ−1

t∫
0

e−(t−s)A[(t/s)1−µ − 1]s1−µf (s)ds

= �−1
µ [(D1 + A)−1�µf + TA�µf ] = �−1

µ [v1 + v2].

Here we use the same notation for A and its canonical extension on Lp(R+; X0), given by
(Au)(t) := Au(t) for t > 0. By definition, TA is the integral operator

(TAg)(t) :=
t∫

0

e−(t−s)A[(t/s)1−µ − 1]g(s)ds, g ∈ Lp(R+; X0).

Observe that the kernel KA(t) := etA satisfies the assumptions of Proposition 2.3 with
Y = X1. We conclude that

TA ∈ L(Lp(R+; X0), Lp(R+; X1)) and ATA ∈ L(Lp(R+; X0)).( 2.7)

It is a consequence of ( 2.7) that v2 has a derivative almost everywhere, given by

v̇2 = −ATA�µf + (1 − µ)t−µ

t∫
0

e−(t−s)Af (s)ds.( 2.8)

It follows from Hardy’s inequality that

∞∫
0

∣∣∣∣∣∣t
−µ

t∫
0

e−(t−s)Af (s)ds

∣∣∣∣∣∣
p

dt

� M

∞∫
0


t−µ

t∫
0

|f (s)|ds




p

dt � cM‖f ‖Lp,µ( 2.9)
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and we infer from ( 2.7)–( 2.9) that

v2 ∈ 0W
1
p(R+; X0) ∩ Lp(R+; X1).( 2.10)

It follows from our assumption that v1 enjoys the same regularity properties as v2 and
consequently, v satisfies ( 2.10) as well. Lemma 2.1 then shows that

u ∈ 0W
1
p,µ(R+; X0) ∩ Lp,µ(R+; X1).( 2.11)

It is now easy to verify that u is in fact a solution of the Cauchy problem ( 1.1). We have
thus shown that A ∈ MRp,µ(X).

(b) Suppose now that A ∈ MRp,µ(X0). As in the case µ = 1 one can show that A

generates a bounded analytic semigroup {e−tA; t � 0} on X0. Let f ∈ Lp(R+; X0) be
given. Here we use the representation

u(t) = t1−µ

t∫
0

e−(t−s)Asµ−1f (s)ds −
t∫

0

e−(t−s)A[(t/s)1−µ − 1]f (s)ds

= �µ(Dµ + A)−1�−1
µ f − TAf,

with TA as above. The assertion follows now by similar arguments as in (a). �

3. Trace spaces and maximal regularity. We will now consider the Cauchy problem

u̇(t) + Au(t) = f (t), t > 0, u(0) = u0,( 3.1)

where A is a closed linear operator on X. As in the last section we use the notation X0 := X

and X1 := D(A), where X1 is equipped with the norm ‖A ·‖X0 . We also introduce the
function spaces

E0 := E0(R
+) := Lp,µ(R+; X0),

E1 := E1(R
+) := W 1

p,µ(R+; X0) ∩ Lp,µ(R+; X1).( 3.2)

It is not difficult to verify that the norm

‖u‖E1
:= (‖u‖p

Lp,µ(R+;X1)
+ ‖u̇‖p

Lp,µ(R+;X0)
)1/p( 3.3)

turns E1(R
+) into a Banach space. It follows from the representation

u(0) =
1∫

0

u(s)ds −
1∫

0

(1 − s)u̇(s)ds

that the trace map

γ : E1(R
+) → X0, γ u = u(0)
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is continuous. Consequently, the trace space (γ E1, ‖ · ‖γE1) of E1, given by,

γ E1 := γ (E1(R
+)), ‖x‖γE1 := inf{‖u‖E1 : u ∈ E1, γ u = x},( 3.4)

is a well-defined Banach space with γ E1 ⊂ X0. In our next result we characterize γ E1 in
terms of the real interpolation space (X0, X1)µ−1/p,p. We remind here that (X0, X1)µ−1/p,p

is sometimes also denoted by DA(µ − 1/p, p).

Proposition 3.1. Suppose p ∈ (1, ∞) and 1/p < µ � 1. Then

(a) γ E1 = (X0, X1)µ−1/p,p with equivalent norms.
(b) E1(R

+) ↪→ BUC(R+; (X0, X1)µ−1/p,p).

