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Abstract

We present methods for either interpolating data or for fitting scat-
tered data on a two-dimensional smooth manifold Ω. The methods
are based on a local bivariate Powell-Sabin interpolation scheme, and
make use of a family of charts {(Uξ , φξ)}ξ∈Ω satisfying certain condi-
tions of smooth dependence on ξ. If Ω is a C2-manifold embedded
into R

3, then projections into tangent planes can be employed. The
data fitting method is a two-stage method. We prove that the re-
sulting function on the manifold is continuously differentiable, and
establish error bounds for both methods for the case when the data
are generated by a smooth function.

1 Introduction

Let Ω be a 2-dimensional smooth manifold. For simplicity we assume that
Ω is compact and has no boundary. Suppose we are given the values of a

∗Department of Mathematics, University of Strathclyde, 26 Richmond Street, Glasgow
G1 1XH, Scotland. Partially supported by the Edinburgh Mathematical Society Research
Support Fund.

†Department of Mathematics, Vanderbilt University, Nashville, TN 37240.

1



(possibly unknown) smooth function f defined on Ω at a set of points X on
Ω. Our aim is to construct a function s defined on Ω that approximates f .
This problem arises frequently in practice, see Remark 8.1, but there do not
seem to be many methods available for general manifolds. Several methods
have been developed for the case when Ω is the sphere, see Remark 8.2.

Our approach to solving this problem is as follows. Suppose we have an
atlas Φ = {(Uξ, φξ)}ξ∈Ω for Ω, where for each ξ ∈ Ω, Uξ are open sets on Ω
containing ξ, and φξ are mappings of Uξ into R

2. We assume that the φξ

depend smoothly on ξ in a way to be described in Definition 3.1. Then for
each ξ ∈ Ω, we map the data locations into φξ(Uξ) ⊂ R

2, and use a local
bivariate Powell-Sabin spline to compute the value s(ξ) of the approximating
function s. This approach is related to methods introduced by Demjanovich
[11, 12] and Pottmann [29], see Remarks 8.3 and 8.4.

The paper is organized as follows. In Section 2 we describe the classi-
cal bivariate piecewise quadratic spline interpolant by Powell and Sabin [30],
and prove that it depends smoothly on the vertex locations and the data. In
Section 3 we introduce some basic concepts and notation, including atlases,
gradients, Sobolev spaces, and triangulations on manifolds. In view of the
Poincaré-Hopf index theorem, local parametrizations defined by the charts
(Uξ, φξ) in general cannot be smooth functions of ξ, see Remark 8.6. There-
fore, we introduce a weaker concept of smoothness whereby φζ for ζ close to
ξ may be adjusted by local rotations or rotoinversions (see Definition 3.1).
In Section 4 we present a method for constructing an interpolant to data on
an arbitrary smooth 2-dimensional manifold Ω, assuming we are also given
values for the gradients at each of the data locations in X. We show that
the method produces a C1 function on Ω, and give an error bound for how
well it approximates smooth functions. In Section 5 we describe a two-stage
scattered data fitting method which is more appropriate than interpolation
for large data sets or noisy data. In the next section we give an error bound
for this method. In Section 7 we specialize to the case where the manifold
is embedded in R

3. In particular, we show how to explicitly construct an at-
las with the required properties using local projections into tangent planes,
describe the computation of gradients in this case, and discuss certain sim-
plifications in the algorithms. More details on our method used with this
specific atlas can be found in our paper [9], which also gives numerical ex-
amples for both the sphere and for certain ring-type manifolds. We conclude
the paper with remarks and references.
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Figure 1: Powell-Sabin split of a triangle. PStri

2 Powell-Sabin Spline Interpolant
PSsplines

Let △ be a regular triangulation of a bounded polygonal domain G ⊂ R
2,

i.e., △ is a set of pairwise disjoint open non-degenerate triangles T such that
G = ∪T∈△T , and no vertex of a triangle lies in the interior of an edge of
another triangle. In order to emphasise the difference between this definition
and the more abstract notion of a triangulation of a manifold to be introduced
in Section 3.4, we call △ a planar triangulation. We say that T ∈ △ is an
interior triangle if none of its edges lies on the boundary of G. Otherwise,
T is called a boundary triangle.

