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Abstract. Macro-elements of smoothness Cr are constructed on Powell-Sabin-
12 splits of a triangle for all r ≥ 0. These new elements complement those
recently constructed on Powell-Sabin-6 splits [5,12], and can be used to construct
convenient superspline spaces with stable local bases and full approximation
power that can be applied to the solution of boundary-value problems and for
interpolation of Hermite data.
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§1. Introduction

A bivariate macro-element defined on a triangle T consists of a finite dimensional
linear space S defined on T , and a set Λ of linear functionals forming a basis for
the dual of S. Usually the space S is chosen to be a space of polynomials or a space
of piecewise polynomials defined on some subtriangulation of T . The members
of Λ, called the degrees of freedom, are usually taken to be point evaluations of
derivatives, although here we will also work with sets of linear functionals which
pick off certain spline coefficients.

A macro-element defines a local interpolation scheme. In particular, if f is a
sufficiently smooth function, then we can define the corresponding interpolant as the
unique function s ∈ S such that λs = λf for all λ ∈ Λ. We say that a macro-element
has smoothness Cr provided that if the element is used to construct an interpolating
function locally on each triangle of a triangulation △, then the resulting piecewise
function is Cr continuous globally. Macro-elements are useful tools for building
spaces of smooth splines with stable local bases and full approximation power.

Several families of Cr macro-elements have been developed using polynomi-
als [17,19], and piecewise polynomials on appropriate splits, see [4,5,11,12,13,15],
and references therein. The purpose of this paper is to describe a family of Cr
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macro-elements based on the Powell-Sabin-12 split, see Definition 3.1. These new
macro-elements complement the existing families of Cr macro-elements based on
the Powell-Sabin-6 split [5,12], and for compatibility make use of splines of the same
degrees, see however Remark 7.2. A major advantage of our new elements is that
certain geometric constraints required in the Powell-Sabin-6 case can be removed,
see Remark 7.4.

The paper is organized as follows. In Sect. 2 we review some well-known
Bernstein-Bézier notation. Our Cr family of macro-elements is introduced and
studied in Sect. 3, while Sect. 4 contains several supporting lemmas. We discuss
the approximation power of our new macro-elements in Sect. 5. In Sect. 6 we trans-
late our degrees of freedom into nodal functionals, and discuss a related Hermite
interpolation method and associated error bound. We conclude with remarks in
Sect. 7.

§2. Preliminaries

We use Bernstein–Bézier techniques as in [1–13,16,17]. In particular, we represent
polynomials p of degree d on a triangle T := 〈v1, v2, v3〉 in their B-form

p =
∑

i+j+k=d

cT
ijkBd

ijk,

where Bd
ijk are the Bernstein basis polynomials of degree d associated with T . As

usual, we associate the coefficients cT
ijk with the domain points ξT

ijk := (iv1+jv2+kv3)
d .

We write Dd,T := {ξT
ijk}i+j+k=d.

Given a triangulation △, let Dd,△ :=
⋃

T∈△Dd,T , and let S0
d(△) be the space of

continuous splines of degree d on △. Then it is well known that each spline in S0
d(△)

is uniquely determined by its set of B-coefficients {cξ}ξ∈Dd,△
, where the coefficients

of the polynomial s|T are precisely {cξ}ξ∈Dd,△∩T . We recall that if T := 〈v1, v2, v3〉,
then the ring of radius m around v1 is RT

m(v1) := {ξT
d−m,j,k : j + k = m} and the

disk of radius m around v1 is DT
m(v1) := {ξT

ijk : i ≥ d − m}. If v is a vertex of △,
we define the ring Rm(v) of radius m around v to be the set of all domain points
on rings RT

m(v) where T is a triangle with vertex at v. The disk Dm(v) of radius
m around v is defined similarly.

In this paper we are interested in subspaces S of S0
d(△) which satisfy additional

smoothness conditions. Following [6], to describe smoothness we shall make use of

smoothness functionals defined as follows. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉
be two adjoining triangles which share the edge e := 〈v2, v3〉, and let cijk and c̃ijk

be the coefficients of the B-representations of sT and s
T̃
, respectively. Then for any

n ≤ m ≤ d, let τn
e,m be the linear functional defined on S0

d(△) by

τn
e,ms := c̃n,m−n,d−m −

∑

i+j+k=n

ci,j+d−m,k+m−nBn
ijk(v4), (2.1)
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where Bn
ijk are the Bernstein polynomials of degree n on the triangle T . In terms

of these linear functionals, the condition that s be Cr smooth across the edge e is
equivalent to

τn
e,ms = 0, n ≤ m ≤ d, 0 ≤ n ≤ r.

Smoothness conditions can be used to directly compute coefficients of one piece
of a spline from another. They can also be used in situations where some of the
coefficients of two different pieces of s are known. The following well-known lemma
[4] (see also Lemma 3.3 of [7]) shows how this works for computing coefficients on

the ring RT
m(v2) ∪ RT̃

m(v2).

Lemma 2.1. Suppose T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two triangles
sharing an edge e := 〈v2, v3〉, and suppose the points v1, v2, v4 are not collinear.

Let s ∈ S0
d(△), where △ := T∪T̃ , and suppose that τn

e,ms = 0, n = ℓ+1, . . . , q+q̃−ℓ
for some ℓ, m, q, q̃ with 0 ≤ q, q̃, −1 ≤ ℓ ≤ q, q̃, and q + q̃ − ℓ ≤ m ≤ d. Suppose
that all coefficients cijk and c̃ijk of the polynomials s|T and s|

T̃
corresponding to

domain points in Dm(v2) are known except for

cν := cν,d−m,m−ν , ν = ℓ + 1, . . . , q,

c̃ν := c̃ν,m−ν,d−m, ν = ℓ + 1, . . . , q̃,
(2.2)

Then these coefficients are uniquely determined by the smoothness conditions.

