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Abstract. It is shown, in particular, that L ,-realizations of general elliptic systems on R” or on
compact manifolds without boundaries possess bounded imaginary powers, provided rather mild
regularity conditions are satisfied. In addition, there are given some new perturbation theorems for
operators possessing a bounded Hy,-calculus.

0. Introduction. It is the main purpose of this paper to prove — under mild
regularity assumptions — that L ,-realizations of elliptic differential operators acting
on vector valued functions over R” or on sections of vector bundles over compact
manifolds without boundaries possess bounded imaginary powers. In fact, we shall
prove a more general result guaranteeing that, given any elliptic operator .4 with
a sufficiently large zero order term such that the spectrum of its principal symbol
is contained in a sector of the form Sy, :={z € C; |argz| < 6y} U {0} for some

8 € [0, ), and given any bounded holomorphic function f : .§’9 — C for some
0 € (p, ), we can define a bounded linear operator f(A) on L,, and an estimate
of the form

1D, < cllfllo

is valid. This means that elliptic operators possess a bounded H,-calculus in the
sense of McIntosh [16]. Choosing, in particular, f(z) := z'‘ for ¢ € R, it follows
that 4 possesses bounded imaginary powers (cf. Section 2 below for more precise
statements).

There are two main reasons for our interest in this problem. First, it is known
(cf. [22], [24]) that the complex interpolation spaces [E, D(A)] , coincide with the
domains of the fractional powers A° for 0 < 8 < 1, provided A is a densely defined
linear operator on the Banach space E possessing bounded imaginary powers. Sec-
ond, by aresult of Dore and Venni [10], the fact that A possesses bounded imaginary
powers is intimately connécted with ‘maximal regularity results’ for abstract evolu-
tion equations of the form & + Au = f(t). Both these results are of great use in the
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functional analytic approach to quasilinear parabolic evolution equations and, in par-
ticular, in applications of this theory to quasilinear parabolic systems. In this context
it is important that we can handle elliptic operators whose coefficients possess little
regularity only (cf. [2]).

Complex powers of elliptic operators on compact manifolds without boundaries
have first been studied by Seeley [20] (also cf. [23] and the references given there).
In [22] Seeley proved that L ,-realizations of elliptic boundary value problems possess
bounded imaginary powers (also see [21] for some corrections). This latter result has
been extended in [9] to guarantee a bounded H,,-calculus. All these authors work in
the C*-category.

In [19] it has been shown that a scalar second order elliptic operator on R possesses
bounded imaginary powers, provided the top-order coefficients are Holder continuous
and asymptotically constant. In addition, these authors also consider the case of
the Dirichlet problem on a bounded domain. Their approach relies on a general
perturbation theorem and on commutator estimates. By means of an abstract result
of Coifman and Weiss [4] it is possible to prove that second order elliptic operators
under the usual coercive boundary conditions possess bounded imaginary powers
in L, under rather weak regularity assumptions for the coefficients. However, this
method is restricted to second order operators and it does not give the optimal estimate
as far as the angle 0 is concerned. Estimates which are (almost) optimal in this sense
are, however, important for applying the Dore-Venni theorem.

Our approach is completely different and closer, in spirit, to Seeley’s original proof,
since it relies on the theory of pseudo differential operators. As we are interested
in weak regularity assumptions we have to deal with pseudo differential operators
with nonsmooth symbols depending, in addition, upon parameters. For this we
appropriately modify the technique of symbol smoothing of Kumano-go and Na-
gase [12].

The main results of this paper concerning elliptic systems are contained in Sections
9 and 10 below. In Section 9 we deal with elliptic systems on all of R*, where
we generalize considerably the corresponding results of [19]. Observe that in the
latter section we also prove a generation theorem for analytic semigroups which
seems to be new in the given generality. In particular, it suffices that the top-order
coefficients are uniformly continuous without any additional conditions at infinity.
In order to guarantee that our elliptic operators possess a bounded H,-calculus we
have to require that the top-order coefficients satisfy a suitable Dini condition. This
is trivially true if they are uniformly Holder continuous. In Section 10 we prove the
corresponding results for elliptic systems on compact manifolds without boundaries.

Our approach extends to more general elliptic pseudo differential operators, whose
symbols belong to the classes used in this paper. This is of interest since it is known
that, in general, an elliptic pseudo differential operator can have bounded imaginary
powers without possessing a bounded Hu-calculus. However, since this paper is
already rather long and technical, we do not include this generalization. We also do
not consider the case of elliptic boundary value problems. This problem will be dealt
with elsewhere.
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Lastly, it should be pointed out that the question remains if general elliptic operators
possess a bounded Hy-calculus (or bounded imaginary powers) under the same weak
regularity hypotheses for the top-order coefficients which guarantee the resolvent
estimates. :

Notations and conventions. Throughout this paper vector spaces are over C, in
general. If E and F are Banach spaces, L(E, F) is the Banach space of all bounded
linear operators from E to F, and L(E) := L(E, E). We denote by Lis(E, F) the
open subset of all isomorphisms in L(E, F), and Laut(E) := Lis(E, E). If E is a
vector subspace of F such that the natural inclusion x > x belongs to L(E, F), that
is, if E is continuously injected in F, we write E < F. If, in addition, E is dense

in F, this is denoted by E i) F. Lastly, E = F means that E <> F and F < E
so that E and F coincide, except for equivalent norms.

Given a nonempty subset M of some vector space, M := M\{0}. We often
write [...] for {x € X ; ...}, where ... stands for definitions and relations, pro-
vided it is clear from the context which set X is being considered. For example,
[largz| < ¥]:={z € C; |argz| < 9 ). If A is a linear operator in E, we denote its
domain by dom(A), its resolvent set by p(A), and its spectrum by o (A).

‘We denote by ¢ various constants which may differ from occurrence to occurrence
but are always independent of the free variables of a given formula. If ¢ depends on
additional constants «, B, ..., we sometimes indicate this by writing c¢(e, 8, .. .).

1. Operators of positive type. In this section we prove some simple qualitative
estimates and perturbation results for operators of positive type. Itis the main purpose
of these considerations to show that the bounds do not depend upon the particular
operators but only upon two constants appearing in the resolvent estimate. This fact
will be crucial in later sections.

Let E be a Banach space. Given K > 1 and ¢ € [0, 7), a linear operator A in E
is said to be of type (K, ), in symbols:

AePK,¥) =PE;K,9),
if it is densely defined, if
Sp :=[|argz| < ¥JU{0} C p(—4),

and if
A+DIC+AT <K, rels. (1.1)
Put
P@) =PE;?) = JPK&,»

K>1

and note that, trivially

PK,v) CP(L,0), 1<K<L, 0=6<?%<m. (1.2)
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We say that A is of positive type if it beiongs to
P :="P(E):=P(E;0).

Suppose that K > 1 and 0 < ¢ < 7, and that A € P(K, ¥#). Given Ay € Sy and
X € C satisfying

A — Aol = (14 12])/2K), (1.3)
it follows from A + A = (Ao + A) (1 + (A — Xo) (ko + A)7!) that A € p(—A) and

10+ A7 < [T+ 0= 20)Go+ A7 1o + A7
2K _ 2K 1+ Aol + [A — Aol

<
T 14l T 14 A 1+ x| (1.4)
2K 1 2K +1
< 14 —) = .
_1+|A|<+2K> Y
Let
T — 1
Vg =170 + /\arcsmﬁ (1.5)

and note that
p(—=4) D [ J [IA = Aol < 0l/(2K)] D S5, -

M ESy

Hence it follows from (1.4) that
PK,v) CPQK +1,7k) . - (1.6)

In particular, P(K,0) C P(2K + 1, arcsin(1/(2K))). Thus, in the following, we
always assume without loss of generality that ¢+ € (0, ).

The following lemma shows that P is stable under suitable additive perturbations.
Here and in the following,

s(t?):zl-l—@(z?——yt/Z)[ﬁ_—l], 0<® <m,

where ®(¢) ;= 1fort > 0,and ®(¢) :=0fort <O.

Lemma 1.1. Suppose that A € P(K, ©) for some K > 1 and ¥ € (0, m).
(1) If B is a linear operator in E satisfying dom(B) D dom(A) and

IBO+A<Bp<1, AreSy, 1.7

then A+ B € P((1 — B)7K, ).
(i) n+ A e P(Ks®), ) for u=0.

Proof. (i) It follows from (1.7) that 1 + B(A + A)~! € Laut(E) and

It+Br+a" ) |<a-p".
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Thus we deduce from
A+A+B=[1+BO+A+A) (1.8)
that Sy C p(—(A + B)) and
104+ A+B = A=p IO+ A7, res,.
Now the assertion is obvious.

(i1) This is a consequence of the fact that A €.y implies |\ + LLI = I)»I sin(mw — o)
ifr/2<® <m,and A4+ p| > |Aif0<?¥ <m/2.0

Remarks 1.2. (a) Let A € P(K, ¢) for some K > 1 and ¢ € (0, 7). Put

Ey = E1(A) := (dom(A), |A-]]) .

Then E; is a Banach space such that E4 i) E, .= E. Since
AQ+ AT =1-20+4A)7,
it follows that (A + A)~! € L(Ey, E;) and that
104 A e@ey <1+K, ey, (1.9)
Hence Lemma 1.1 implies A + B € P((1 — B)~K, ©), provided B € L(E}, Eo)
and ||BI| < B/(1 + K).

(b) Suppose that @ € [0, 1) and let ¥, be an exact interpolation functor of expo-
nent o, if « > 0 (e.g., [3] or [24]). Put E,, := E,(A) := F(Ey, E1) if > 0. Then
E{ <> Ey <> Ey, and (1.1) and (1.9) imply

1O+ A emory < A+HEA+ D, reSy. (1.10)
Suppose that B € L(Ey, Ep). Then
IBO+p+ A7 <@+ IBIA+R+u)",  2reS, w=0.