Given an interior triangle T in △, let T1, T2, T3 be the three triangles
in △ sharing edges with T , see Figure 1(a). The set TPS of six triangles
obtained by connecting the incenter of T to the incenters of T1, T2, T3, and
to the vertices of T is called the Powell-Sabin-6 split of T , see Figure 1(b).
If T is a boundary triangle, then the split is the same except that whenever
there is no other triangle in △ sharing an edge e with T , the incenter of
T is connected to the midpoint of e. A new triangulation of G, called the
Powell-Sabin refinement of △, is obtained as

△PS :=
⋃

T∈△

TPS.

It is well known [21, 30] that the space S1
2(△PS) of all C1 piecewise

quadratic functions with respect to △PS has a particularly simple structure.
Its dimension is three times the number of vertices of △, and every s ∈
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S1
2(△PS) is uniquely determined by its values and gradients at the vertices

of △. In other words, the interpolation problem

s(v) = av, ∇s(v) = σv, for all v ∈ V , (2.1) PSint

has a unique solution s ∈ S1
2(△PS) for any real numbers av and real 2-vectors

σv = [σ
[1]
v , σ

[2]
v ], v ∈ V . Moreover, s depends locally on the data {av, σv}v∈V .

In particular, for each T ∈ △, s|T is uniquely determined by the data at the
three vertices of T only, i.e. by avi

, σvi
, i = 1, 2, 3, where T = 〈v1, v2, v3〉.

Let x ∈ G. Then x ∈ T for some T ∈ △. For later use, we need to
investigate the differentiability of the Powell-Sabin spline s(x) as a function of
all of the parameters that determine it. These include not only the data av, σv

at the vertices, but also the locations of the vertices. Due to the nature of the
Powell-Sabin-6 split, the locations of the vertices of the immediate neighbours
of T also influence s(x). Moreover, when studying differentiabilty, we also
need to take into account all parameters that have influence on s(x) if the
triangulation is perturbed, further extending the set of ‘active’ parameters if
x lies on the boundary of T , or at one of its vertices. We set

Vx = {v ∈ V : x ∈ T for some T ∈ △ with a vertex at v},

and denote by Ṽx the set of those vertices in V \ Vx that form a triangle in
△ with a pair of vertices in Vx.

smoothpar Theorem 2.1. Let s ∈ S1
2(△PS) be the Powell-Sabin spline interpolant that

solves the problem (2.1). The value s(x) of s at a fixed point x ∈ G is
a continuously differentiable function of the following parameters: (a) the

coordinates of the vertices v and the data values av, σ
[1]
v , σ

[2]
v for all v ∈ Vx,

and (b) the coordinates of the vertices in Ṽx.

Proof. Clearly, a sufficiently small perturbation of the vertices of △ does not
produce any degenerate or overlapping triangles in either △ or △PS. More-
over, the vertices of △PS depend smoothly on the locations of the vertices
of △ since the incenter of a triangle is an analytic function of its vertices. If
x lies in a triangle T ∈ △PS, then it will still be in the same triangle after a
small perturbation of the vertices. If, however, x is on an edge or at a vertex
of △PS, then it can move into a triangle attached to that edge or vertex. In
any case, after a small perturbation the set Vx ∪ Ṽx either remains the same
or becomes smaller. As discussed above, s(x) depends only on parameters
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in (a) and (b) even if all vertices v ∈ V and corresponding data values are
slightly perturbed.

As a quadratic polynomial, each s|T , T ∈ △PS, has a unique expansion

s|T =
∑

i+j+k=2

cTijkB
T,2
ijk

with respect to the Bernstein basis polynomials BT,2
ijk := 2

i!j!k!
bi1b

j
2b

k
3, where

b1, b2, b3 are the barycentric coordinates relative to T . Note that cT200, c
T
020

and cT002 are the values of s at the vertices of T . Referring to the Bernstein-
Bézier analysis of the Powell-Sabin element [6, 21], it is easy to see that the
Bézier coefficients cijk are analytic functions of the data values and vertices

of △. Clearly, the value BT,2
ijk (x) is an analytic function of the coordinates

of the vertices of T (where we do not need to assume that x ∈ T ). This
immediately implies that s(x) =

∑

i+j+k=2 c
T
ijkB

T,2
ijk (x) is an analytic function

of the parameters in (a) and (b) if x lies in a triangle T ∈ △PS.
Suppose that x lies on an edge e of △PS shared by two triangles T1, T2 ∈

△PS, but not at a vertex. A small perturbation of the parameters will leave
x in the interior of T1 ∪ T2. Note that C1 smoothness of the spline s implies
s|T2 − s|T1 = αℓ2e, where ℓe = 0 is the linear equation describing the straight
line going through e, and α ∈ R. Thus,

s(x) = p(x) + αψ(x),

where

p(x) =
∑

i+j+k=2

cT1
ijkB

T1,2
ijk (x), ψ(x) =

{

0, if x ∈ T1,

ℓ2e(x), if x ∈ T2.