If s is a spline in S0
d(△) which satisfies additional smoothness conditions beyond

C0 continuity, then clearly we cannot independently choose all of its coefficients
{cξ}ξ∈Dd,△

. We recall that a determining set for a spline space S ⊆ S0
d(△) is a

subset M of the set of domain points Dd,△ such that if we set cξ = 0 for all ξ ∈ M,
then s ≡ 0. The set M is called a minimal determining set (MDS) for S if there is
no smaller determining set. It is known that M is a MDS for S if and only if every
spline s ∈ S is uniquely determined by its set of B-coefficients {cξ}ξ∈M.

A MDS M is called local provided that there is an integer n such that for every
ξ ∈ Dd,△ ∩ T and every triangle T in △, cξ is a linear combination of {cη}η∈Γξ

where Γξ is a subset of M with Γξ ⊂ starn(T ). Here starn(T ) := star(starn−1(T ))
for n ≥ 2, where if U is a cluster of triangles, star(U) is the set of all triangles which
have a nonempty intersection with U . Moreover, M is called stable, provided that
there is a constant K depending on the smallest angle in △ such that

|cξ| ≤ K max
η∈Γξ

|cη|, for all ξ ∈ Dd,△. (2.3)

A linear functional λ defined on S0
d(△) is called a nodal functional provided that

λs is a combination of values and/or derivatives of s at some point η. A collection
{λ}λ∈N is called a nodal determining set for a spline space S ⊆ S0

d(△) if λs = 0 for
all λ ∈ N implies s ≡ 0. N is called a nodal minimal determining set (NMDS) for S
if there is no smaller nodal determining set.
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v1

v2 v3w1

w2w3 vT

v1

v2 v3w1

w2w3 u1
u2 u3vT

Fig. 1. The Powell-Sabin-6 and Powell-Sabin-12 splits.

§3. A Family of Cr Powell-Sabin-12 Macro-elements

We now define the Powell-Sabin split of interest in this paper.

Definition 3.1. Given a triangle T = {v1, v2, v3}, for each 1 ≤ i ≤ 3, let wi be
the midpoint of the edge ei := 〈vi+1, vi+2〉 opposite to vi, where we set v4 := v1.
Draw in the line segments 〈vi, wi〉, i = 1, 2, 3. Then it is easy to see that these
three line segments intersect at the barycenter v

T
:= (v1 + v2 + v3)/3 of T . The

resulting partition T
PS6

of T into six triangles is called the Powell-Sabin-6 split of T ,
see Fig. 1 (left). If we now draw in the line segments 〈wi, wi+1〉, i = 1, 2, 3, where
w4 := w1, then the resulting partition T

PS12
of T into twelve triangles is called the

Powell-Sabin-12 split of T , see Fig. 1 (right).

We need some additional notation and terminology connected with Powell-
Sabin-12 splits. For each i = 1, 2, 3, we write ui for the intersection of 〈wi+1, wi+2〉
with 〈vi, vT

〉. Note that the ui are midpoints of the edges 〈wi+1, wi+2〉, and are
singular vertices of T

PS12
, i.e., vertices which are formed by two crossing lines. We

refer to the edges of the form 〈vi, ui〉 as type-1 edges, to edges of the form 〈wi, vT
〉

as type-2 edges, and to edges of the form 〈ui, vT
〉 as type-3 edges.

Given a triangulation △ of a domain Ω, we write V and E for the sets of
vertices and edges of △. To define our macro-element spaces, we shall work with
the refinement △

P S12
of △ which is obtained by applying the Powell-Sabin-12 split

to each triangle of △. We write W for the set of midpoints of edges of △. For
i = 1, 2, 3, we write Ei for the set of edges of △

P S12
of type i. Let Ẽ2 be a subset

of E2 obtained by selecting exactly one edge of E2 for each macro-triangle in △. As
usual in spline theory, m+ is defined to be m if m > 0, and is zero otherwise.

We now introduce the spline spaces of interest in this paper. The definition
depends on the value of r mod 4. Given r > 0, we define the Cr Powell-Sabin-12
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macro-element space to be

Sr(△P S12
) := {s ∈ Sr

d(△
P S12

) : s ∈ Cρ(v) all v ∈ V,

s ∈ Cµ(w) all w ∈ W,

τs = 0 for all τ ∈ T1 ∪ T2},

(3.1)

where for all ℓ ≥ 0,

r ρ µ d
4ℓ + 1 6ℓ + 1 6ℓ + 1 9ℓ + 2
4ℓ + 2 6ℓ + 3 6ℓ + 3 9ℓ + 5
4ℓ + 3 6ℓ + 4 6ℓ + 5 9ℓ + 7
4ℓ + 4 6ℓ + 6 6ℓ + 7 9ℓ + 10

T1 :=





⋃

e∈E1

{τ r+i
e,ρ+j}

2ℓ−2(ℓ−j+1)+,d−ρ
i=1,j=1 , if r is odd,

⋃

e∈E1

{τ r+i
e,ρ+j}

2ℓ+1−2(ℓ−j+1)+,d−ρ
i=1,j=1 , otherwise,

T2 :=





⋃

e∈E2

{τ r+i
e,µ+j}

2j−2,ℓ
i=1,j=2, r = 4ℓ + 1,

⋃

e∈E2

{τ r+i
e,µ+j}

2j−1,ℓ
i=1,j=1 ∪

⋃

e∈Ẽ2

{τ r+1
e,µ+ℓ+1} ∪

⋃

e∈E3

{τ r+1
e,r+j}

ℓ
j=1, r = 4ℓ + 2,

⋃

e∈E2

{τ r+i
e,µ+j}

2j,ℓ
i=1,j=1, r = 4ℓ + 3,

⋃

e∈E2

{τ r+i
e,µ+j}

2j+1,ℓ
i=1,j=1 ∪

⋃

e∈Ẽ2

{τ r+1
e,µ+ℓ+1} ∪

⋃

e∈E3

{τ r+1
e,r+j}

ℓ+1
j=1, r = 4ℓ + 4.