(c) E1(R
+) ↪→ C((0, ∞), (X0, X1)1−1/p,p), where the latter space is given the Fréchet

topology of uniform convergence on compact subsets of (0, ∞).

P r o o f. (a) (i) We recall that A ∈ MRp implies that −A generates a strongly continuous
exponentially stable analytic C0-semigroup in X0. It is then well-known that

x ∈ (X0, X1)µ−1/p,p if and only if e−tAx ∈ E1(R
+),( 3.5)

see for instance [11, Theorem 1.14.5]. Moreover,

‖Ae−tAx‖Lp,µ(R+;X0) defines a norm on (X0, X1)µ−1/p,p .( 3.6)

(ii) Let x ∈ (X0, X1)µ−1/p,p be given and let u := e−tAx. It follows from ( 3.5) that
u ∈ E1. Since u(0) = x we conclude that x ∈ γ E1. Equation ( 3.6) finally yields
(X0, X1)µ−1/p,p ↪→ γ E1.

(iii) Conversely, let us assume that x ∈ γ E1. By definition this means that there exists a
function u ∈ E1 such that x = u(0). We know that

x = u(t) −
t∫

0

u̇(s)ds, t > 0

in X0, and we then conclude that

t1−µ|Ae−tAx|X0 � t1−µ|Ae−tAu(t)|X0 + t1−µ

∣∣∣∣∣∣Ae−tA

t∫
0

u̇(s)ds

∣∣∣∣∣∣
X0

� c


t1−µ|u(t)|X1 + t−µ

t∫
0

|u̇(s)|X0 ds


 .

It now follows from Hardy’s inequality, stated in ( 1.2), that

‖Ae−tAx‖Lp,µ(R+;X0)
� c‖u‖E1 .
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Since this is true for any function u ∈ E1 with u(0) = x we infer from ( 3.6) that γ E1 ↪→
(X0, X1)µ−1/p,p.

(b) Let {λs : s � 0} be the semigroup of left translations on L1,loc(R
+; X0), i.e.,

λsu(t) := u(s + t), u ∈ L1,loc(R
+; X0), s, t ∈ R

+.

It is easy to see that {λs : s � 0} acts as a semigroup of contractions on E1(R
+). Moreover,

since the space Cc((0, ∞), Xj ) is dense in Lp,µ(R+Xj) for j = 0, 1, we conclude that {λs :
s � 0} is strongly continuous on E1(R

+). It is a consequence of [1, Proposition III.1.4.2]
that E1(R

+) ↪→ BUC(R+; γ E1), and the assertion in (b) follows from (a).
(c) Let τ > 0 be a fixed number. Then we have

E1(R
+) ↪→ W 1

p([τ, ∞); X0) ∩ Lp([τ, ∞); X1)

↪→ BUC([τ, ∞), (X0, X1)1−1/p,p).

Since this is true for any number τ > 0 we obtain the assertion in (c). �

Suppose that A ∈ MRp(X). Our next result shows that the Cauchy-problem ( 3.1)
admits maximal regularity in Lp,µ(R+; X0), provided u0 belongs to (X0, X1)µ−1/p,p.
Moreover, it shows that the solution u = u(f, u0) depends continuously on (f, u0).

Theorem 3.2. Let p ∈ (1, ∞) and 1/p < µ � 1. Suppose that A ∈ MRp(X). Then
(

d

dt
+ A, γ

)
∈ Isom(E1(R

+), E0(R
+) × (X0, X1)µ−1/p,p).

P r o o f. (i) We first observe that ( d
dt

+ A) ∈ L(E1, E0). Proposition 3.1(a) then yields
(

d

dt
+ A, γ

)
∈ L(E1, E0 × (X0, X1)µ−1/p,p).( 3.7)

(ii) Theorem 2.4 shows that the operator (Dµ + A) with domain

D(Dµ + A) = D(Dµ) ∩ D(A) = {u ∈ E1(R
+) : u(0) = 0}

is invertible. Let (f, x) ∈ E0 × (X0, X1)µ−1/p,p be given and let

u := (Dµ + A)−1f + e−tAu0.( 3.8)

It follows from ( 3.5) that u ∈ E1. Clearly, u solves the Cauchy problem ( 3.1). Therefore,
( d
dt