As discussed above, p(x) is an analytic function of the parameters in (a) and
(b). We now show that ψ(x) is a C1 function of the parameters. Without
loss of generality we may write the equation for ℓe in the normalized form
ℓe(x) = x[1] cos b + x[2] sin b + c, where b and c are analytic functions of the
coordinates of the vertices of e. It follows that ψ(x) is a composition of the
analytic function ℓe(x) with the univariate truncated power function

t2+ =

{

0, if t ≤ 0,

t2, if t > 0.
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This is a C1 function, and hence ψ(x) is a C1 function of the parameters.
Finally, we claim that α is also an analytic function. To see this, we denote
by w the vertex of T2 not shared by T1. We have s(w) = p(w) + αℓ2e(w),
which implies

α =
s(w) − p(w)

(w[1] cos b+ w[2] sin b+ c)2
.

This expression is an analytic function of the parameters since s(w) is a
Bézier coefficient of s|T2.

Finally, we consider the case where x coincides with a vertex v of △PS. If
the parameters are perturbed, then x will lie in the cell C = ∪n

i=1Ti formed
by the set {Ti}

n
i=1 of all triangles in △PS attached to v, numbered in coun-

terclockwise order. We consider only the case where v is an interior vertex
of △PS since the boundary case is similar and simpler. Let v1, . . . , vn be the
set of all vertices of △PS attached to v, where Ti has vertices v, vi, vi+1, with
vn+1 := v1. We write ei for the edge 〈v, vi〉, i = 1, . . . , n. By a rotation of
the coordinate system, we may assume that no edge ei is parallel to the first
coordinate axis. Then v

[1]
i − v[1] 6= 0, i = 1, . . . , n. Following [31], we obtain

s(x) = p(x) +
n

∑

i=1

αiψi(x), (2.2) cellform

where
p(x) =

∑

i+j+k=2

cTn

ijkB
Tn,2
ijk (x),

ψi(x) =

{

0, if x ∈ Tj , 1 ≤ j < i,

[x[2] − v[2] + σi(x
[1] − v[1])]2, if x ∈ Tj , i ≤ j ≤ n,

(2.3) psi

σi = −(v
[2]
i − v[2])/(v

[1]
i − v[1]),

and the coefficients αi satisfy

n
∑

i=1

αiσ
k
i = 0, k = 0, 1, 2. (2.4) acond

Note that (2.4) follows from the fact that s|Tn
= p, and so

n
∑

i=1

αiψi(x) = 0 if x ∈ Tn.
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By (2.2),

s(vj+1) = p(vj+1) +

j
∑

i=1

αiψi(vj+1), j = 1, . . . , n,

which shows that αi are analytic functions of the parameters. However,
except for ψ1, the functions ψi are not even continuous, so to complete the
proof we directly compute bounds on the change of s(x) and its derivatives
with respect to the parameters as the parameters are perturbed. Let

s̃(x) := s(x) − p(x) =
n

∑

i=1

αiψi(x).

Then s̃(x) = 0 before the perturbation of the parameters. By (2.3) it follows
that

|s̃(x)| ≤ A(x[2] − v[2])2 +B(x[1] − v[1])2, (2.5) ws_est

with

A = 2

n
∑

i=1

|αi|, B = 2

n
∑

i=1

|αi|σ
2
i ,

whenever the parameters are perturbed. Since A and B are bounded, we
conclude that the change in s̃(x) as parameters are perturbed is bounded
in terms of the changes in the parameters, which proves the continuity of
s̃(x) and s(x). Moreover, since (2.5) does not include first order terms, it
follows that the differential of s̃(x) with respect to the parameters exists and
is zero whenever x coincides with v. The differential also exists if x is in a
small neighborhood of v, but does not coincide with it, since in this case x is
either in a triangle or on an edge, which are the situations we have considered
above. Let ν be any of the parameters in (a) or (b) in the statement of the
theorem. From (2.3) we obtain that