Let n
V

and n
E

be the numbers of vertices and edges of △, respectively. For each
v ∈ V, let Tv be some triangle in △

P S12
with vertex at v. For each e := 〈v1, v2〉

of △, let v
Te

be the barycenter of a triangle Te in △ that contains e, and let
T 1

e := 〈u1, v1, we〉 and T 2
e := 〈u2, we, v2〉 be the two subtriangles of Te sharing the

edge e, where we is the midpoint of e. In addition, let T 3
e := 〈v

Te
, we, u2〉 be one of

the triangles in △
PS12

containing the edge 〈we, vTe
〉, see Fig. 1 (right).

Theorem 3.2. For all r ≥ 1,

dimSr(△PS12
) =

(
ρ + 2

2

)
n

V
+

[ (µ + 1)2

4
+ ℓ(ℓ + 1)

]
n

E
. (3.2)
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Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

(
M1

e ∪M2
e ∪M3

e

)
(3.3)

is a stable local minimal determining set for Sr(△P S12
), where

1) Mv := Dρ(v) ∩ Tv,

2) M1
e :=

ℓ⋃

i=1

{ξ
T 1

e

ρ+µ−d+i+1,d−ρ−j,d−µ−i+j−1}
i
j=1,

3) M2
e :=

ℓ⋃

i=1

{ξ
T 2

e

ρ+µ−d+i+1,d−µ−i+j−1,d−ρ−j}
i
j=1,

4) M3
e :=

(µ−1)/2⋃

j=0

{ξ
T 3

e

i+j,d−i−2j,j}
µ−2j
i=1 .

Proof: To show that M is a stable local minimal determining set, we show that
we can set the coefficients {cξ}ξ∈M of a spline in Sr(△P S12

) to arbitrary values,
and that all other coefficients of s are then uniquely, locally, and stably determined.
First, for each v ∈ V, we set the coefficients corresponding to Mv. Then using the
Cρ smoothness at v, we can uniquely compute the coefficients of s corresponding
to all other domain points in Dρ(v). This is a stable local process.

At this point it is not obvious that the coefficients which we have determined
so far are compatible with each other since they may be connected by smoothness
conditions. Indeed, for any two vertices u and v which are connected by an edge of
△, there exist chains of smoothness conditions which involve coefficients in both of
the disks Dρ(u) and Dρ(v) along with other yet undetermined coefficients. As we
progress we have to be sure that as we compute these undetermined coefficients,
all of these smoothness conditions are verified.

For each e := 〈u, v〉 ∈ E , we now apply Lemma 4.1 to determine the coefficients
of s corresponding to domain points in the disk Dµ(we), where we is the midpoint
of e. Due to the Cµ smoothness at we, we can regard the coefficients of s in this disk
as coefficients of a polynomial g of degree µ. The lemma insures that we can set
the coefficients of s corresponding to the domain points in M3

e to arbitrary values,
and that all coefficients corresponding to the remaining domain points in Dµ(we)
are uniquely and stably determined. Since the lemma allows arbitrary values for
the coefficients corresponding to domain points in the sets Dρ(u) ∩ Dµ(we) and
Dρ(v) ∩ Dµ(we), it follows that all smoothness conditions connecting coefficients
associated with domain points in [Dρ(u)∪Dρ(v)]∩Dµ(we) are satisfied, i.e., there
are no incompatibilities due to these smoothness conditions. We still have to watch
for possible incompatibilities due to other smoothness conditions involving domain
points outside of the disks {Dρ(v)}v∈V and {Dµ(w)}w∈W .
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Our next step is to set the coefficients corresponding to the sets M1
e and M2

e

for each edge e of △. If e := 〈v1, v2〉 is an interior edge of △ with midpoint we, then
using the Cr smoothness conditions across the edge e, we can uniquely determine
the coefficients corresponding to the domain points in the sets

M̃1
e :=

ℓ⋃

i=1

{ξ
T̃ 1

e

ρ+µ−d+i+1,d−ρ−j,d−µ−i+j−1}
i
j=1,

M̃2
e :=

ℓ⋃

i=1

{ξ
T̃ 2

e

ρ+µ−d+i+1,d−µ−i+j−1,d−ρ−j}
i
j=1,

where T̃ 1
e := 〈ũ1, v1, we〉 and T̃ 2

e := 〈ũ2, we, v2〉 are the triangles in △
P S12

which
share edges with T 1

e and T 2
e , respectively. At this point we have made sure that all

smoothness conditions up to order r across e are satisfied.

For each type-1 edge e := 〈v, u〉, we now show how to use Lemma 2.1 to
compute coefficients on the rings Rρ+j(v) for j = 1, . . . , d − ρ. Fix 1 ≤ j ≤ d − ρ.
Then it is easy to see that there are exactly n := 2(d−µ)− 1− 2(ℓ− j + 1)+ unset
coefficients on Rρ+j(v). Now combining the Cr smoothness conditions across e with
the special conditions in T1 associated with this edge, gives us a set of exactly n
(univariate) smoothness conditions which uniquely determine these coefficients, see
Lemma 2.1. By the geometry, the matrix of this nonsingular n×n linear system is
the same for all edges e ∈ E1, and thus the computation is stable in the sense that
(2.3) holds.