IfO0<v <m/2then A4+ u|>pw, and |A 4 p| > psin(wr — ) if 7/2 < ¢ < 7.
Hence, given B € (0, 1), we see that [|[B(A+ 1+ A)7Y| < 8 < 1, provided

e [(LEEE 0 )

where £ :=t Vv O fort € R. Thus Lemma 1.1 implies

p+A+BeP(1—-B) " 'Ks@®), )
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for & > po. O

2. Heo-calculus and perturbation theorems. This section is the center-piece of
the abstract part of this paper. First we review some basic facts about the H.,-calculus
as introduced by McIntosh (cf. [16]; for other approaches we refer to [5], [6]). Then we
prove some perturbation theorems for operators possessing a bounded H,,-calculus.

Given ¢ € (0, 7), we denote by H,, () the Banach algebra of all bounded holo-
morphic functions f : §7r__1y — C, equipped with the supremum norm. We also write
H () for the set of all g € Huo (1) such that there exist ¢ > 0 and s > 0 with

CIZlS o
lg(@)| = TF P Z € Sp_y . 2.1)

Let K > 1 and ¢ € (0, 7), and denote by I := I'(K, ) the negatively oriented
boundary of Sy, U[|z] < 1/(2K)]. Also put —T" := [—X € I'] so that —I" is the
positively oriented boundary of S,_y, N [|z] > 1/(2K)]. Then, given A € P(K, ¥)
and g € H(¥?), it follows from (1.3)—(1.6) that

_ ! g L -
s =5 [senora o= [ smo-n7a ey

is a well-defined element of L(E). By Cauchy’s theorem, I"' can be replaced by
I'(K1,®) forany K; > K. Put h(z) := z(1 4+ z)~2 and let

FA) =[] (fFRA),  feHo@), APK,).
It has been shown by McIntosh [16] that f(A) is a well-defined linear operator in E
and that this definition is consistent with the earlier one for f € H(¢). In fact,
the definition of f(A) can even be extended to encompass unbounded holomorphic
functions, and the resulting ‘holomorphic function calculus’ is uniquely determined
by the requirement f;(A) = idg and f;(A) = Aif fy = 1 and f; = id¢. Inparticular,
F(A) = A" for AeP and fQ)=r"', teR,

where A? are the well-known ‘fractional powers’ of A (e.g., [13], [14], [15], [24]).
Note that, in general, f(A) is not bounded, even if f € Hy ().

Given M > land® € (0, ), we say that A has abounded H,,-calculus and write
provided A € P(¢) and f(A) € L(E) with

IfMllecer =M flle f € Heo(9) . (2.3)
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Moreover, :
Hoo(#) 1= Hoo(E; 9) i= |_] Hoo(M, D) .
M=>1
Note that
AeHoM,®) = A<M eR, (24
thanks to

. ]
Mztl — e——targl < e(rr——l?)]t] , A e S,-,_Iy ’ teR .

Hence an operator of positive type has bounded imaginary powers if it possesses a
bounded Hy-calculus. It is known that the converse is not true.

The following lemma shows that in order to prove (2.3) it suffices to establish
that estimate for g € H (). Thus in deriving estimates for g(A) we can deal with
absolutely convergent Dunford-Taylor type integrals, which greatly simplifies our
problem.

Lemma 2.1. There exists k > 1 such that the following is true. if A € P(%) and
there is M > 1 such that

el =Mlgleo , g€ H@), (2.5)

then A € Heo(k M, ¥).
Proof. Following [9] we pick g € H () satistying f0°° g(t)dt/t =1 and put

i 0 .

g (@) :=/ gt de/t, 7€ 859, JjeN,
1/

Then g; € H (V) and there exists « such that [ g;]| < « for j € N. Moreover, it is

easily seen that g; — 1 as j — oo, uniformly on each one of the sets

[e<l|z|<1/e]NSrp, O<e<l. (2.6)

Thus, given f € Hoo(?), it follows that f; := fg; € H(®), that || filleo < & || Fllco»

and that f; — f as j — oo, uniformly on each one of the sets (2.6). Since, thanks
to (2.5),

IIfj(A)IIL(E)SM“fjHooSKMllflloo , jeN,
we deduce from [16] that f(A) € L(E) and || f(A)|lzey < kM || fllgo- O

On the basis of this lemma it is now easy to establish a number of important
perturbation theorems. Throughout the remainder of this section « denotes a fixed
constant satisfying the assertion of Lemma 2.1.
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Lemma2.2. Let F beaBanachspace, let A and B be densely defined linear operators
in E and in F, respectively, and let C € L(E, F) and D € L(F, E). Suppose that
Sy C p(—A) N p(—B) and

O+B)t=co+A)7'D, reSy. 2.7)

Also suppose that A € P(E; K, ). Then
(1) B € P(F; K1, 0) with K; .= ||C|| ||D|| K.
(1) If A € Hoo(E; M, 9) then B € Hoo(F; My, V) with My .=« ||C|| | D|| M.

Proof. (i) Obvious.
(1) If A € Hoo(E; M, 9), it follows that (2.5) is true. From (2.2) and (2.7) we
see that :

1
8(B) = o /F §(-NCO+A)Ddr = CgA)D,  geH).

Hence ||g(B)llzcey < ICII ID]l M || gl for g € H(P). Now the assertion is a con-
sequence of Lemma 2.1. O

Observe that Lemma 2.2 implies, in particular, that P (1) and H (¥%) are invariant
under similarity transformations.

Next we prove a simple ‘splitting lemma’ which will greatly simplify our proofs
that a given operator of positive type has a bounded H-calculus.

Lemma 2.3. Suppose that A € P(K, ¥) and
A+ A)T=RO)+ S0, rel:=T(K,9), (2.8)
and put Rg(L) 1= g(—A)R() for » € T and g € H(¥). Also suppose that
Ry, S € Ly(T, ds, L(E))

and
IRellz, = Miglloo > g€ H®), (2.9)
ds denoting the ‘arc-length measure’. Then A € H (/c (M + ||Siz,), 79).

Proof. It follows from (2.2) and (2.8) that

1 1
g(A) = E‘[‘Rg(k)dk+ﬁﬁg(—k)3(l)dk, gEH@).

Thus we infer from (2.9) that ||g(A) ||y < (M + ||S|Iz,) lIglloo for g € H (), and
Lemma 2.1 implies the assertion. O

As a first application of this splitting lemma we show that H,(?) is invariant
under suitable ‘lower order perturbations’.
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Theorem 2.4. Supposethat A € P(K,¥)NHeo (M, 9) and0 < B <1 FixKi>K
and put R(A) .= A+ A)"land T .= l"((l - Bk, 19) Let B be a linear oper-
ator in E satisfying
(1) dom(B) D dom(A),
@) BRI =B <1forreSy;
({{i) |RBR| Ly ds,cg)y < 0 < 00.
Then A+ B € HOO(K(M + (1 - ,B)_IO’), 19).

Proof. Lemma 1.1 implies A + B € ’P((l - Bk, 19). From (1.8) we deduce that
(A+A+B)"1=RM) + SO) for A €T, where S = —RBR[1+ BR]™!. Hence
(ii) and (iif) imply

SeL(T,ds, L(E)) and [S]|z, <1 —pB)"lo.

Now the assertion follows from Lemma 2.3 and the fact that I' (K, ©) can be replaced
by I'((1 — B)"'Ky, 9). O

Corollary 2.5. Suppose that A € P(K, %) N Hoo(M, ). Then, given v > 0, there
exists N such that

pn+AeHoN, D), O<wm=v.

Proof. Fix ;1 > Oand put A;:= w; + A. Then Lemma 1.1 implies A; e P(K7, )
with K := Ks(¢). Suppose that A| € Hqoo (M, ¥) for some M; > 1. Note that this
is true if w; = 0.

Assume that 0 < u < 1/(6K1) =: vy, put B := ulg and R{(A) := *+ Al)_l,
and letI'y :=I"(2K7, ©). Then (1.3) and (1.4) imply || R;(A)|| < 3K;(1 + AD~! for
A €I'1. Hence B satisfies (i)—(iii) of Theorem 2.4 with g := 1 /2 and o := 2K/ p,
where p is the L;(T'1, ds)-norm of (1 + |-|)~2. Thus, thanks to Theorem 2.4,

ptpur+A=u+A; € Hoo(Ms, ),

where M, := k(M; 4+ 20). Now the assertion follows by induction starting with
w1 =0, since v can be reached in finitely many steps of length at most v;. O

The following perturbation theorem will be of particular importance in apphca—
tions. Here we again use the notations of Remark 1.2(b).

Theorem 2.6. Supposethat A € P(K, %) N Heo(M, ¥). Also supposethata €[0, 1)
and that §y is an exact interpolation functor of exponent a, if @ > 0. Lastly, let
B € L(E, Ey) and put

1—
ws = [(5Ks@) I1B])" ™ —1], .
Then there exists a constant N > 1 such that up + A + B € Hoo (N, D).

Proof. Suppose first that 8 := 4K || B|| < 1. Then, letting R(A) := (A + A)~!, we
deduce from (1.3)—(1.5), similarly as in (1.9) and (1.10), that

A+ D NRMW oy 4K, AeD:=T(1—p)'K, ).
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Hence |BR(A)|| <4K ||Bll=B < 1forA e " USy and
IRGIBRM|| < 16K ||B|| (1 + [r[)*7?
for A € I". Now Theorem 2.4 implies A + B € Ho (N, ©) for some N > 1. Since
s(%) = 1, this proves the assertion if g = 0.