∣

∣

∣

∂s̃(x)

∂ν

∣

∣

∣
≤ C(x[2] − v[2]) +D(x[1] − v[1]),

with some bounded C,D. This shows that the partial derivatives of s̃(x) go
to zero as the change in parameters goes to zero. We conclude that s̃(x) and
s(x) are countinuously differentiable.
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3 Manifolds: Preliminaries
prelim

3.1 Atlases
atlas

Let Ω be a compact 2-dimensional smooth manifold without boundary. For
each ξ ∈ Ω, suppose that Uξ is an open subset of Ω containing ξ, and that
φξ : Uξ → R

2 is a homeomorphism between Uξ and an open subset of R
2.

Suppose also that for every ξ, ζ ∈ Ω, φζ ◦φ
−1
ξ : φξ(Uζ ∩Uξ) → φζ(Uζ ∩Uξ) is a

C1 mapping whenever Uξ∩Uζ 6= ∅. Then, according to standard terminology,
see e.g. [19], Φ = {(Uξ, φξ)}ξ∈Ω is an atlas for Ω, and (Uξ, φξ), ξ ∈ Ω, are its
charts. We emphasize that we need a chart for each ξ ∈ Ω, rather than simply
a covering of Ω by charts, as is usually required of an atlas. Moreover, we
suppose that the charts depend smoothly on ξ in the sense of Definition 3.1
below. Let

Bξ := φξ(Uξ), φζξ := φζ ◦ φ
−1
ξ .

Then Bξ is an open set in R
2, and φζξ is an invertible C1 mapping between

φξ(Uζ ∩ Uξ) ⊂ Bξ and φζ(Uζ ∩ Uξ) ⊂ Bζ.
A real function f defined in a neighborhood of a point ξ ∈ Ω is said to be

continuous (C0) at ξ if one of its local representations f ◦ φ−1
ζ is continuous

at φζ(ξ) for some ζ with ξ ∈ Uζ . Similarly, we say that f is continuously
differentiable (C1) at ξ provided one of its local representations f ◦ φ−1

ζ is
continuously differentiable at φζ(ξ) for some ζ with ξ ∈ Uζ . Since all φζξ are
C1 mappings, every local representation f ◦ φ−1

ζ will then be C0 (resp. C1)
at φζ(ξ).

For a C1 function f defined in a neighborhood U of ζ ∈ Ω, we also define
Jζ(f) : U ∩ Uζ → R

2×2 by

Jζ(f)(µ) := J(f ◦ φ−1
ζ )(φζ(µ)), µ ∈ U ∩ Uζ ,

where for any smooth function g : R
2 → R

2, g = [g[1], g[2]]T , J(g) denotes its
Jacobian

J(g) :=

[

∂g[1]

∂x[1]
∂g[1]

∂x[2]

∂g[2]

∂x[1]

∂g[2]

∂x[2]

]

.

We write
Jζξ := Jξ(φζ), on Uζ ∩ Uξ,

so that

Jζξ(µ) = Jξ(φζ)(µ) = J(φζξ)(φξ(µ)), µ ∈ Uζ ∩ Uξ,

8



is the Jacobian of φζξ evaluated at φξ(µ). Since φ−1
ζξ = φξζ, the well-known

properties of the Jacobian imply

[Jζξ(µ)]−1 = Jξζ(µ). (3.1) jacobrelat

smoothness Definition 3.1. We say that the charts (Uξ, φξ) depend smoothly on ξ if
φξ(ξ) is a C1 function of ξ, and for each ξ ∈ Ω there is an open neighborhood
Ũξ of ξ such that the following conditions hold:

• Ũξ ⊂ Uζ for all ζ sufficiently close to ξ.

• For any ζ sufficiently close to ξ, there is a rotation or rotoinversion (a
rotation followed by a flip) rζ : R

2 → R
2 about φζ(ζ) such that for any

µ ∈ Ũξ, both (rζ ◦ φζ)(µ) and Jµ(rζ ◦ φζ)(µ) are C1 functions of ζ at
ζ = ξ.

If the charts of a C1 atlas Φ = {(Uξ, φξ)}ξ∈Ω depend smoothly on ξ, then Φ
is said to be admissible.

It is shown in Section 7 that if Ω is a 2-dimensional manifold embedded in
R

3, then an admissible atlas can be defined using local orthogonal projections
onto tangent planes. More specific examples of admissible atlases are given
in Remarks 8.10 and 8.11 for the sphere and the torus.