We now show that the coefficients corresponding to the remaining domain
points are also uniquely determined while maintaining all smoothness conditions.
These remaining domain points lie inside triangles of the form T := 〈w1, w2, w3〉,
where the wi ∈ W. Let T

PS6
be the Powell-Sabin-6 split of T , see Fig. 4. We have

already determined all coefficients corresponding to domain points in the disks
Dµ(wi) for i = 1, 2, 3. In addition, by the Cr smoothness across the edges ei :=
〈wi, wi+1〉 for i = 1, 2, 3, the coefficients corresponding to domain points on the
rings Rd−j(vT

) for j = 0, . . . , r are also determined. For each i = 1, 2, 3, the fact
that the midpoint ui−1 of ei is a singular vertex insures that all Cr smoothness
conditions across the edge 〈ui−1, vT

〉 are automatically satisfied, and there are no
incompatibilities. Now we can apply Lemma 4.2 to uniquely and stably determine
all coefficients of s corresponding to the remaining domain points in T . We have
shown that M is a stable local minimal determining set for Sr(△P S12

).

To complete the proof, we note that the dimension of Sr(△P S12
) is equal to

the cardinality of M, which is easily seen to be the number in (3.2).

For the Powell-Sabin-12 split T
PS12

of a single triangle, Tab. 1 shows the values
of r, ρ, µ, d and dimSr(TPS12

) for 1 ≤ r ≤ 12. Fig. 2 shows the corresponding
minimal determining sets for r = 1, 2, 3, 4, where the points in M are marked with
black dots.
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Fig. 2. Minimal determining sets for Sr(TPS12
) for r = 1, 2, 3, 4 .

r ρ µ d dim
1 1 1 2 12
2 3 3 5 42
3 4 5 7 72
4 6 7 10 132
5 7 7 11 162
6 9 9 14 246
7 10 11 16 312
8 12 13 19 426
9 13 13 20 480

10 15 15 23 618
11 16 17 25 720
12 18 19 28 888

Tab. 1. The dimension of Sr(TPS12
).

8



v1v2
v3 v4 v5

v6
Fig. 3. The triangulation of Lemma 4.1.

§4. Two lemmas

In this section we establish two lemmas which are needed for the proof of Theo-
rem 3.2. Our first lemma concerns a special MDS for the space of polynomials Pµ

in the case where µ is odd.

Lemma 4.1. Let △ be the triangulation shown in Fig. 3 with six vertices v1, . . . , v6,
where we suppose that v4 is the midpoint of the edge e := 〈v3, v5〉. Let T :=
〈v1, v4, v6〉. Suppose µ is odd, and let m := µ−1

2 . Let M := Dm(v3) ∪ Dm(v5) ∪
Me ⊂ D△,µ, where

Me :=
m⋃

j=0

{ξT
i+j,µ−i−2j,j}

µ−2j
i=1 .

Then M is a stable mimimal determining set for Pµ.

Proof: It is easy to check that #M =
(
µ+2

2

)
= dimPµ, and thus it suffices to prove

that if we set the coefficients of s ∈ Pµ corresponding to ξ ∈ M, then all other
coefficients are stably determined. To this end, we consider the B-representation of
s̃ ≡ s relative to the triangulation △̃ consisting of the two triangles T̃1 := 〈v1, v3, v4〉

and T̃2 := 〈v1, v4, v5〉. We denote the corresponding coefficients of s̃ by c̃η for
η ∈ D

µ,△̃
. The values of cξ for ξ ∈ Dm(v3) ∩ Dµ,△ stably determine all derivatives

of s up to order m at v3, which in turn stably determine the coefficients c̃η for all
η ∈ Dm(v3) ∩ D

µ,△̃
. A similar argument shows that c̃η are stably determined for

all η ∈ Dm(v5) ∩ D
µ,△̃

.

We now claim that all coefficients of s̃ corresponding to domain points in

the set M̃e :=

m⋃

j=0

{ηT̃2

i+j,µ−i−2j,j}
µ−2j
i=1 are stably determined from the coefficients

{cξ}ξ∈Me
. To see this, note that since v6 lies on the edge 〈v1, v5〉, the barycentric

coordinates of v5 relative to T have the form (b1, 0, b2) with b1 + b2 = 1. Then
using the de Casteljau algorithm to convert the B-coefficients of s relative to T into
B-coefficients of s̃ relative to T̃2, we find that for each 1 ≤ i ≤ µ−2j and 0 ≤ j ≤ m,

the coefficient of s̃ corresponding to ηT̃2

i+j,µ−i−2j,j is a stable linear combination of
the coefficients {cξ}ξ∈Me

.
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w1

w2 w3u1

u2u3 vT

Fig. 4. The labelling of the Powell-Sabin-6 split for Lemma 4.2.

It is easy to check that DT̃2
m (v1) ∩ D

µ,△̃
⊂ M̃e. Then using the smoothness

across the edge 〈v1, v4〉 of △̃, we can stably compute the coefficients of s̃ corre-
sponding to the remaining domain points in Dm(v1) ∩ D

µ,△̃
. We have now deter-

mined all coefficients of s̃ except for those corresponding to µ − j domain points
on Rµ−j(v1) ∩ D

µ,△̃
for each j = 0, . . . , m. Since the coefficients associated with

Rµ−j(v1) are subjected to precisely µ−j (univariate) smoothness conditions across
the edge 〈v4, v1〉, we can use Lemma 2.1 to stably compute them. Finally, to com-
plete the proof, we note that the coefficients cξ of s can now be stably computed
from those of s̃ by subdivision.