Suppose now that p:= g > 0 and put f:= % andI':= F((l — B IKs(), 19).
Alsolet Ag := p + A and Ro(X) := (A + Ao)~!. Then (1.4) implies

1R < K+ 3Ks(@)
I+A+ul = 1T+p

) AeTl. (2.10)

Moreover, from ARy(A) =1 — (A + @) Ro(A) and (2.10) it follows that
ARy (M|l <1+2K 4+ 1 <4Ks(?), Ael. (2.11)
Thus, by interpolation,
IRoM ez < 4Ks@)(L +w)* ™ = B/IIB| fork T,

so that
[BRo(M|| <B <1 forrel US;.

Lemma 1.1(ii) implies that Ay € P(Ks(?), ). Hence we deduce from (1.4) that
A+ 2D IRoW) |l < 3Ks(¥) for A € T'. Thus we infer from (2.11) and interpolation
that

IR BRoMI| < [4Ks @] IBI 1+ AD*2, el

Now Theorem 2.4 and Corollary 2.5 entail Ag+ B =up+ A+ B € Ho(P). O

Suppose that A € P(E) and 3§, is a real interpolation functor (-, -),, for some
a € (0,1) and p € [1, co]. Then it has been shown by Dore [8] that A possesses a
bounded Hy,-calculus on E,.

3. Approximation-perturbations. In this section we prove a rather technical
perturbation result, namely Proposition 3.2 below, which will, however, be most
useful in ‘patching together’ differential operators on manifolds from their local
representations. Let E := (E;) be a finite or infinite sequence of Banach spaces. If
x := (x;) € []; E; then put

1
(S 0%)"* . 1<g<oo,

lxle, ey == {
Supj ”xJ“EJ ) g =00.

Then, given g € [1, <],

£,(E) == ({x e TLEs 5 Ixlleymy <00}, I-lleymy)
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is a Banach space. If F := (F;) is a second finite or infinite sequence of Banach
spaces over the same index set, L(E, F) := (L(E;, Fy)). .

Given A = (4;) € £oo(L(E, F)), put Ax := (A;x;) forx = (x;) € E. Then it is
obvious that

A € L(£4(E), £4(F)) (3.1)
and that
1Al 2, By, (7)) < N1 Allew(ccE F) (3.2)
for 1 < g < oco. Moreover, if
Aj e Lis(Ej, F), j=0,1,2,..., (3.3)

it follows that A is bijective and
Aly=@47ly),  y=0peF. (3.4)
Thus
ATl e L(Ly(F), 44(E)), 1<g<oo, (3.5)
by the open mapping theorem.

In the following, we write E < F if E; < F; for each j and

i =(i;) € Loo(L(E, F)),

. L . o d
where i; : E; <> F; is the natural injection. If, in addition, E; < F; for each j, we

write E Ld> F. Itis easily verified that
E—F = {L,(E)—>{,F), 1<g=<o0, (3.6)

and
ESF = £,ESeF), l<g<co. (3.7)

Lemma3.1l. LetK, M > 1land ¥ € (0, ) be given constants. Suppose that E Ld> F
and A € £oo(L(E, F)).
(i) IfA; € P(Fy; K, 0) for each j then A € P(£,(F); K, 9) for 1 <q < o0
(ii) If, in addition, A; € Hoo(Fj; M, ¥) for each j then A € Hoo(Lq(F); kM, )
forl < g < oo and some k > 1.

Proof. It follows from (3.1) and (3.7) that A is densely defined. Now (i) is an easy
consequence of (3.3)-(3.5). The same formulas easily imply that g(A)x = (g(A;)x;)
forx € F and g € H(¥). Now (ii) follows from (3.2) and Lemma 2.1. O

Let E be a Banach space and suppose that

YE,j € L(Ej, E) and ‘l/fE,j (S L(E, Ej) (3.8)
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satisfy
> epjvri=1p  inL(E), (3.9)
J .
where L;(E) is the vector space L(E) equipped with its strong topology. Put
rgx = ZgaE’jxj , x=(x;) ek, (3.10)
7 ,
and
rgx = (Vg jx) , xekE. (3.11)
Note that, thanks to (3.9),
rerg =1g . (3.12)
If there exists g € [1, oo] such that
rg € L(£4(E), E) and r§ € L(E, £,(E)) (3.13)

then (E , (95,7), (WE, j)) 1s said to be an £,-approximation system for E.
Wedenote by [, ‘]u, 0 < @ < 1, the complex interpolation functor of exponent ¢,
and put [X, Y] := X and [X, Y]; := Y whenever (X, Y) is an interpolation couple
of Banach spaces. We also put
[E, Fl, = ([E}, Fila)
and recall that [E, F], = [F, E];_. Also note that
[£4(E), £,(F)], = £,([E, Fla) l<g<oo, (3.14)

(e.g., Theorem 1.18.1 in [24]).
‘We introduce now the following assumption:

(i) E and F are Banach spaces with E < F. )

(i) 1 < g < oo, and (E, (¢5,;), (W5,;)) and (F, (pr.;), (¥F,j)) are
£4-approximation systems for £ and F, respectively, such that

E<SF, ps;Corj andyp; C ).
(iii) A € L(E, F) and A = (4;) € £o(L(E, F)).
(iv) 0 < a < land B € L([E, Fly, £4(F)) such that
VrjA=AjYE;+ B,
where Bjx := (Bx); for j =0,1,2,....
(V) C; € L([E;, Fjla, F) such that Apg ; = ¢r,jA; + Cj.
Moreover, letting
Cx = chjxj , x = (x;) € [E, Fly,
it follows that C € L(£4([E, Fla), F).

Then we can prove the following ‘approximation-perturbation’ result.

L (3.15)
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Proposition 3.2. Let (3.15) be satisfied and let K, M > 1 and © € (0, 7). Suppose
that A; € P(Fj; K, 9) N Lis(E;, Fy) and | A7 || s, 5y < K for each j. Then there
are constants N > 1 and i > 0 such that

@) w+AePF;N,¥)NLS(E, F) and.

I+ Al m + 1+ A7 eEe < N.
(i) u+ A € Heo(F; N, %) if Aj € Hoo(Fj; M, V) for each j.

Proof. It follows from (3.15(ii)) that 7z D rg and r§ D rf,. Hence we can omit the
indices in the following. Then we deduce from (3.13) that

r e L([£4(E), £,(F)] _, [E, Fla) .

Thus
Br e L([£4(E), £,(F)] . £,(F)) . (3.16)

Suppose that A; € P(Fj; K, #) N Lis(E;, F;) for each j. Then it follows from
(3.1), (3.5), and Lemma 3.1 that

A € Lis(L,(E), £,(F)) NP (€,(F); K, 9) . (3.17)

Hence, letting
pp = [(@K |Bri)/* 1] s@),

we deduce from Remark 1.2(b) that
ws + A+ Br e’P(ﬁq(F);ZKs(b‘),f}) . (3.18)
Consequently, (3.13) implies
L+ pug) :=r(A+ug + A+ Br)~'r® € L(F, E) , reSsy.  (3.19)
Note that, thanks to (3.15(iv)) and (3.12),
r‘A+upg+A)=A+ug+Ar°+B=0O+ug+A+ Br)rc. (3.20)
Hence it follows that
Lo+ pp)A+ug+A) =rr =15, rE Sy . (3.21)

From (3.14) and (3.15(v)) we deduce that C € L([£,(E), £,(F)]_, F). Thus, thanks
to (3.13), r°C € L([£4(E), £4(F)],. £4(F)). Consequently, letting

pe = [@K |rec|ie — 1,50,
we infer from (3.17) and Remark 1.2(b) that

A+ pc+A+r°C € Lis(,(E), £,(F)) , A €Sy .
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Hence, thanks to (3.13),
RO+ pe) =r[A+ pc+A+r°Cl7r¢ € L(F, E), resSy. (322
Observe that (3.15(v)) and (3.12) imply
A+pc+Dr=rG+uc+A+C=r+uc+A+rC).
Thus

A+puc+ARA+puc)=rrf=1p, rEeSy . (3.23)

Put pg := wp V pc. Then we infer from (3.19)—(3.23) that Sy C p(—(/luo + A)) and
(A+pmo+ AP =L +p)=RA+up), AreSy.
If A; € P(Fj; K, 9) N Hoo(Fj; M, V) for each j, Lemma 3.1 guarantees that
Ae 'Hoo(liq(F); KM, 19)

for some « > 1. Consequently, from (3.16), (3.17), and Theorem 2.6 we infer the
existence of N > 1 and p > pg such that uw + A+ Br € Hoo(ﬁq(F); N, 19). Note
that (3.12) and (3.20) imply (u + A)~! = r(u + A 4+ Br)~!r°. Hence the assertions
follow from Lemma 2.2. O

4. Finite-dimensional spectral estimates. In this section we derive some easy
technical estimates related to the spectrum of a matrix. In addition, we introduce
spaces of uniformly continuous functions whose continuity is dominated by a given
modulus of continuity. The results of this section will be needed in later sections to
obtain uniform estimates on which we can base perturbation arguments.

Throughout the remainder of this paper we denote by H := (H, |-|) a finite-
dimensional Banach space, and N := dim H.

Lemma 4.1. There exists a positive constant cy such that
la”!| < enlal™1r Y

forallr > Oandall a € L(H) satisfying o(a) C [|z| > r].
Proof. This follows, for example, from Cramer’s rule (e.g., 1.(4.12) in [11]). O

As an easy consequence of Lemma 4.1 we obtain the following quantitative form
of the well-known upper semicontinuity of the spectrum.
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Lemma 4.2. Suppose thatr, M € R* and put
K:=cy@QM+D"""Y and §:=1A1/K)/2.
Then, given a, ag € L(H) satisfying |ag| < M and |a — ag| < 6, it follows that

o(a) C [dist(z, o (ag)) <r].