Note that removing local transformations rζ from Definition 3.1 would
result in severe restrictions on the topology of the manifold Ω. This is related
to the famous ‘hairy ball’ theorem, see Remark 8.6.

3.2 Gradients
grad

Suppose that f is a continuously differentiable real-valued function on Ω.
For any ξ ∈ Ω, we write fξ := f ◦ φ−1

ξ . Then fξ : Bξ → R is a bivariate C1

function. For any µ ∈ Uξ, we write

∇ξf(µ) := ∇fξ(φξ(µ))

for the value of the gradient ∇fξ :=
[

∂fξ

∂x[1] ,
∂fξ

∂x[2]

]

of fξ at φξ(µ). If Uζ∩Uξ 6= ∅,

then fξ = fζ ◦ φζξ on φξ(Uζ ∩ Uξ), and by the chain rule,

∇ξf(µ) = ∇ζf(µ) Jζξ(µ), µ ∈ Uξ ∩ Uζ . (3.2) gradtrans
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3.3 Sobolev spaces

Given a continuous function f : Ω → R, we define its maximum norm to be
‖f‖C(Ω) := maxξ∈Ω |f(ξ)|. Given r ≥ 1, we say that f belongs to the Sobolev
space W r

∞(Ω) provided fξ ∈ W r
∞(Bξ) for all ξ ∈ Ω. We define the Sobolev

norm on W r
∞(Ω) by

‖f‖W r
∞

(Ω) := max
ξ∈Ω

‖fξ‖W r
∞

(Bξ).

This definition of the Sobolev norm for the functions defined on the manifold
Ω is equivalent to the standard definitions, see [13].

3.4 Manifold Triangulations
tri

Given a set V of points in Ω, let T be a set of triples τ = {v, u, w} of points
v, u, w ∈ V such that

• any two triples have at most two common points,

• any pair of points in V belong to at most two different triples in T , and

• for any v ∈ V, the set of all triples containing v forms a cell, i.e.
{τ ∈ T : v ∈ τ} = {τi}

n
i=1 for some n ≥ 3, where τi = {v, vi, vi+1}, with

distinct v1, . . . , vn, and vn+1 = v1.

If these conditions are satisfied, we say that T is a triangulation of Ω with
vertices V. We say that two vertices v1, v2 are connected in T if there is a
triple τ ∈ T containing both v1 and v2. This definition of a triangulation of a
manifold Ω is described by connectivity of vertices only, and does not involve
“edges” or “triangles” on Ω. Indeed, T is essentially an abstract simplicial
complex [25] with vertices in Ω.

It is well known that any compact 2-dimensional manifold Ω can be tri-
angulated (see [20, 24]), i.e. there exists a finite triangulation T of Ω in the
above sense along with a corresponding partition of Ω into homeomorphic
images of triangles, similar to a planar triangulation. Such a partition is also
called a triangulation of Ω, but since we never make use of it in this paper,
there will be no confusion with our definition.

Given ξ ∈ Ω, assuming that all vertices of τ = {v, u, w} ∈ T are
in Uξ, we denote by φξ(τ) the (open) planar triangle in Bξ with vertices
φξ(u), φξ(v), φξ(w). Note that the triangle φξ(τ) may be degenerate.
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consistency Definition 3.2. Let Φ = {(Uξ, φξ)}ξ∈Ω be an admissible atlas for Ω. Let
Ũξ, ξ ∈ Ω, be the open neighborhoods in Definition 3.1. We say that a
triangulation T of Ω is consistent with Φ provided that for any ξ ∈ Ω, there
is a finite subset △ξ ⊂ {φξ(τ) : τ ⊂ Ũξ} such that

• every triangle T ∈ △ξ is non-degenerate,

• △ξ is a planar triangulation of Pξ := ∪T∈△ξ
T ,

• φξ(ξ) lies in the interior of Pξ.

Let Vξ be the set of vertices of all τ such that φξ(ξ) lies in the closure of
φξ(τ), i.e.

Vξ := {v ∈ V ∩ Uξ : φξ(ξ) ∈ φξ(τ) for some τ ∈ T with a vertex at v}.