Our second lemma deals with splines on the Powell-Sabin-6 split T
PS6

of a single
triangle. Since we want to apply this lemma to the triangle T := 〈w1, w2, w3〉 which
is inside the Powell-Sabin-12 split shown in Fig. 1 (right), we label its vertices as in
Fig. 4, where we assume ui is the midpoint of the edge opposite wi for i = 1, 2, 3,
and v

T
:= (w1 + w2 + w3)/3 is the barycenter of T . As in Sect. 3, we write E2 for

the set of edges of T
PS6

of the form 〈wi, vT
〉, and E3 for the set of edges of T

PS6

of the form 〈ui, vT
〉. Given r, µ, and d as in (3.1), let T2 be the corresponding

set of special smoothness conditions defined there. Then we consider the following
superspline space

Sr(TPS6
) := {s ∈ Sr

d(T
PS6

) : s ∈ Cµ(wi) all i = 1, 2, 3,

τs = 0 for all τ ∈ T2}.
(4.1)

For each n = 1, 2, 3, let Tn := 〈v
T
, wn, un+2〉.

Lemma 4.2. For all r ≥ 1,

dimSr(TPS6
) = 3

(
µ + 2

2

)
+ 3(2d − 2µ − r − 1)(r + 1). (4.2)
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Moreover, the set

M :=
3⋃

n=1

(
Mwn

∪Mun

)
, (4.3)

is a stable minimal determining set, where Mwn
:= Dµ(wn) ∩ Tn and

Mun
:=





2ℓ⋃

j=1

{ξTn

i,d−µ−j,µ−i+j}
r
i=0, if r is odd,

2ℓ+1⋃

j=1

{ξTn

i,d−µ−j,µ−i+j}
r
i=0, otherwise.

(4.4)

Proof: We show below that M is a determining set, and thus dimSr(TPS6
) ≤ #M.

It is easily seen that

#M =





78ℓ2 + 57ℓ + 9, r = 4ℓ + 1,

78ℓ2 + 111ℓ + 39, r = 4ℓ + 2,

78ℓ2 + 141ℓ + 63, r = 4ℓ + 3,

78ℓ2 + 195ℓ + 123, r = 4ℓ + 4,

(4.5)

which is equal to the expression in (4.2). We now derive a lower bound for
dimSr(TPS6

). By Theorem 2.2 of [16],

dimSr
d(T

PS6
) =

(
r + 2

2

)
+ 6

(
d − r + 1

2

)
+ σ,

where

σ =

{
(r2 − 1)/4, if r is odd,

r2/4, if r is even.

Enforcing the Cµ continuity at the vertices w1, w2, w3 of T requires 3
(
µ−r+1

2

)
con-

ditions. Since

#T2 =





3ℓ2 − 3ℓ, r = 4ℓ + 1,

3ℓ2 + 3ℓ + 1, r = 4ℓ + 2,

3ℓ2 + 3ℓ, r = 4ℓ + 3,

3ℓ2 + 9ℓ + 4, r = 4ℓ + 4,

the dimension of Sr(TPS6
) in each of the four cases is bounded below by the same

quantities appearing in (4.5), which implies that dimSr(TPS6
) is given by the for-

mula in (4.2).
To complete the proof, we need to show that M is a determining set and that

it is stable. Suppose we set {cξ}ξ∈M. We now show how to use the smoothness
conditions to stably compute all other coefficients. For each i = 1, 2, 3, we use the
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Cµ smoothness at wi to stably compute the coefficients corresponding to all other
domain points in Dµ(wi). Next, consider the sets of domain points

Li
j := Rd−j(vT

) ∩ 〈v
T
, wi+1, wi+2〉, j = 0, . . . , d,

for i = 1, 2, 3. For each 0 ≤ j ≤ r, Li
j contains exactly r domain points for which

the corresponding coefficients have not yet been determined. The Cr smoothness
across the edge 〈ui, vT

〉 gives r univariate smoothness conditions involving these
coefficients, and they can thus be determined from Lemma 2.1. At this point the
proof divides into four cases.

Case 1. r = 4ℓ+1. For each j = 1, . . . , ℓ and i = 1, 2, 3, there are r+2j−2 domain
points on Rµ+j(wi) whose corresponding coefficients have not yet been determined.
These coefficients are subject to r+2j−2 smoothness conditions which correspond
to the Cr smoothness conditions combined with the 2j − 2 functionals in T2. We
can again get these coefficients from Lemma 2.1. Now for each r + 1 ≤ j ≤ r + ℓ
and i = 1, 2, 3, the set Li

j contains r domain points whose corresponding coefficients
have not yet been computed. But then using the Cr smoothness across the edge
〈ui, vT

〉, Lemma 2.1 gives the values of these coefficients. To complete the proof in
this case, we use Lemma 2.1 to perform the following cycle of computations: for
each j = 1, . . . , d − µ − ℓ:

a) compute the r unset coefficients on the ring Rµ+ℓ+j(wi) for i = 1, 2, 3,

b) compute the r − 2j unset coefficients on Li
r+ℓ+j for i = 1, 2, 3.

This cycle of computations gives all the remaining coefficients.