Proof. Suppose that [A| > M 4 1. Then |a| < lag| + |a —ag| <M+ <M +1
shows that A € p(a). Thus assume that |A| < M -+ 1 and dist(k, a(ao)) > r. Then
Lemma 4.1 implies that |(A — ag)~!| < K. Consequently,

(@ — a)(A —ag) ™' < 6K <1/2,
which guarantees that 1 + (ag — a)(A — ag) ™! € Laut(H). Hence we deduce from
A —a=[1+(a—a)(» —ao) "' 1(A — ao)

that A — a € Laut(H), thatis, A € p(a). O

Of course, the precise form of the constants K and § is of no particular importance.
What is important, however, is the fact that these constants depend upon r and M
only and not upon the individual operators a and ay.

Let w: RT — R* be a modulus of continuity, that is, an increasing function
which is continuous at O and vanishes there, is positive elsewhere, and satisfies
w(2t) < cw(t) for t > 0. Notice that these assumptions imply that for every posi-
tive c{ there exists a positive ¢, so that w(c1t) < cow(t) for ¢ > 0. Then we define
the w-seminorm [a], of a : R* - L(H) by

[a), = sup{ ———"’ag’a)x"_“y(]y))[ s xEy).

‘We denote by
BUC(w) := BUC(R”, L(H); a))

the Banach space of all @ € BUC (IR", L(H )) satisfying
lallcw = llalleo + [ale < o0,

where BUC (IR", L(H )) is the Banach space of all bounded and uniformly continuous
functions from R” to L(H) equipped with the maximum norm || ||e.. Of course, if
w(t) = t? for some p € (0, 1) and all ¢ > 0, we write ||-||c, and BUC? for ||- || ¢
and BUC (w), respectively. Note that BUC (IR”, Laut(H); a)) is the open subset
of BUC(w) consisting of alla € BUC (w) suchthata(x) € Laut(H) foreachx € R™.

Given a smooth function ¥ on R”, we put v (x) := e (¢~ x) for & > 0 and
x € R™. We fix now such a function ¢ which, in addition, is nonnegative, has support
in the unit ball, and satisfies [ ¢ dx = 1. Then { ¢, ; ¢ > 0} is a mollifier.

Using these notations we can prove an invertibility result for mollified L(H)-
valued maps.
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Lemma 4.3. Suppose that eg, M € Rt and w is a modulus of continuity. Then there
exist constants ¢ and k such that, given any

a € BUC(R", Laut(H); w)

satisfying :
lalloo + la ™Moo <M and [al, <k, (4.1)

it follows that g, x a € C®(R", Laut(H)) and

“(qDS*a>_1“ooSCy O<e<egp.
Proof. Note that

0o ¥ a(x) — alx) = / o) [atx — &) — a()] dy

lyl=l

implies
lge *xa — allo < w(e)lale < w(eo)lalw (4.2)

for 0 < ¢ < &. From (4.1) we deduce that cr(a(x)) C[lzl = 1/M] for x € R™.
Hence (4.1), (4.2), and Lemma 4.2 guarantee the existence of « such that [a], < k
implies

o(pexa(x)) Cllzl =1/(M+1)], xeR*, O0<e=<eg.
Now the assertion follows from (4.1) and Lemma 4.1. O

5. Estimates for symbols. Below we derive technical estimates for matrix-valued
symbols, that is, functions from R* x R¥ to £(H), which are positively homogeneous
inthe ‘Fourier variable’ £ € R¥ and possess only little regularity in the ‘space variable’
x € R*. We use a variant of the technique of ‘symbol smoothing’ introduced by
Kumano-go and Nagase in [12] and subsequently applied by Nagase in many papers
dealing with boundedness properties of pseudo differential operators with non-regular
symbols. By a simple trick the results of this section will be applied in Sections 7
and 8 below to the case of parameter-dependent symbols.

Letn, £ € Nbe fixed and put k := n + £. Denote by ¢ := (£, n) the general point
of R¥ = R" x Rf and put

gr=g/gl, e RF

where || is the euclidean norm.
We fix now m, K € R* and a modulus of continuity . Then we assume that

a: IR"XR"—>£(H)
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has the following properties:

e a(,¢) e BUC(w)for¢ e R¥;

e af(x, ") is positively homogeneous of degree m for x € R” ;

o a(x, ) € C™2(R", L(H)) for (x, 1) € R" x R and .1
Qo os* vk
e I3FaC, e <K, £ €RE

Then, given § € (0, 1), we put
as(-, $) = xa(, §), ¢ € R* 5.2)

where ¢ is the function introduced in Section 4.

Lemma 5.1. There exists a constant ¢ such that, given any a: R"* x R¥ — L(H)
satisfying conditions (5.1), it follows that

18238a°C, Dlloo < cK || IHHL ¢ e R,
for la| VBl <n+2.
Proof. Given ¢ > 0, it is obvious that
B, =7 Pl(3P0), . (5.3)
On the other hand,

3o = —ne 1, — 8‘28""ijj8j<p(e”1 )

_ . _ 549
=~ (ng: + (T2 959),) = ¢ (1)
Note that ¢ is smooth on R" and has its support in the unit ball.
Now, letting & := |-|~% and observing
B |t =—87 1172, ¢eRY, 1<j<n, (5.5)
it follows that
3Eja8 = ((pl)H—s *xaj + @ * dgia
where a; := —8a|-|72&/ for 1 < j < n. Note that a; and d¢;a are positively homo-

geneous of degree m — 1in ¢.

Given o € N* with x| < n + 2, by induction it is easily verified that Og (1. * a)
is a finite linear combination of terms of the form /.- * b, where y is a smooth
function on R™ with support in the unit ball, and where b : R* x R¥ — L£(H) is such
that b(x, -) is positively homogeneous of degree m — || and

1BC, ¢ )loo < cK .

Since the coefficients of these linear combinations are independent of a, the assertion
follows. O
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Lemma 5.2. There exists a constant c such that, given any a: R* X R* — L(H)
satisfying conditions (5.1) and

e, sup[8f[ax, ©) — a0y, ]| = Kaollx =) (5.6)

forx,y € R", it follows that

|8g[aC, ) —d®C, O], < cKo(t[P) g™, ¢ eRk,
Sfor |a| <n+2.
Proof. Let e :=|-|~%. Then

b(x, ) = ax, ) —db(x, ) = / e [alx, ) —aGx —y, )] dy
implies

o500 ) = 3) [ o008 fatr, ) — ax -3, 9]y

Bz«

From (5.3) and (5.4) it follows by induction that 85 @e 1s a finite linear combination
of terms of the form e~!Alev/,, where ¢ is smooth on R” with support in the unit ball
and e : R¥ — R is positively homogeneous of degree zero and bounded on || = 1.
Thus 9¢'b is a finite linear combination of terms of the form

|-|71Ple ; 11/f<y>a°‘”'3 [ax, ) —ax =%y, )]dy . (5.7)
y<

Since 8? =P a(x, -) is positively homogeneous of degree m — || + |B]| for x € R"*, we
deduce from (5.6) that (5.7) can be estimated by

cKo(|¢]70) ¢ |mled

for x € R" and ¢ € R¥. Now the assertion is obvious. O

By combining Lemmas 5.1 and 5.2 with Lemma 4.3 we can prove the following
estimates.

LemmaS5.3. Supposethatoy,m, K, K_; € R andthat w is a modulus of continuity.
Then there exist constants k and c such that, given any

a:R* xRF > L(H)
satisfying conditions (5.1), (5.6), a(x,¢) € Laut(H ) for (x, ¢) € R* x R* and

sup la™ ¢, Olloo < K-, (5.8)
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and

sup [a(': ;)]w <k,
[¢l=1

it follows that a® : R" x R¥ — Laut(H) and

i) 18208 (@) (s Dlloo < c |57 IeOIRL | VBl <n+2,
i) [8g (@—a @ ™) O < coe ) 1517, ol <n+2,
i) |og[afa 3/ (@) MC, O] < clg T a4 1Bl <n 2,
() [ogfa™ = @) O < coET g1, el <n+42,

for |¢] > oo,

Proof. Suppose that
be C”+2<R" x R”, Liaut(H)) .

Then, given o, B € N* with |a| V |8| < n 4 2, it is easily verified that Bf 8?!)"1 can
be represented as a finite linear combination of terms of the form

b= (@ ag bbb (B B B)b !,

whereo; + - +a, =cand By + - - - + B, = B with;, B; € N*. Hence (i) follows
from Lemmas 4.3 and 5.1.
Thanks to Leibniz’ rule,

gla—a)@) =) (5ol @—adf @),

Y=«

Hence (ii) is a consequence of (i) and Lemma 5.2.
Again by Leibniz’ rule,

8¢ [0fa 08a®) ] = (of asloy V@) .

y=a

Therefore we infer (iii) from (i) and the fact that 85 ais positively homogeneous
of degree m — || — |y|in ¢ € R,
Lastly, note that
a—l o (aB)—l — a—l(aB . a)(a8>—1

and that a~! is positively homogeneous of degree —m in ¢ € R¥. Thus assertion (iv)
is an easy consequence of Leibniz’ rule and (ii). O

We fix now 6y € [0, 7) and suppose that

b: R - L(H)
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has the following properties:

e bis positively homogeneous of degree m ;
o b(,m e C?(R", L(H)) forn e RY;

o o (b(t®) C S forf e RF; (5.9)
e max sup |dg¢b + sup b7} <K.

We also suppose that 6y < 6 < 7 and that there exists ¢ > 0 such that

g: 8 > C (5.10) \

is holomorphic and satisfies

|z|° g(z) > O as z-—» 00 inSy. (5.11)

Let¥ ;=7 — 6 and I' := I'(K, #) and put

._ 1 -1 ok
g(®)(©) ._E/Fg(—x)(x+b(§)) dr, ¢ eRF. (5.12)

The following lemma implies, in particular, that g(b)(¢) € L(H) is well-defined.