+ A, γ ) maps E1 onto E0. It is easy to see that this mapping is an injection. The
assertion follows now from ( 3.7) and the open mapping theorem. �

R e m a r k s 3.3. (a) Theorem 3.2 shows that the Cauchy problem ( 3.1) admits a (unique)
solution u ∈ E1(R

+), provided (f, u0) ∈ E0(R
+) × (X0, X1)µ−1/p,p. It follows from

Proposition 3.1 that u enjoys the additional regularity

u ∈ BUC(R+; (X0, X1)µ−1/p,p) ∩ C((0, ∞); (X0, X1)1−1/p,p).( 3.9)
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This shows that u(t) has, for every t > 0, more regularity than the initial value u0. It is
important to observe that this regularizing effect cannot be obtained in the usual setting of
Lp-maximal regularity.

(b) The maximal regularity results of this paper can be used to establish existence and
uniqueness of solutions for quasilinear parabolic evolution equations

u̇ + A(u)u = f (u), u(0) = u0,( 3.10)

under the assumption that there exists a pair of Banach spaces (X0, X1), with X1 densely
embedded in X0, such that the nonlinear mappings (A, f )

(A, f ) : (X0, X1)µ−1/p,p → L(X1, X0) × X0( 3.11)

are locally Lipschitz-continuous, and such that

A(v) ∈ MRp(X0), v ∈ (X0, X1)µ−1/p,p .( 3.12)

To be more precise, one can construct a unique solution u in the function space E1([0, T ])
for initial values u0 ∈ (X0, X1)µ−1/p, provided T = T (u0) is sufficiently small. The
solution has the additional regularity properties stated in equation ( 3.9), where R

+ is of
course to be replaced by [0, T ]. In addition, one can show that the quasilinear equation
( 3.10) generates a semiflow in the natural phase-space (X0, X1)µ−1/p,p, and one can
develop a geometric theory which parallels the theory for ordinary differential equations.
We refrain from giving more details here, as the proofs are similar to the case of Lp-maximal
regularity, see for instance Prüss [8].

(c) Our results on maximal Lp,µ-regularity give more flexibility in dealing with quasi-
linear and semilinear problems, as compared to the ‘classical’ case where µ = 1. To be
more precise, we have the liberty to work in phase-spaces with little regularity, the only
requirement being that the nonlinear mappings A and f satisfy assumption ( 3.11). This
is an important feature for questions related to global existence of solutions, for it allows
one to look for a-priori estimates in ‘weaker’ norms. Moreover, we have the extra benefit
that solutions regularize. This property, in turn, is very helpful for questions related to
qualitative properties of solutions, such as the study of ω-limes sets.

4. The derivation operator. In this section we assume that X is a Banach space of
class HT . By definition this means that the vector-valued Hilbert transform is bounded in
Lq(R; X) for some q ∈ (1, ∞). It is then well-known that the operator D = d/dt with
domain 0W

1
p(R+; X) admits an H∞-calculus on X, see for instance Prüss [7]. Here we

show that this is also true for the weighted spaces Lp,µ provided that 1/p < µ.
Let us first introduce some notation. Suppose that A is a closed, linear, and densely

defined operator on a Banach space X. Then we denote by N(A) and R(A) the kernel and
the range of A, respectively. The operator A is called sectorial if

• N(A) = 0 and R(A) is dense in X,
• (−∞, 0) ⊂ ρ(A) and ‖t (t + A)−1‖ � M for t > 0,
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where ρ(A) is the resolvent set of A. The set of all sectorial operators in X will be denoted
by S(X). If A ∈ S(X) then there is some ψ ∈ (0, π) such that the sector 
π−ψ = {z ∈ C,

z �= 0, | arg(z)| < π − ψ} is contained in ρ(−A), and there is a positive constant Mψ such
that

‖λ(λ + A)−1‖L(X) � Mψ, λ ∈ 
π−ψ.( 4.1)

The spectral angle φA of A is defined as the infimum of all angles ψ such that ( 4.1) holds.
We will now consider the derivation operator Dµ defined in ( 2.1). Thanks to