Case 2. r = 4ℓ+2. For each j = 1, . . . , ℓ and i = 1, 2, 3 there are r +2j −1 domain
points on Rµ+j(wi) whose corresponding coefficients have not yet been determined.
These coefficients are subject to r + 2j − 1 smoothness conditions obtained by
combining the Cr smoothness with the 2j − 1 functionals in T2 corresponding to
the set E2. We can thus compute these coefficients from Lemma 2.1. Now for each
r + 1 ≤ j ≤ r + ℓ and i = 1, 2, 3, the set Li

j contains r + 1 domain points whose
corresponding coefficients have not yet been computed. But then using the Cr

smoothness across the edge e := 〈ui, vT
〉 together with the smoothness condition

corresponding to τ r+1
e,r+j in T2 with e ∈ E3, Lemma 2.1 gives these coefficients. Now

for each i = 1, 2, 3, we examine the ring Rµ+ℓ+1(w1), where we assume the edge e :=

〈w1, vT
〉 is the edge chosen for Ẽ2. There are r+1 domain points on this ring whose

corresponding coefficients are not yet determined. Using the smoothess condition
described by the functional τ r+1

e,µ+ℓ+1 in T2, we can use Lemma 2.1 to compute
all of these coefficients. The lemma then gives the coefficients corresponding to
domain points on the layers Li

r+ℓ+1 for i = 2, 3. We can now do the two rings
Rµ+ℓ+1(w2) and Rµ+ℓ+1(w3), followed by the layer L1

r+ℓ+1. To complete the proof
in this case, we use Lemma 2.1 to perform the following cycle of computations: for
each j = 2, . . . , d − µ − ℓ:

a) compute the r − 2j + 3 unset coefficients on the layer Li
µ+ℓ+j for i = 1, 2, 3,

12



b) compute the r − 1 unset coefficients on the ring Rµ+ℓ+j(wi) for i = 1, 2, 3.

This cycle of computations shows that all the remaining coefficients are determined.
The cases r = 4ℓ + 3 and r = 4ℓ + 4 can be handled in a similar way, and the

proof is complete.

§5. Approximation Power

Let △ be a triangulation of a polygonal domain Ω, and let Sr(△P S12
) be the macro-

element space defined in (4.1). Let |△| be the mesh size of △, i.e., the diameter of
the largest triangle in △. In this section we use the fact that Sr(△P S12

) has a stable
local minimal determining set M to show that the space has full approximation
power. More precisely, we give bounds on how well functions f in Sobolev spaces
Wm+1

q (Ω) can be approximated in terms of |△| and the smoothness of f as measured
by the usual Sobolev semi-norm |f |m+1,q,Ω. Let

‖g‖q,Ω :=

{ (∑
T∈△ ‖g‖q

q,T

)1/q
, 1 ≤ q < ∞,

maxT∈△ ‖g‖∞,T , q = ∞.

Unless otherwise stated, all constants appearing in this section depend only
on the smallest angle θ in the triangulation △

PS12
, or equivalently on the smallest

angle in △, see Remark 7.8. It is easy to see that |△
P S12

| ≤ |△|/2.

Theorem 5.1. For all f ∈ Wm+1
q (Ω) with 1 ≤ q ≤ ∞ and m ≤ d, there exists a

spline sf ∈ Sr(△P S12
) such that

‖Dα
x Dβ

y (f − sf )‖
q,Ω

≤ C |△|m+1−α−β |f |m+1,q,Ω, (5.1)

for all 0 ≤ α + β ≤ m. Here the constant C depends only on the smallest angle in
△, and if q < ∞ also on the Lipschitz constant associated with the boundary of Ω.

Proof: We give the proof only for 1 ≤ q < ∞. The case q = ∞ is similar and sim-
pler. We begin by constructing a quasi-interpolant Q mapping L1(Ω) into the spline
space Sr(△P S12

). Fix f ∈ L1(Ω). Then for each triangle T ∈ △
P S12

, we choose
the largest disk contained in T , and let FT be the corresponding averaged Taylor
polynomial of degree d approximating f , see e.g. [10]. Then for each ξ ∈ M ∩ T ,
let cξ := γξ(FT f), where γξ is the linear functional which picks off the B-coefficient
associated with domain point ξ. We now define Qf be the spline in Sr(△P S12

)
whose other coefficients are determined from {cξ}ξ∈M by using smoothness condi-
tions as in the proof of Theorem 3.2. Q is a linear projector mapping L1(Ω) onto
Sr(△P S12

).
Using the Lq stability of the B-form and properties of FT , see [10], we have

|cξ| = |γξ(FT f)| ≤
K1

A
1/q
T

‖FT f‖q,T ≤
K1K2

A
1/q
T

‖f‖q,T , ξ ∈ M∩ T,
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where AT is the area of T . By the locality and stability of M, it follows that if η
is a domain point lying in T , then

|cη| ≤
K1K2K3

A
1/q
min

‖f‖q,ΩT
,

where Amin is the area of the smallest triangle in ΩT := star3(T ). It is shown in
[10] that the area of the largest triangle in ΩT is bounded by a constant (depending
only on θ) times the area of the smallest triangle. Using the fact that the Bernstein
basis polynomials form a partition of unity, we get ‖Qf‖q,T ≤ K4‖f‖q,ΩT

.
Now suppose f ∈ Wm+1

q (Ω) with m ≤ d. Fix 0 ≤ α + β ≤ m and T ∈ △
P S12

.
Then using the Markov inequality [18], it follows that for any p ∈ Pd,

‖Dα
x Dβ

y (f − Qf)‖q,T ≤ ‖Dα
xDβ

y (f − p)‖q,T + ‖Dα
x Dβ

y Q(f − p)‖q,T

≤ ‖Dα
xDβ

y (f − p)‖q,T +
K5

ρα+β
T

‖Q(f − p)‖q,T

≤ ‖Dα
xDβ

y (f − p)‖q,T +
K4K5

ρα+β
T

‖f − p‖q,ΩT
,

(5.2)

where ρT is the diameter of the largest disk contained in T . It is shown in [10]
that |ΩT | ≤ K6ρT . Now (cf. Lemma 4.6 of [10]), there exists a polynomial p ∈ Pm

depending on f with

‖Di
xDj

y(f − p)‖
q,ΩT

≤ K7|ΩT |
m+1−i−j |f |m+1,q,ΩT

, (5.3)

for all 0 ≤ i + j ≤ m, where K7 is a constant depending on θ and the Lipschitz
constant of the boundary of Ω. Inserting this in (5.2) leads to

‖Dα
x Dβ

y (f − Qf)‖
q,T

≤ K8 |△|m+1−α−β |f |m+1,q,ΩT
, all 0 ≤ α + β ≤ m.