Lemma 5.4. Suppose that m, K € R* and 0 < 6o < 6 < 7. Then there exists a
constant ¢ such that, givenb : R¥ — L(H) satisfying (5.9), and givena holomorphic
Junction g satisfying (5.10) and (5.11) for some & > 0, it follows that

g®)(,m) € C"PER", L(H)) (5.13)
and
61 18gg YO < esup{ 18] 2 € Sy Llzl = 1E1"/@KN}  (5.14)

for ¢ e R and || < n +2.
Proof. Observe that

o(=b@)=—tI"o®E™), ¢ eR. (5.15)
Also note that, thanks to (5.9),
o(=b(¢™) Cllargz| > — 61 N[1/K < |z] < K]. (5.16)
Let g be the positively oriented boundary of

[largz| = 9x] N [1/2K) < |z] < R], R=K+1,
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andput ¥ := Yg1. Then (5.16) implies the existence of p := p (K, 8) > Osuch that
oA +b@) Cllzl=pl, reX, eRE.

Hence we deduce from Lemma 4.1 and from (5.9) the existence of a constant ¢
such that .
(A +00¢) [ <c, reD, ¢eR, (5.17)

for all » under consideration.

Givent > 0, let t 2 be the curve obtained from ¥ by the dilatation A > tA. Then
|£|™ T is a positively oriented contour which, thanks to (5.15), contains o (—b(¢))
in its interior. Hence

1 _ . '
GO = 57— mng(—x)(wrb(;)) Ydr, teRF, (5.18)

is well-defined. :

Let o € R* be fixed. The upper semicontinuity of the spectrum implies the
existence of a neighborhood U of ¢ in R¥ such that |£|™ T contains G’(——b (;)) for
each ¢ € U inits interior. Thus, thanks to Cauchy’s theorem, we can replace |¢|" 2
by the fixed contour [{|™ % as long as ¢ € U. From this we easily deduce that

G®)(,m) e C"P2(R", L(H)), neR,

and that 1
o - _ o -1
006 = 5 [ s0(+@) "
for; e R* x Rfand |a| < n+2.

Recall that Bg‘ 4+ b))t =X, YA+ b)~L, where cq is a finite linear combina-
tion of terms of the form

(A + b)“l(afb)(k +b)7H@b) - (A +b)N (3 D) (5.19)

with B +y + -+ + o = a. From the positive homogeneity of b it follows that

(b)) =1 (T A+BEN) T, ¢ e RF,

and, in turn, that c, (X, ) = |§|"|"‘l ce(12]™ A, £*) for ¢ € R*. Thus
) .
lee| qo — _ m * w1\ —1
14860 = 5o [ I Meath, £+ 57) ™
for ¢ € R¥. Now we infer from (5.9), (5.17), and (5.19) that

121 BEGB) ()] < csup{1gM); & € Sy N[ Izl = £/ 2K)] )
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for ¢ € R* and |a| < n +2.
Fix ¢ € [—m + 0, 7w — flandputd(t, &) := |t|™e' ¥ + b(¢) for (¢, ¢) € (R x R¥Y.
From (5.9) we deduce the existence of a constant r := r(K, 8) > 0 such that
o@d ) Cllzl=rl, [P+ =1

Hence Lemma 4.1 and the fact that d is positively homogeneous of degree m guar-
antees

|+ b)) < Qe+ D7, Jagrl<m—0, ¢eRF. (520)

Thanks to Cauchy’s theorem we can replace the contour X in (5.18) by T for any
R > K +1. Thus, letting R — oo, we infer from (5.11), (5.18), and (5.20) that
G(b)(¢) = g®)(¢) for ¢ € R*. This proves the lemma. O

6. Pseudo differential operators. Let a € C(R" x R*, L(H)) such that a(x, -)
is polynomially bounded for each x € R*. Then we define the pseudo differential
operator

Op(a): S(R*, H) > BC(R"*, H)

with symbol a by
Op(a)u(x) = 2n)™ / et 8 g (x, EYU(E) dE xeR",

where % denotes the Fourier transform of u and S(R”*, H) is the Schwartz space of
rapidly decreasing smooth H-valued functions on R”,

In order to guarantee that O p(a) extends to a continuous linear map of L ,(R"*, H)
into itself for 1 < p < oo, we introduce the following symbol classes. Suppose that
8 € [0, 1) and put

=[n/2]+1,
where [¢] is the integer part of ¢ € R*, Then S; is the set of all
a e CP"(R* x R", L(H))
satisfying .
lalls, = max sup (&)1 1308¢a(, £)llw < 00,

lel<2n EcRn

[Bl=<m
where (£) := (1 + |£|>)/? for £ € R". We equip S; with the norm ||-||s, so that it
becomes a Banach space.

Let @ be a modulus of continuity satisfying the Dini condition

f w—(tzdt<oo (6.1)
0o t

Then we denote by Ss(w) the set of all a € CO"F(R* x R*, L(H)) such that
o]
max sup (§)
lel<nt1 EE]R" ((§> %)
‘We give this space the norm ||- || s, o that it becomes a Banach space too.
The introduction of these multiplier spaces is justified by the following

lallss@ = l9ga(, E)lleo < 00 .
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Theorem 6.1. Suppose that 1 < p < oo and put L, := L,(R*, H). Also suppose
that w satisfies (6.1). Then

Op € L(Ss, L(Ly)) N L(Ss (), L(Ly)) -

Proof. The assertion for the symbol class S; follows from the results and techniques
in [18] and [25]. As for the symbol class Ss(w), we refer to [17] and [18]. O

7. Homogeneous elliptic operators on R". It is the main purpose of this section
to prove that an elliptic operator on R", acting on vector valued functions, that is, an
elliptic system on R”, is an operator of positive type, provided the symbol does not
contain (—oo, 0) in its spectrum and the coefficients are nearly constant (matrices).
These results are of auxiliary nature and will be used in subsequent sections.

We fix now m € Nand p € (1, 0o) arbitrarily. Given s € R, we denote by

W= (WS, H), |- ls,p)
the usual Sobolev-Slobodeckii spaces of order s of H-valued functions on R*. We

alsoput D; :=—id;forl < j <n.
By a differential operator on R” we mean a linear differential operator of order m,
A= )" a,D%, (7.1)

la]<m
with £(H)-valued coefficients
ay: R" - L(H), aeN', |a|<m.
We associate with A its principal symbol

Ae(x, 8) = Y au(0)E*,  (x,8) eR*xR".

la|=m
Then, given M > 0 and 6, € [0, 7], we say A is uniformly (M, 6,)-elliptic if
max ||ay|lec < M (7.2)

|ec|=m
and
o(Ax(x,£) CSp and [[A:(x,OI7I<M, xeR', [E[=1. (13)
Throughout the remainder of this section we assume that

w is a modulus of continuity, _
ay € BUC(w) = BUC(R", L(H); ») , | =m, (7.4
and a, = 0 for |¢| < m,

that is, A =3 ,_, @ D* is homogeneous of degree m. Note that, given any

b € BUC(R", L(H)), there exists a modulus of continuity w such thatb € BUC ().
Given 8 € (6y, w) and Y € [—7r 4+ 6, — 0], put

ay(x,8) = p/™ eV +lo "+ Az (x, §), = (&,n) eR* =R"xR?, (7.5)
where we write 1 := (p, o) for the general point of R2.
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Lemma 7.1. Let A be uniformly (M, 6y)-elliptic. There are constants K := K (M)
and K_y := K_1(M, 0) such that the maps ay, : R" x R* — L(H) satisfy condition
(5.1) and (5.8), uniformly with respect to || < — 6.

Proof. The validity of (5.1) is obvious. To prove (5.8) observe that
o (Ax(x,8)) C Sg N [Iz| > [EI"/M], (x,6) eR*xR".

This implies the existence of a constant r := r(M) > 0 such that
o (ay(x,8)) C [lz] = rsin@® — 6))]

for x e R", |¢| =1, and || <7 — 0. Hence, ay : R*xR¥ — Laut(H) and
Lemma 4.1 guarantees the existence of K_; := K_{(M, ) such that (5.8) is true,
uniformly with respectto || <mw — 6.0

‘We consider now first the case of constant coefficients a, € L(H) and prove the
following basic lemma.

Lemma 7.2. Let M, i € R and 0 € (6, i) be fixed. Then there exist constants c
and K > 1 such that p+ A € P(L,; K, w —6) and

I+ Allcgwp.Ly + 104 2+ A ew,wp < ¢, r€Sypg, (7.6)

for all homogeneous (M, 6y)-elliptic operators A with constant coefficients.

Proof. If A has constant coefficients, its principal symbol and, consequently, ay are
independent of x € R". Hence a@ = ay, and we deduce from Lemmas 7.1 and 5.3(i)
that

Bgag Ol sclel™ ™, el=2m, glzetm, a7

uniformly with respect to || < & — 8. Note that
I4§ = (el + o) v (o * + £ (7.8)
and that
(1AC7)(§)S(|§|2+02)1/25(1VU){§), £eR", o>0. (7.9)
Thus, letting A := |p|™ ¢'¥ and o := /™, we deduce from (7.7)—(7.9) that
EF3E(+ 1+ A4 ©) | e+ DT, @l S2H, A€ Semg,

where ¢ depends upon M, u, and 6 only. Observe that this implies

At+p+A) e
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and that there exists ¢ := ¢(M, w, 6) such that
|0+ p4 A s, <+ AN, A €Sy
Thus, since
Atp+A=O0ph+pu+Ay)

and since A has constant coefficients, it is an easy consequence of Theorem 6.1
(or Mikhlin’s multiplier theorem, of course) that there exists K := K (M, u,0) > 1
with u + A € P(K, 7w — 6).