For a consistent triangulation T , if ξ is a vertex in V, then Vξ consists of ξ and
all vertices connected to it. For any point ξ ∈ Ω\V the set Vξ contains either
three or four points, depending on whether φξ(ξ) belongs to the interior of
a triangle in △ξ, or lies on a common edge of two such triangles. We say
that ξ is an interior point or respectively an edge point with respect to the
triangulation T . We have φξ(Vξ) ⊂ Pξ in any case, and hence Vξ ⊂ Ũξ.

cVxi Lemma 3.3. Let T be a triangulation consistent with an admissible atlas Φ
for Ω. Then for any ξ ∈ Ω, Vζ ⊆ Vξ for all ζ ∈ Ω sufficiently close to ξ.

Proof. According to Definition 3.1, for all ζ sufficiently close to ξ, (rζ◦φζ)(µ)
is a C1 function of ζ at ζ = ξ, for appropriately chosen transformations
rζ and for any µ ∈ Ũξ. Assume v ∈ Vζ. Then φζ(ζ) ∈ φζ(τ) for some
τ = {v1, v2, v3} ∈ T with v1 = v. We set vi(ζ) = (rζ ◦ φζ)(vi), i =
1, 2, 3, and let T (ζ) = 〈v1(ζ), v2(ζ), v3(ζ)〉 be the triangle in R

2 with vertices
v1(ζ), v2(ζ), v3(ζ). We have φζ(ζ) = (rζ ◦ φζ)(ζ) ∈ T (ζ). Since vi ∈ Vζ ⊂ Ũξ,
i = 1, 2, 3, the functions vi(ζ) are continuous at ζ = ξ. By Definition 3.1,
φζ(ζ) is also a continuous function of ζ . In the limit we obtain φξ(ξ) ∈ T (ξ),

which implies φξ(ξ) ∈ φξ(τ) and hence v ∈ Vξ.

It is easy to see that the set of all interior points with respect to a con-
sistent triangulation is an open subset of Ω. Indeed, if ξ is an interior point,
then Vξ consists of just three vertices. For any ζ sufficiently close to ξ,
Vζ ⊂ Vξ and Vζ cannot have fewer than three vertices. Hence Vζ = Vξ and
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ζ is an interior point. In addition to consistency, we will need the following
assumption specifically related to the Powell-Sabin spline:

for every ξ ∈ Ω, if φξ(ξ) ∈ T for a T ∈ △ξ, then △ξ also
includes three triangles sharing edges with T .

(3.3) fine1

We extend Vξ to Ṽξ by adding to Vξ the vertices of the triangles described in
(3.3). Definition 3.2 implies that Ṽξ ⊂ Ũξ. For a consistent triangulation T ,
we define the mesh size of T as the length of the longest edge in the triangles
in the set {△ξ}ξ∈Ω.

4 An Interpolation Method
PS

Let T be a triangulation of Ω consistent with an admissible atlas Φ =
{(Uξ, φξ)}ξ∈Ω. We assume that T is fine enough for (3.3) to hold. Let

D := {av, σv}v∈V , where av are real numbers and σv = [σ
[1]
v , σ

[2]
v ] are 2-

vectors. We now show how to construct a C1 function sT defined on Ω that
satisfies the interpolation conditions

sT (v) = av, ∇vsT (v) = σv, all v ∈ V. (4.1) interp

eval Algorithm 4.1. Given ξ ∈ Ω, compute sT (ξ):

1. Let T := 〈w1, w2, w3〉 be a triangle in △ξ such that φξ(ξ) ∈ T , and let
T1 := 〈w4, w3, w2〉, T2 := 〈w5, w1, w3〉, and T3 := 〈w6, w2, w1〉 be the
three triangles in △ξ sharing edges with T , see Figure 1(a).

2. Let TPS be the Powell-Sabin split of T into six triangles obtained by
connecting the incenter w of T to the incenters of T1, T2, T3, and to the
vertices w1, w2, w3, see Figure 1(b).

3. Let gi := σvi
Jviξ(vi), where vi = φ−1

ξ (wi), for i = 1, 2, 3.

4. Let sT (ξ) be the value at φξ(ξ) of the Powell-Sabin C1 quadratic spline
sξ defined on TPS that satisfies sξ(wi) = avi

and ∇sξ(wi) = gi for
i = 1, 2, 3.

Since the Powell-Sabin interpolant in step 4) is uniquely defined by the
values {(avi

, gi)}
3
i=1 at the vertices {wi}

3
i=1, it follows that sT is uniquely

defined by the data D. By construction, sT satisfies (4.1).
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smooth Theorem 4.2. The interpolant sT is a C1 function on the manifold Ω.