(5.4)
Summing over all triangles T ∈ △

PS12
and using the fact that the number of

triangles in ΩT is bounded by a constant depending only on θ, we get (5.1).

§6. A nodal determining set for Sr(△P S12
)

In this section we describe a nodal minimal determining set for Sr(△P S12
) and a

corresponding Hermite interpolation projector. For each triangle T in △, let vT

be its barycenter. For each edge e := 〈u, v〉 of △, let we be its midpoint, and let

w1
e := µu+(d−µ)we

d and w2
e := µv+(d−µ)we

d . Let De be the directional derivative
associated with a unit vector perpendicular to e. For each i > 0, let

ηi
e,1,j :=

(i − j + 1)u + jw1
e

i + 1
,

ηi
e,2,j :=

(i − j + 1)v + jw1
e

i + 1
,

ηi
e,3,j :=

(i − j + 1)w1
e + jw2

e

i + 1
,
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for j = 1, . . . , i. Finally, for any point t ∈ IR2, let εt be the point evaluation
functional at t.

Theorem 6.1. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

(
N 1

e ∪ N 2
e ∪ N 3

e

)
(6.1)

is a nodal determining set for Sr(△P S12
), where

1) Nv := {εvD
α
x Dβ

y }0≤α+β≤ρ,

2) N 1
e :=

ℓ⋃

i=1

{εηi
e,1,j

Dρ+µ−d+1+i
e }i

j=1,

3) N 2
e :=

ℓ⋃

i=1

{εηi
e,2,j

Dρ+µ−d+1+i
e }i

j=1,

4) N 3
e :=

m⋃

i=1

{εηi
e,3,j

Di
e}

i
j=1 ∪

m+1⋃

i=1

{εηi
e,3,j

Dµ−i+1
e }i

j=1,

with m = (µ − 1)/2.

Proof: It is easy to check that the cardinality of N is equal to the dimension of
Sr(△P S12

) as given in (3.2). Thus, it suffices to show that N is a nodal determining
set, i.e., setting {λs}λ∈N determines all coefficients of s. For every vertex v of △,
we can compute all coefficients corresponding to domain points in the disk Dρ(v)
directly from the data {λs}λ∈Nv

.
Given an edge e of △, let we be its midpoint. We now compute all coeffi-

cients of s corresponding to domain points in Dµ(we). By the Cµ smoothness at
we, these coefficients can be regarded as the coefficients of a polynomial g of de-
gree µ. Suppose we represent this polynomial in B-form relative to the triangle
T̃ := 〈ve, w

1
e , w

2
e〉, where ve := (µv

Te
+ (d − µ)we)/d and v

Te
is the center of some

triangle Te containing the edge e. As in Lemma 4.1, we can immediately compute
the coefficients of g in the disks Dm(w1

e) ∩ D
µ,T̃

and Dm(w2
e) ∩ D

µ,T̃
. For each

i = 1, . . . , µ, we now compute the coefficients of g corresponding to the remaining
domain points on Rµ−i(ve)∩D

µ,T̃
from the derivative information given in 4). We

can now get the coefficients of s corresponding to domain points in Dµ(we) ∩ Te

by applying subdivision to T̃ . If e is an interior edge, the coefficients of s corre-
sponding to the remaining domain points in Dµ(we) can be computed from the Cµ

smoothness at we.
Next for each edge e, we use the values {λs}λ∈N1

e
to compute all coefficients of

s corresponding to domain points in M1
e. First, we consider i = 1 in the definition

of M1
e, i.e., the domain point ξ

T 1
e

ρ+µ−d+2,d−ρ−1,d−µ−1. This coefficient is determined

by Dρ+µ−d+2
e,1 s(η1

e,1,1), since all other coefficients involved in this derivative have

already been computed. Then assuming we have dealt with the points in M1
e up
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to i − 1, we can use the values {Dρ+µ−d+1+i
e,1 s(ηi

e,1,j)}
i
j=1 to find the coefficients

corresponding to {ξ
T 1

e

ρ+µ−d+i+1,d−ρ−j,d−µ−i+j−1}
i
j=1. This involves solving an i × i

linear system. A similar argument leads to the coefficients of s corresponding to
domain points in M2

e.
At this point we have determined all coefficients corresponding to domain

points in the minimal determining set M of Theorem 3.2, and it follows from
that theorem that all other coefficients are also determined.

Theorem 6.1 shows that for any function f ∈ Cµ(Ω), there is a unique spline
s ∈ Sr(△PS12

) solving the Hermite interpolation problem λs = λf for all λ ∈ N .
The mapping which takes functions f ∈ Cµ(Ω) to this Hermite interpolating spline
defines a linear projector I mapping Cµ(Ω) onto Sr(△P S12

). We now give an error
bound for how well If approximates smooth functions f in the maximum norm.
We write |△| for the mesh size of the initial trianglulation △ before applying the
Powell-Sabin-12 splits.