Proposition 2.2 the operator

D̄µ := �µDµ�−1
µ , D(D̄µ) := 0W

1
p(R+; X),( 4.2)

which acts on the function space Lp(R+; X), is well-defined. It follows from ( 2.2) that

D̄µ = D1 + B, where (Bv)(t) := −(1 − µ)v(t)/t.( 4.3)

Observe that D̄µ and Dµ coincide if µ = 1. Moreover, note that Dµ in Lp,µ(R+; X)

is similar to D1 + B in Lp(R+; X). It follows from equation ( 2.3) that B is relatively
bounded with respect to D1, with bound smaller than 1, provided (1 − µ)p′ < 1, i.e. for
1 � µ > 1/p. It is now easy to see that the operators Dµ and D̄µ share the following
properties.

Proposition 4.1. Suppose 1 < p < ∞ and 1/p < µ � 1. Then

(i) D̄µ is closed and densely defined in Lp(R+; X). Moreover, N(D̄µ) = 0 and R(D̄µ)

is dense in Lp(R+; X).
(ii) Dµ is closed and densely defined in Lp,µ(R+; X). Moreover, N(Dµ) = 0 and R(Dµ)

is dense in Lp,µ(R+; X).

P r o o f. (i) It is well-known that the linear operator D1 has all the properties listed in the
proposition. Since B is relatively bounded with respect to D1 with relative bound strictly
smaller than 1, we obtain from ( 4.3) that D̄µ enjoys the same properties, see for instance
[5, Section 1.3].

(ii) The assertions in (ii) follow from (i) by employing the isomorphism �µ. �

In the sequel we take the liberty to work with Dµ and D̄µ interchangeably, that is, we
will use the representation that is the most convenient one.

R e m a r k 4.2. It is well-known that the operator −D1 generates a positive C0-semigroup
{T (t) : t ∈ R

+} of contractions on Lp(R+; X) which is given by

[T (t)u](s) :=
{

u(s − t) if s > t, o

0 if s < t .
( 4.4)

This implies the resolvent estimate

‖(λ + D1)
−1‖L(Lp(R+;X)) � 1

Reλ
, Reλ > 0.
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However, note that {T (t) : t ∈ R
+} does not induce a C0-semigroup on Lp,µ(R+; X) for

µ < 1, as T (t) does not map Lp,µ(R+; X) into Lp,µ(R+; X) for t > 0. Nevertheless, we
can show that Dµ admits the resolvent estimate

‖(λ + Dµ)−1‖L(Lp,µ(R+;X)) � cp,µ

Reλ
, Reλ > 0,

for some positive constant cp,µ (which necessarily must be strictly greater than 1).

We begin with a useful auxiliary result.

Lemma 4.3. Let 1/p < µ � 1 and suppose that k ∈ L1(R
+; L(X, Y )) satisfies

|k(t)| � κ(t), where κ ∈ L1(R
+) is nonnegative and nonincreasing, and where Y is a

Banach space. Then we have

(i) ‖
t∫

0
k(t − s)(t/s)1−µv(s)ds‖p � cp,µ‖κ‖1‖v‖p for v ∈ Lp(R+; X), where cp,µ =

21−µ[1 + (1 − p′(1 − µ))−p/p′
]1/p.

(ii) The convolution operator K := k∗ belongs to L(Lp,µ(R+; X), Lp,µ(R+; Y )) and
‖K‖ � cp,µ‖κ‖1.

P r o o f. (i) Let v ∈ Lp(R+; X) be given. Then Hölder’s inequality implies∥∥∥∥∥∥
t∫

0

k(t − s)(t/s)1−µv(s)ds

∥∥∥∥∥∥
p

p

�
∞∫

0




t∫
0

κ(t − s)(t/s)1−µ|v(s)|ds




p

dt

�
∞∫

0




t∫
0

κ(t − r)r−p′(1−µ)dr




p/p′

tp(1−µ)

t∫
0

κ(t − s)|v(s)|pdsdt

=
∞∫

0

|v(s)|p



∞∫
s

tp(1−µ)κ(t − s)




t∫
0

κ(t − r)r−p′(1−µ)dr




p/p′

dt


 ds

� c
p
p,µ‖κ‖p

1 ‖v‖p
p,

as the following estimates show. On the one hand, we have

∞∫
s

tp(1−µ)κ(t − s)




t∫
t/2

κ(t − r)r−p′(1−µ)dr




p/p′

dt

� 2p(1−µ)