It is obvious that A € L(WI',", L,) and that its norm is bounded by a constant
depending on M only.

We infer from (7.7), (7.9), and Leibniz’ rule that

OME[E e ) e, lel=2m, Kl=ptm, yl<T-0.
From this and Theorem 6.1 (or again by Mikhlin’s theorem) it follows that
1A= A0+ p+ D e,y <c, A€ Sy g,

where c ;= c(M‘, w, 6). Since (1 — A)™? e Lis(W;', L), we see that (7.6) is true. O
It is now easy to prove the main result of this section, namely

Proposition 7.3. Suppose that M, i € R* and 6 € By, ). Then there exist con-
stants ¢, K > 1 and B > 0 such that, given any homogeneous uniformly (M, 6y)-
elliptic operator A with coefficients in BUC (]R", L(H )) and satisfying

max ||ay — ag(y)lleo < B (7.10)

le|=m

for some'y € R, it follows that u + A € P(Ly; K, w —0) and

I+ Al z,y + 1+ D e, wm < c. (7.11)
V4 P

Proof. Write A = A(y) + B, where

AQ) = Y au(y)D"

leel=m

and note that B € LW, Lp) with || B|| < maxXjqj—m @y — ax(y)|lco. Now the first
part of the assertion follows from Lemmas 7.2 and 1.1.

It is clear that u + .4 € LW, Lp) with an estimate for its norm depending
upon M only. If B is chosen so small that llB(u + A(y))~1 || £L) < 1/2, it follows
from (1.8) that

1+ A e, = 2] (8 + A0 g, -
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Thus (7.11) is also a consequence of Lemma 7.2. O

We will remove the smallness condition (7.10) and admit lower order terms in
Section 9 below.

8. Bounded H,-calculus under smallness conditions. By requiring a little
more regularity for the coefficients of the differential operator A considered in the
preceding section we shall now show that 1 + A4 has a bounded Ho-calculus for any
@ > 0. These results are again of auxiliary character.

We fix now two moduli of continuity w; satisfying

1
it
/ wJT()dt<oo, j=1,2. 8.1)
0

We also fix M, u € RT and 0 < 6y < 8 < 7. Then we denote by

A= " a,D" (8.2)

la|l=m
an arbitrary uniformly (M, 6p)-elliptic operator with coefficients
ay € BUC(wiw3) , | =m. (8.3)

Note that w;w, is a modulus of continuity too.

Lemma 8.1. There are constants K > 1 and B, k € R* such that

w+AeP(K,m—0) (8.4)
and
A+p+ADT=RM+SO), rel:=I(K, 7w —80), (8.5)
where
R(G) = Op((A 4 o+ A7)
and
S € Li(T, ds, L(Lp)) , (8.6)
provided
max llax — au()lloo < B (8.7)
for some 'y € R* and ‘
max ()0, < (8.8)

Proof. Put0; := (6 + 0)/2 and define ay : R* x R¥ — L(H) for || < 7 — 0; by
(7.5). Let 8§ € (0, 1) be fixed and define af,, by (5.2). It follows from Lemmas 7.1
(with 0 replaced by 6;) and 5.3 that there exists « > 0 such that (8.8) implies

ay: R x R > Laut(H), | <m—6p,
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and that the estimates (i)—(iv) of Lemma 5.3 are valid, uniformly with respect to
|¥| < 7 — 61 and with w replaced by ww,.
Givenn = (p, o) € R? and || < 7w — 6y, it is easily verified that
{ —1
(ol™e'V + o™ + A)op([al ¢, m] )u

(8.9)

foru € S, where by, := (ay — af/,)[al‘;,]_l and
1 Br 81—
ry = Z I alp-D [a,'/f]
0<|Bl=m A

Given oy € (0, 1], we deduce from Lemma 5.3(ii) the existence of a constant ¢
such that

Z110Eby C, Olloo < conan(C™), el <27, 1fl=00, |¥|<m—0,

where, of course, ¢ := (£,7) € R* x R? = R*. Hence (7.8) and (7.9) imply

)Mo (o5 (€))7 19¢by (- Olleo < can(In]™)

for & e R*andn = (p, o) € R? witho > 0y, and for || < = — 6;. Define a modu-
lus of continuity @ by @ (¢) := w1 (o t) Then it follows that by (-, -, n) € S5 (a)l)
and

1By G, Ml sswyy < can(lnl™) (8.10)

for n = (p, o) € R? with o > oy, and for || <7 — 6;.
Similarly, putting 8y := (1 — §)/2, we infer from Lemma 5.3(iii) that

150 3gry C, Olloo < ¢ L1702, ol <27, = op, [l<m—6;.

Thus, letting wo(¢) := ¢ for ¢t > 0, we see from (7.8) and (7.9) that ry(:, -, n) €
Ss, (wo) and
7 Gy s Mgy oy < € Inl~47572 (8.11)

for n = (p, o) € R? with o > oy, and for || < 7 — 6.
Proposition 7.3 guarantees the existence of 8 > 0 and Ky > 1 such that

/’L/Q’-‘_AGIP(KO)TE_QI):

provided (8.7) is satisfied. Thus, thanks to (1.2) and Lemma 1.1(ii), we can find
K > Kj such that (8.4) is true, that

w/2+AePK,m—0) CPK,xw—0), (8.12)
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and that
[largz] < r — O)k] U [lz] < 1/Q2K)] C —11/2 + Sp_g, . (8.13)

Hence I' + p/2 C Sy_g,, where I := I'(K, w — 6). Thus (8.12) and the trivial de-
composition A + /2 4 /2 + A=A+ p + A imply

A+ + e+ D Mew,) <c, rel, (8.14)
thanks to the fact that
|A] sin 6y if 0<6;<m/2,
A 2| > 8.15
| +“/'—{|x| ifr/2<6 <. (8.15)

Given A €T, it follows from (8.13) that there exists a unique pair (r, ¥) with
r > 0and || < — 6 satisfying
A+ p/2=p™eV . (8.16)
Thus, letting
o=o0p:=W/)", n:=(p,0), (8.17)
it follows from (8.10) and Theorem 6.1 that
Ti(A) = Op(by (.-, m) e LLLp), AreT,
and that
1T ey < con([ I+ m/2P™ + /2", rer, (8.18)
thanks to the fact that wg and @; satisfy the Dini condition (6.1). Similarly, (8.11)
implies
L) = Op(ry (.-, m) € LLp) , rel,

and
I ey < e[ 1A+ u/2Pm 4 ey der. 819)
Finally, let
RO = 0p([dl¢,m]™), rer, (8.20)
where A and 7 satisfy (8.16) and (8.17). Then we infer from (8.9) that
A+pu+ DR =1+T10) + (), rel.
Thus, putting

SO i=-G+u+HHLW+BW),  rel,
we obtain (8.5). From (8.14), (8.15), (8.18), and (8.19) it follows that
ISMllee,y < e+ M7 [@B2(Q + A T™) + (1 + [A)~0-D/Em]  (8.21)
for A € I, where @, () := w,(at) for a suitable o := a (i, §) > 0. Note that

/oo M m / @2 . (8.22)

mfé
Hence (8.21) implies (8.6). O

After these preparations we can prove that 4+ A € Hoo(Lp; 7 — 6) if (8.7) and
(8.8) are satisfied.




BOUNDED H,-CALCULUS FOR ELLIPTIC OPERATORS 641

Proposition 8.2. S{tppose that (8.7) and (8.8) are satisfied. Then there are constants
N > 1and B,k € R* suchthat p+ A € Hoo(Ly; N, v — ).

Proof. The assertion follows from Lemmas 2.3 and 8.1, provided we show that

[[ecnrmar], <clele. ser@-0. 62
r L(Lp)
Define n = (p, o) and ¥ by (8.16) and (8.17) for A € I" and put

rux,£) = [al 0, 6,7, () eR'xXR', AeT,

Then, thanks to (8.20) and Theorem 6.1, the estimate (8.23) is valid, provided we can
show that

(680 [snrtum = h o) €.
for some 7 € [0, 1) and the norm can be estimated by c ||g||, for g € H(zw — 6).
Recall that 8 has been fixed arbitrarily in (0, 1). Thus we can assume that§ < 1/7.
Then we deduce from Lemma 5.3(i) and from (7.8), (7.9), and (8.15) that

)P 02 0g T (1, E)lloo < c [T (gl

8.24
< c(l+apimEd/m (629

forhel, 1<|a|<2n 1<|B|<mandé <7 < 1/m.
From (7.5) and (5.3) we easily infer that

188a, ¢, Olleo < clePPHiE™, ¢ e R,
for1 < |B] <rand |{| <m — 6. Hence (cf. the proof of Lemma 5.3(1))

182(a%,C. )7 | < cleI™™ 8 el /1™

for |¢]| > op and 1 < |B| <, and for || < — 6. This implies, thanks to (7.8),
(7.9), and (8.15), the estimate

& 1807 G, ©)loo = 1171 (£) 1)

8.25
< c(l+ ApiEd/m (822
forA eI, 1 <|B| <7, and § < v < 1/n. Note that (8.24) and (8.25) entail
sup () BH020g R (, E)lleo < cliglleo »  lal =27, 1<|B|<T,

EcR?

for ¢ € H(w — 6). Hence it remains to estimate dg'h, (-, §) for |o| < 27.
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Put . '
i x,8) = [a @ 6, m] 7 — [ap@ &, m]
Then it follows from Lemma 5.3(iv) and (7.8), (7.9), and (8.15) that
E8ErIO - Olloo < (L + AN (A + 2D T™)

for |@| <27 and A € T, where @, has been defined in (8.21). From this and (8.22)
we infer that

sup (£)!*!
EeRn

o[ [ snno. o a]] <clel.

for || < 2rm and g € H (wr — 6). Thus, thanks to (7.5), (8.16), and (8.17), it remains
to prove that

sup (&)

sup a?[ﬁg(—x)(x+u+Aﬂ(',§))—1 ]| =clgle 26

for || <2nand g € H(mwr — ). Let

b(x,&,t) == [t|" + A, (x, §) , (x,&,1) eR"xR" xR,

and note that the bracket in (8.26) equals 27i g(b (x, -, -)) (-, w'/™), where we use the
notation (5.12). Thus (8.26) is a consequence of Lemmas 7.1 and 5.4. O

9. Elliptic operators on R”. In this section we consider general elliptic systems
on R” and prove the fundamental resolvent estimates and the existence of a bounded
H,-calculus under weak continuity conditions for the coefficients.