Given a triangle T ∈ △ and a domain point ξ ∈ T of Sr(△PS12
), it is easy to

see that if the coefficient cξ of If is computed from derivatives as in the proof of
Theorem 6.1, then

|cξ| ≤ K1

µ∑

ν=0

|T |ν |f |ν,T , (6.2)

where K1 is a constant depending only on the smallest angle in △. Since the
computation of all other coefficients from smoothness conditions (cf. the proofs of
Theorems 3.2 and 6.1) is a stable process, it follows that (6.2) holds for all domain
points ξ lying in T . Since the Bernstein basis polynomials form a partition of unity,
(6.2) implies

‖If‖T ≤ K1

µ∑

ν=0

|T |ν |f |ν,T . (6.3)

Theorem 6.2. There exists a constant K depending only on the smallest angle in
△ such that for every f ∈ Cm+1(Ω) with µ − 1 ≤ m ≤ d,

‖Dα
x Dβ

y (f − If)‖Ω ≤ K|△|m+1−α−β|f |m+1,Ω, (6.4)

for all 0 ≤ α + β ≤ m.

Proof: Fix f ∈ Cm+1(Ω) and a triangle T ∈ △. Then Lemma 4.6 in [10] implies
that there exists a polynomial p ∈ Pm such that

‖Di
xDj

y(f − p)‖
T
≤ K2|T |m+1−i−j |f |m+1,T , (6.5)

for all 0 ≤ i+j ≤ m. Now fix 0 ≤ α+β ≤ m. Then since I reproduces polynomials,
we have

‖Dα
x Dβ

y (f − If)‖T ≤ ‖Dα
xDβ

y (f − p)‖T + ‖Dα
xDβ

y I(f − p)‖T ,
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and to complete the proof it suffices to estimate the second term. Let T1, . . . , T12

be the subtriangles in the Powell-Sabin-12 split of T . Then using the Markov
inequality, cf. [10,18], it follows that

‖Dα
x Dβ

y I(f − p)‖Tj
≤

K3

ρα+β
Tj

‖I(f − p)‖Tj
≤

K1K3

ρα+β
Tj

µ∑

ν=0

|T |ν |f − p|ν,T , (6.6)

for all j = 1, . . . , 12, where ρ
Tj

is the diameter of the largest disk contained in

Tj . By the geometry of the Powell-Sabin-12 split, |T | ≤ K4ρTj
, and taking the

maximum over all T ∈ △, we immediately get (6.4).

§7. Remarks

Remark 7.1. We were first motivated to construct a family of smooth macro-
elements on the Powell-Sabin-12 split after hearing a lecture by Rong-Qing Jia in
which he used a mixture of C1 Powell-Sabin-6 and Powell-Sabin-12 elements in
order to construct continuously differentiable wavelets on triangulations, see [8].

Remark 7.2. It was shown in [5,12] that it is not possible to construct Cr macro-
elements on the Powell-Sabin-6 split using splines of lower degree than those consid-
ered here. Here we have constructed our macro-elements on Powell-Sabin-12 splits
with the same degrees for the purposes of compatibility, cf. Remark 7.1. However,
due to the special geometry of the Powell-Sabin-6 split of the triangle 〈w1, w2, w3〉
inside the Powell-Sabin-12 split (see Definition 3.1 and Fig. 4), we have found that
it is possible to construct macro-elements in the Powell-Sabin-12 case with lower
degrees. We plan to report on this elsewhere.

Remark 7.3. The Powell-Sabin-12 split was introduced in [14], where it was used
to define a C1 macro-element based on quadratic splines. This corresponds to our
element for r = 1. In this case the macro-element space has dimension 12, and the
nodal degrees of freedom consist of the values and gradients at the three vertices
of T along with one cross-boundary derivative at the midpoint of each edge, see
Fig. 2.

Remark 7.4. The Cr macro-elements constructed in [5,12] provide global Cr

smoothness for a triangulation △ which has been refined with Powell-Sabin-6 splits
only if for each interior edge e of △, the split point we on the edge e lies on the line
joining the interior points v

T
and ṽ

T
of the two triangles T and T̃ which share e,

and thus in general, we will not be at the midpoint of e. This geometric constraint
is not required for our Powell-Sabin-12 macro-elements.

Remark 7.5. In developing the macro-element spaces of this paper, we have
made extensive use of the java code of Alfeld for examining determining sets for
superspline spaces. The code is described in [1], and can be used or downloaded
from http://www.math.utah.edu/∼alfeld. The code not only checks whether a
given set of domain points is a MDS, but also produces the equations needed to
compute all unset coefficients from those that have been set.
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Remark 7.6. The construction described here is not unique in the sense that
there are other choices of the extra smoothness conditions which also lead to macro-
elements based on the degrees of freedom used here.

Remark 7.7. Frequently in practice one has to interpolate given values at scattered
data points where no derivative information is provided. In this case, macro-element
methods can still be applied, but the needed derivatives (or the equivalent set of
B-coefficients) have to be estimated from the data.

Remark 7.8. Simple trigonometry shows that if T
PS12

is the Powell-Sabin split of
a triangle T , then sin(θPS) ≥ sin(θ)/3, where θPS is the smallest angle in T

PS12
and

θ is the smallest angle in T .

Remark 7.9. In [3] it was noted that the classical C1 Clough-Tocher and Powell-
Sabin macro-elements have natural analogs in terms of spherical splines. Since
the algebra of spherical splines is essentially the same as for bivariate splines [2],
it is clear that the entire family of macro-elements constructed here can also be
immediately carried over to the sphere.
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