∞∫
s

κ(t − s)




t∫
t/2

κ(t − r)dr




p/p′

dt

� 2p(1−µ)‖κ‖1+p/p′
1 = 2p(1−µ)‖κ‖p

1 .
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Since κ(t) is nonincreasing and (1 − µ)p′ < 1 we have, on the other hand,

∞∫
s

tp(1−µ)κ(t − s)




t/2∫
0

κ(t − r)r−p′(1−µ)dr




p/p′

dt

�
∞∫
s

tp(1−µ)κ(t − s)


κ(t/2)

t/2∫
0

r−p′(1−µ)dr




p/p′

dt

= (1 − p′(1 − µ))−p/p′
2p(1−µ)

·
∞∫
s

(t/2)p(1−µ)κ(t − s)[κ(t/2)(t/2)1−p′(1−µ)]p/p′
dt

= (1 − p′(1 − µ))−p/p′
2p(1−µ)

∞∫
s

κ(t − s)[κ(t/2)(t/2)]p/p′
dt

� (1 − p′(1 − µ))−p/p′
2p(1−µ)‖κ‖p

1 .

Note that the last inequality follows from

κ(t/2)(t/2) =
t/2∫
0

κ(t/2) dτ �
t/2∫
0

κ(τ) dτ � ‖κ‖1,

where we have once more used that κ is nonincreasing.
(ii) We conclude from (i) that

‖Kv‖Lp,µ =



∞∫
0

t (1−µ)p|Kv(t)|pdt




1/p

=



∞∫
0

∣∣∣∣∣∣
t∫

0

k(t − s)(t/s)1−µs1−µv(s)ds

∣∣∣∣∣∣
p

dt




1/p

� cp,µ‖κ‖1‖s1−µv‖p = cp,µ‖κ‖1‖v‖Lp,µ ,

and the proof of Lemma 4.3 is complete. �

Proposition 4.4. Let 1/p < µ � 1. Then the resolvent set ρ(Dµ) contains the open
negative half-plane C− = −
π/2, and the estimate

‖(λ + Dµ)−1‖L(Lp,µ(R+;X)) � cp,µ

Re λ
, Re λ > 0,( 4.5)

holds. In particular, Dµ is sectorial in Lp,µ(R+; X) with spectral angle φDµ = π/2.
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P r o o f. (i) Let λ ∈ C with Reλ > 0 be fixed and set

(Kλf )(t) :=
t∫

0

e−λ(t−s)f (s) ds, f ∈ Lp,µ(R+; X).( 4.6)

Moreover, let κ(t) := e−tReλ. Then Kλ satisfies the assertions of Lemma 4.3, with
‖κ‖1 = 1/Re λ. Consequently, Lemma 4.3 shows that Kλ is a bounded linear operator
in Lp,µ(R+; X), and that

‖Kλ‖L(Lp,µ(R+;X)) � cp,µ

Re λ
.( 4.7)

(ii) We verify that (λ+Dµ) : D(Dµ) → Lp,µ(R+; X) is invertible for any Reλ > 0, with

[(λ + Dµ)−1f ](t) =
t∫

0

e−λ(t−s)f (s) ds, f ∈ Lp,µ(R+; X).( 4.8)

Indeed, let f ∈ Lp,µ(R+; X) be given and recall that Lp,µ(R+; X) is embedded in
L1,loc(R

+; X). It is then not difficult to see that the differential equation
(

λ + d

dt

)
u = f, u(0) = 0,

has a unique solution u = uλ in W 1
1,loc(R

+; X). It is given by the right-hand side of
equation ( 4.8). It remains to show that uλ ∈ D(Dµ). For this we note that uλ = Kλf

and u̇λ = f − λKλuλ. Hence we obtain from (i) that uλ as well as u̇λ belong to the
space Lp,µ(R+; X). Since uλ(0) = 0 we conclude that uλ ∈ D(Dµ), and this establishes
equation ( 4.8). We have shown that ρ(Dµ) contains C−, and the resolvent estimate ( 4.5)
is now a direct consequence of ( 4.7)–( 4.8).

(iii) Let ψ ∈ (π/2, π) be fixed. One readily verifies that

Re λ � |λ|| cos ψ |, λ ∈ 
π−ψ.