Let Q := (—1, 1)" be the open unit ball in (R", |-|.) and let {7, ; x € R"} be
the translation group in L 1. (R", L(H)), that is,

Tea =a(- —x), x€R*, ae€ LR, LH)).
Then, given p € [1, co], the function a € Ly joc (R”, L(H )) belongs to L, locally

uniformly if

llallp i := sup lITxallL, 0. cem) < 0.
xeZ!

We put
Lpanit®", L) = ({a € Lijoo(R", LED) 5 llallpanit < 00}, 11lpuic)

for1 < p < oo. Note that L, ynir is aBanach space, and L oo, unif = Leo. Alsonote that

Ly(R*, L(H)) <> Lpunie(R", LH)) <> Lgunie(R*, L(H))
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forl <g <p<o0.
Let ¢ € (0, 1] be fixed and let (U;) be an enumeration of the open covering

{(/D@/24+0); 27"}
of R such that j > k implies |xj|c = |xk|oo, Where x; is the center of the cube U 7.
Note that the covering (U;) has finite multiplicity, that is, there exists £ € N such
that no point of R” is contained in more than £ cubes of the sequence (U;).
Observe that
pj(x) = Q2/e)x —x), xeR*,

is a smooth diffeomorphism from U; onto Q. Let 7 be a smooth function with support
in Q being equal to one on (1/2) Q. Then each

. -1 .
= (r o) (Tetrog?) ", jeN, ©.1)
is smooth, has its support in U}, and _ :
> owr=1. 9.2)
J

Let p € [1, o] be fixed, put
E=E;:=W,, F:=F:=1L,, JeN,
and let E := (E;) and F := (F}). Given X € {E, F}, denote by ¢y, ; := ¥x ; the
multiplication operator u +> mju on X.
Lemma 9.1. (X s (ox.7), (Ux, j)) is an £,-approximation system for X € {E, F}.
Moreover, E 4 F, ¢g; C ¢r,j, and ¥gj C YF,j.

Proof. It is easily seen that (3.8) and (3.9) are true and that the second part of the
assertion is valid. Hence it remains to prove (3.13).

Observe that, given « € N*,
10°illo0 < c(e) , jeN.

Thus, thanks to the finite multiplicity of the covering (U;), given o € N* and
q € [1, 00), there exists a constant ¢ such that

Y@ mum | <Y e
J J

and

P [CEATIOLESIION
for uj,u € L, and a.a. xje R”™. From this and Leibniz’ rule we infer that, given
k eN,
| S, <cllymy . =) e,Wh,
and ’
Nl ey < ¢l - w € WE,

where W; := (¥;) with Y; := W¥. Now the assertion is obvious. O
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Corollary 9.2. Suppose thats € R and 1 < p < co. Then

ur> (3, Imul?,) " ©3)
is an equivalent norm for W, (R", H).
Proof. Let m € N satisfy m > s. Then it follows from Lemma 9.1 that
r € L(£,(E), E) N L(L,(F), F)

and
r¢ € L(E, £,(E)) N L(F, £,(F)) .

Let (-, -)s/m be the complex interpolation functor [ -, - 1s /m if s € N, and the real
interpolation functor (-, -)s/m,p if s € RT\N. Then it is well-known that

(F, E)sym = W, , O<s<m.
Moreover,
(e, (F), £ (E))s/m L, ((F, E)gm) , O<s<m,

(e.g., Theorem 1.18.1 in [24]. Thus (F, E),/, = G = (G;) with G; := W; for
j € N. Consequently,

reL{£,(G), W), r°eL(W,£(6),

and (3.12) implies that rr € /L(ﬁ (G)) is a projection onto im(r¢) having ker(r) as
kernel. Hence

£,(G) = im(r) & ker(r)

and r¢ e ,Cis(W;, im(rc)). Now the assertion is an obvious consequence of the
definition of r¢. O

We fix now m € Nand p € (1, 00). Then we pﬁt
Do i=n/(m — |«l|) if m—n/p<lal<m. (9.4)

Then we prove the following continuity theorem for linear differential operators of
‘lower order’.

Lemma 9.3. Suppose that g, > pyform —n/p < |a| < mandq, ‘= p otherwise,

and that
= > wr,

lel<m—1
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with b, € Lqmunif(Rn, E(H)). Then B € L(WI;‘, L) for some s € (m — 1, m) and

1Bl cowg L,y = e(s), max ballg,,unis -

Proof. Choose a smooth function x with support in Q and being constantly equal
to 1 on the support of 7. Then define (X]) by replacing in the construction of ()
the function v by x.

By Sobolev’s imbedding theorem we know that, given || <m —1 < s <m,

Ws__ldl L 1 > 1 > 1 s — |(X|
p b —z—=2(—-- , (9.5)
+

P Tra \p n

where the second inequality sign is strictif s = |a| 4 n/p (e.g., Section 2.8 in [24]).
It is easily seen that we can choose s € (m — 1, m) so that (9.5) is true if we put

= — | <m —1. (9.6)

Thus, given u € Wy, it follows from the fact that x; equals one on the support of 7;,
from (9.5), and from (9.6) that

]Iﬂ]baDau”p ]InjbaDd(XJu)“ = “n”&,o(F) ”b ”qu unif IlDa(X]u)llra

< cllmll ey, vy 1l gy, unit I12%lls, »

for |¢| <m — 1 and j € N. Now the assertion is a consequence of Corollary 9.2. O

After these preparations we can prove the following fundamental resolvent esti-
mates for uniformly (M, 6p)-elliptic operators on R” under rather mild assumptions
on the coefficients.

Theorem 9.4. Supposethatl < p <oo,m € N, M > 0,and0 <6y < 0 < 7, and
let @ be a modulus of continuity. Also suppose that q, := p if |¢| <m —n/p, and
gu > Da Otherwise. Then there exist constants ¢, K > 1 and . > 0 such that, given
any uniformly (M, 6y)-elliptic operator

A= )" a,D" 9.7)

lel<m

whose coefficients satisfy

. {BUc(R",ﬁ(H);w) if laf =m, 9.8)

Lqm,unif(Rn» ﬁ(H)) iflal<m—1,

and

| IilgaX “ad”lla unif 1 max ”aa”C(a)) <M, (99)
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it follows that
uw+AeP(Ly; K, m—6)N Lis(W', Lp)
and _
I+ Al cown, ) + 11+ D o, wp <c .

Proof. Giveny € R”, put

y if [yl < ¢,
re(y) == { ]
° eyl if Yo > €,

Then r, is the radial retraction in (R”, |-|s) onto the closed e-ball €Q. Hence r; is
uniformly Lipschitz continuous (cf. Lemma 19.8 in [1]). Put

g, je ‘= a,x(xj + ‘Exjre(-)) , || :'m , jeN,.
where x; is the center of U;. Then
aq,j,s € BUC(R", L(H))

and

e = oo Cloo = SUD_1a0() = aa(2)| < (maxazly ) (vine) (910

[y—zleo <€

for |¢| = m and j € N. Note that each

A= Z g, j,e D%, jeN,

|et]=m

is a homogeneous uniformly (M, 6,)-elliptic operator whose coefficients belong to
BUC(R", L(H)).

Let o > O be fixed. Then Proposition 7.3 and (9.10) imply the existence of
constants ¢, K > 1 and &y € (0, 1] such that, putting A; := o + A, 4,

A; € P(Ly; K, —0) N Lis(W™, L) 9.11)

and
I A5l cown Ly + 1A 2oz, wm < c (9.12)

for j € N. Note that, having fixed & = &, the covering (U;) and the functions 7; are
now fixed too.
Let
A=0+4 ) ayD* e L(E, F) (9.13)

let]=m
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and A := (4;) € £o(L(E, F)). Then

Al e, py V Al ew(cE Fyy S0+ M.

Givenu € E, 4
Alrju) =mjAu+ ) ay ) (5)D*Pm;DPu. (9.14)
le|=m B<a
Put
Bj = - Z ay Z (Z)Da_ﬂﬂjDﬂu =. Z bj,aD"u = Z ijj.aD“u ,
lal=m B<a Jee|<m—1 la]<m—1

where x; is smooth with support in U; and equals one on supp(rr;). Then it follows
from [E, Flim = Wl’,"~1 (cf. the proof of Lemma 9.1) that

B := (B)) € L([E, Fli/m, £,(F))

with
131 < ¢ max llauloo < cM . (9.15)

Moreover, (9.14) implies

VrjA=AjYe;+B;, jeEN, (9.16)

since A(wj - ) = A;(w; - ), thanks to the fact that ay |U; = aq, j,¢,|U; for j € N.
Let C; := —B; for j € N and note that C; € L([Ej, Fili/m, F). Itis easily veri-
fied that
(u > Cu=3 cjuj) € L(£,((E, Fli/m), F)
J

with

IC1 = ¢ max flaalloo < cM . (9.17)
Similarly as above, we deduce from (9.14) that Apg ; = ¢p,;A; + C; for j € N.
Thus the assertion follows from (9.11), (9.12), Lemma 9.1, and Proposition 3.2, pro-
vided A is homogeneous of degree m. The general case is now an easy consequence
of Remark 1.2(b) and Lemma 9.3. O

Corollary 9.5. Suppose that 6y < /2. Then A is the negative infinitesimal gener-
ator of a strongly continuous analytic semigroup on L,(R", H).