It then follows from ( 4.5) that equation ( 4.1) is satisfied for any ψ ∈ (π/2, π) and we con-
clude that φDµ � π/2. φDµ can, on the other hand, not be strictly smaller than π/2, as this
would imply that Dµ generates a (strongly continuous analytic) semigroup on Lp,µ(R+; X),
which is ruled out by Remark 4.2. The assertion follows now from Proposition 4.1. �

The next result shows that Dµ admits an H∞-calculus with H∞-angle π/2, provided X

is a Banach space of class HT .

Theorem 4.5. Let p ∈ (1, ∞) and 1/p < µ � 1. Suppose that X is of class HT . Then
Dµ admits an H∞-calculus in Lp,µ(R+; X) with H∞-angle φ∞

Dµ
= π/2.
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P r o o f. Let φ > π/2 be fixed and let h ∈ H∞
0 (
φ) be given, where H∞

0 (
φ) denotes
the set of all bounded holomorphic functions g ∈ H∞(
φ) such that there are positive
numbers c and α with

|g(z)| � c
|z|α

1 + |z|2α
, z ∈ 
φ.

Then h(Dµ) is well-defined as a Dunford integral

h(Dµ) = 1

2πi

∫
�

h(λ)(λ − Dµ)−1 dλ

with � being the contour � = (∞, 0]eiψ ∪ [0, ∞)e−iψ for a fixed ψ ∈ (π/2, φ). It follows
from ( 4.8) that h(Dµ) is also represented by the convolution

[h(Dµ)v](t) =
t∫

0

Kh(t − s)v(s)ds, t > 0,( 4.9)

where the kernel Kh belongs to C((0, ∞)) ∩ L1(R
+) and is given by the inverse Laplace-

transform of h,

Kh(t) = 1

2πi

∫
�

h(λ)eλtdλ, t > 0.

To prove the assertion we have to estimate this convolution in Lp,µ(R+; X), i.e. we have
to prove an inequality of the form∥∥∥∥∥∥

t∫
0

Kh(t − s)(t/s)1−µv(s)ds

∥∥∥∥∥∥
p

� Cφ‖h‖∞‖v‖p( 4.10)

for v ∈ Lp(R+; X) and h ∈ H∞
0 (
φ), with a constant Cφ independent of h. This will

be done by comparing h(Dµ) with the functional calculus of D1 in Lp(R+; X), which is
well-known to be bounded since X is of class HT ; see e.g. Prüss [7]. So we know that
there is a constant Mφ independent of h such that

‖h(D1)v‖p =
∥∥∥∥∥∥

t∫
0

Kh(t − s)v(s)ds

∥∥∥∥∥∥
p

� Mφ‖h‖∞‖v‖p( 4.11)

for any v ∈ Lp(R+; X) and h ∈ H∞
0 (
φ). One easily verifies that

�µh(D)�−1
µ = 1

2πi

∫
�

h(λ)�µ(λ − D1)
−1�−1

µ dλ

= 1

2πi

∫
�

h(λ)(λ − (D1 + B))−1 dλ = h(D1 + B).
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Consequently,

(Thv)(t) := [h(D1 +B)−h(D1)]v(t) =
t∫

0

Kh(t − s)[(t/s)1−µ − 1]v(s)ds,( 4.12)

where v ∈ Lp(R+; X). Observe that

|Kh(t)| � ‖h‖∞
π

∞∫
0

etr cos ψdr � Cφ‖h‖∞
t

, h ∈ H∞
0 (
φ).

Therefore, the kernel Kh satisfies the assumptions of Proposition 2.3 and we conclude that
Th ∈ L(Lp(R+; X)) with

‖Th‖L(Lp(R+;X)) � c(p, µ, φ)‖h‖∞, h ∈ H∞
0 (
φ),

where the constant c(p, µ, φ) does not depend on h. We can now conclude that Dµ has an
H∞-calculus and that the H∞-angle is less or equal to π/2. It is clear that the angle cannot
be strictly smaller than π/2 and this completes the proof. �

R e m a r k 4.6. We restricted our attention to the case 1/p < µ � 1. All results of this
section are also valid for µ > 1. They are, in fact, obvious in this case.
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