Although elliptic operators on R" have been studied by many authors, Theorem 9.4
and Corollary 9.5 seem to be new in this generality. Previous generation theorems
require much stronger ‘conditions atinfinity’ for the coefficients (e.g., [19]). It should
also be observed that the resolvent estimates of Theorem 9.4 are uniform with respect
to the class of uniformly (M, 6y)-elliptic operators satisfying (9.9).

In the above theorem w can be an arbitrary modulus of continuity. We restrict now
the class of admissible moduli to be able to prove that x + A possesses a bounded
H,-calculus.
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Theorem 9.6. Let the hypotheses of Theorem 9.4 be satisfied and suppose that

U 1/3(
/ a)t()dt<oo. (9.18)
0

Then there are constants N > 1 and v > 0 such that
p+AeHo(Lly; N, —6)

for each uniformly (M, 6y)-elliptic operator A on R" satisfying (9.7)—(9.9).
Proof. Let w; := o'/ for j = 1,2, 3. Then

< w3(]x — yD[aa]w

and an easy calculation using the growth properties of the moduli of continuity give

max [ad,j,s]mla)z =< cws (8) Il;ﬂax [ax)w < cMws(e) .
=m

la]=m
Hence we can assume that &y € (0, 1] has been chosen such that the operators A; sat-

isfy (8.7) and (8.8) for each j, where 8 and « are the constants of Proposition 8.2 and
y = x;. Proposition 8.2 guarantees the existence of N > 1 such that

Aj € Hoo(Lp; N, w —0), jeN.

Thus the assertion follows from (9.11)—(9.17), Lemma 9.1, and Proposition 3.2,
provided A4 is homogeneous of degree m. The general case is then a consequence of
Lemma 9.3 and Theorem 2.6. O

Corollary 9.7. Let the hypotheses of Theorem 9.4 be satisfied and suppose that (9.18)
is true. Then there exist constants . > 0 and M > 1 such that

(e + Al e, @ my < MM, t>0,

for each uniformly (M, 6y)-elliptic operator A on R satisfying (9.7)—(9.9).

Observe that condition (9.18) is satisfied if w(¥) = ¢# for some p € (0, 1), that
is, if the top-order coefficients of A are bounded and uniformly Holder continuous.
Hence Corollary 9.7 extends considerably the corresponding result in [19].

10. Elliptic operators on compact manifolds. In this section we show that
elliptic operators on compact manifolds without boundary, acting on sections of
vector bundles and possessing continuous coefficients, are of positive type. If the
top-order coefficients are Holder continuous, we prove the existence of a bounded
Hy,-calculus.
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Let X be a compact n-dimensional C™-manifold without boundary for some
m €N, and let G := (G, , X) be a complex C™-vector bundle over X of rank N
with fiber H. By a trivializing coordinate system (k, x,) for G we mean a chart «
of X with domain X, together with a trivializing map

N X) > Xex H, g (7(9), x(9))

over X, for G. Given a section u of G, its local representation u, with respect

to (k, xi) is defined by

Uy :=X,couolc“1.

Then, given s € [0, m] and p € (1, co), we denote by le (X, G) the vector space of
all sections u of G such that

pue € W3 (k(Xo), H)

for each C™-function ¢ with compact support in x(X,) C R" and each trivializing
coordinate system (k, x.) for G, where sections coinciding almost everywhere (cf.
Section 16.22.2 in [7]) have been identified. This space is topologized by the family
of seminorms

u > lpuels,p

and L,(X, G) = WI‘))(X, G).
Choose a finite atlas £ of trivializing coordinate systems for G and a C™-partition
of unity { 7, ; ¥ € &} on X subordinate to { X, ; « € &}. Thenitis well-known and

easily seen that
_ 1/p
lellop = (3 NG 0 6~ DuellZ,)
KER

is anorm on W; (X, G) inducing the topology and that W, (X, G) is a Banach space
with respect to this norm.

Let v
A WX, G) > Lp(X, G)

be a linear differential operator of order m with continuous coefficients and let
Ay T*(X) — End(G)

be its principal symbol (e.g., Section 23.29 in [7]). Then, given 6y € [0, r), the
operator A is 6p-elliptic provided

o(Ax(ED) CSe,  Ee[TFX], xeX.

Using these notations we can prove the following:
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Theorem 10.1. Suppose that A is 0y-elliptic for some 6y € [0, w). Then, given
p € (1,00) and 6 € (0y, ), there exists u > 0 such that

p+AeP(Ly(X, G);m —6)NLis(W'X, G), Lp(X, G)) .

Proof. We can (and will) assume that Q0 C k(X,) and supp(t, ok~ 1) C Q for
each x € R. Let (cf. Section 17.13 in [7])

A = Z Qe D

ll<m

be the local representation of A with respect to the trivializing coordinate sys-
tem (k, x.). Recall that r; is the radial retraction in (R", |-|0) onto Q and put

.Ag = Z (ag,q or) D .

lee|<m

Note that .
AL R x S = A (0 x ST

and that the spectra of the operators A, . (x, §), (x, §) € ‘0 x S™1, are contained in
a compact subset of Sg,, thanks to the upper semicontinuity of the spectrum. Hence
there exists M > 1 such thateach Ag is auniformly (M, 6p)-elliptic linear differential
operator on R" whose coefficients belong to BUC (R”, L(H )). Thus Theorem 9.4
guarantees the existence of i > 0 such that

p+ A0 e P(L,(R", H); w —6) N Lis(WP(R™, H), L, R", H))  (10.1)

fork € R. Let
E = W;"(X, G), F:=L,X,G)

and note that E ‘i> F. Also let
Ee =Wl (Xo), H), Fei=Ly(k™'(Xo), H), kK eR,

and
E = (Erer, F :=(Fclcer,

where we fix an arbitrary enumeration of &. Put
Ve () 1= (T 0 K Dugge , uel,(X,G), kek.

For each k € £ choose a C™-function o, on X with support contained in «~* (Q) and
such that o, | supp(z,) = 1. Define ¢, : F, — F by

Xe © P (V) ;= o (Vo k), veF,, keR.
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It is not difficult to verify that
¢k € L(E, E) N L(F, F) ,

that
Y € L(E, Ex) NL(F, Fy) ,

AZ(/’xwle‘

Since the atlas & is finite, it is clear that (E, (¢z.c), (V) and (F, (0r.), (Yr.))
are £,-approximation systems for E and F, respectively. Thus conditions (i) and (ii)
of (3.15) are satisfied. Moreover, putting A := A and A, := A? (where we mean the
obvious restriction, of course), condition (iii) of (3.15) is satisfied too.

Let

and that

Baui=— Y aeay (5D P(mox™Dlu,, uek.

|le|<m B<a
Since [E, Flim = W;”‘I(X , G) it follows that
B = (BK) € *C([Es F]l/m) EP(F>) .

Thanks to (Au), = A,u, and the fact that A, v = A%v ifv € E, hasits supportin Q,
we see that
"/f/cA:Akl[f/c‘l‘Bx, KER.

Thus condition (iv) of (3.15) is satisfied.
Lastly, note that [ Ag, (v)]K = Ac((o o k™ )v) for v € E, implies
[A(PK (U):]K = [¢Ic (AICU)]K + Eicv' )

where

[0 Cevi= Y aea . ()0 (0 0k ™)DP] € L(IEx, Felym, ).

lal<m  B<a

For each k € & choose a C™-function &, on X with support contained in ™! (Q) and
such that &, | supp(o) = 1. Define @, : F, — F by

Xe © P (V) =T (vok), veF,, keR.

Then, letting .
Cy = [‘U = (’ZIC(CKU)] , € £([EIC) Fx]l/m: F) ,
we find that
Ape = oA + Cy KER.

Hence the last condition of (3.15) is satisfied too. Now the assertion follows from
(10.1) and Proposition 3.2(i). O
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Corollary 10.2. If6, < 7 /2 then —A generates a strongly continuous analytic semi-
group on L, (X, G).

In order to show that u + A has a bounded H,,-calculus we have to impose more
regularity. Namely, we suppose that

G is a C™2-vector bundle . (10.2)
Thus 7*(X) is at least a C!-manifold and it makes sense to assume that
there exists ¢ € (0, 1) such that A, € C”:(T*(X), End(G)) . (10.3)

Of course, the definition of Holder continuous sections is similar to the definition of
sections in W, given above.

Theorem 10.3. Suppose that A is 6y-elliptic for some 0y € [0, ) and that conditions
(10.2) and (10.3) are satisfied. Then, given p € (1, 00) and 6 € (6, 1), there exists
w > 0 such that

s+ A€ Hou(Ly(X,G);m—0).

Proof. Using the notations of the preceding proof, it follows that the top-order coef-
ficients of A,‘z are uniformly e-Holder continuous on R*. Thus, letting «w (¢) := #° for
t > 0, Theorem 9.6 guarantees that u + A, € Heo(Fy; w — 6) for some w > 0 and
each « € & Now the assertion follows from Proposition 3.2 and Theorem 10.1. O

Corollary 10.4. Given the hypotheses of Theorem 10.3, there exist ;. > O and M > 1
such that

I+ A Mo, ooy < MM, teR.

For simplicity, we have restricted our considerations to the case of boundariless
compact manifolds. It is not difficult to extend our results to noncompact manifolds
without boundary which are suitably “‘uniformly regular at infinity’.
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