Proof. We may assume without loss of generality that for any ζ ∈ Ω the
point φζ(ζ) is the origin in R

2, since otherwise we may replace φζ by φζ −
φζ(ζ), and sζ by sζ(· + φζ(ζ)), which coincides with the Powell-Sabin spline
computed with respect to the shifted version of the local triangulation △ζ .

Fix ξ ∈ Ω. Since we are assuming that the charts of Φ depend smoothly
on ξ, it follows that for any ζ sufficiently close to ξ there is a rotation or
rotoinversion rζ : R

2 → R
2 about the origin (an orthogonal linear trans-

formation of the plane) such that both (rζ ◦ φζ)(µ) and Jµ(rζ ◦ φζ)(µ), as
functions of ζ , are continuously differentiable at ζ = ξ as soon as µ ∈ Ũξ.
Without loss of generality we assume that rξ is the identity. Recall from Sec-
tion 3.4 that Vξ denotes the set of all vertices v ∈ V ∩Uξ such that φξ(ξ) ∈ T
for a triangle T ∈ △ξ attached to φξ(v). Since T is consistent with the atlas
Φ, by Lemma 3.3 we may choose a neighborhood U ⊂ Uξ of ξ such that
Vζ ⊆ Vξ ⊂ Ũξ for all ζ ∈ U . Moreover, according to Definition 3.1, we may
choose a smaller U to ensure that Ũξ ⊂ Uζ for all ζ ∈ U . For any ζ ∈ U it
follows by Definition 3.2 that all points in φζ(Vζ) are vertices of △ζ. Clearly,
△ζ includes all triangles φζ(τ) for τ ∈ T with vertices in Vζ . In view of
(3.3), it also includes images of the triangles having a pair of vertices in Vζ .
Moreover, Ṽξ ⊂ Ũξ ⊂ Uζ .

Now for any ζ ∈ U and each vertex v ∈ Ṽξ, set v(ζ) = (rζ ◦ φζ)(v). The
functions v(ζ) are continuously differentiable at ζ = ξ. Let △̃ζ denote the
triangulation obtained by applying rζ to △ζ , and let △̃ζ,TP be the Powell-
Sabin split of △̃ζ . Since rζ is an orthogonal transformation, it is easy to
see that sT (ζ) can be computed as the value at the origin of the Powell-
Sabin spline s̃ζ defined on △̃ζ,TP that interpolates the values {(av, g(ζ))}
at the vertices v(ζ) for all v ∈ Ṽξ, where g(ζ) = σvJvζ(v)J(r−1

ζ ). Since

Jvζ(v)J(r−1
ζ ) = [Jv(rζ ◦ φζ)(v)]

−1 is continuously differentiable with respect
to ζ at ζ = ξ, and since by Theorem 2.1 the value of the Powell-Sabin
interpolant sζ depends smoothly on the vertex locations and the data, we
conclude that sT is continuously differentiable at ξ.

Suppose that sT (f) is the interpolant corresponding to the data

av := f(v), σv := ∇vf(v), all v ∈ V ,

where f is a smooth function defined on Ω. We now show that sT (f) ap-
proximates f to order O(h3), where h is the mesh size of T , i.e., the length
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of the longest edge in the triangles in the set {△ξ}ξ∈Ω. Let α be the smallest
angle appearing in the triangles in this set.

PSerror Theorem 4.3. Let f ∈W 3
∞(Ω). Then

‖f − sT (f)‖C(Ω) ≤ K h3‖f‖W 3
∞

(Ω), (4.2) ferror

where K is a constant depending only on α.

Proof. Fix ξ ∈ Ω, and let sξ be the bivariate Powell-Sabin spline defined on
the triangulation △ξ that interpolates the values {(avi

, gi)}
3
i=1 at the vertices

{wi}
3
i=1 of the triangle in △ξ containing ξ as described in Algorithm 4.1.

Then
fξ(wi) = f(vi) = avi

= sξ(wi), i = 1, 2, 3,

and by (3.2)

∇fξ(wi) = ∇ξf(vi) = ∇vi
f(vi) Jviξ(vi) = σvi

Jviξ(vi) = ∇sξ(wi),

i = 1, 2, 3.
Thus, sξ interpolates the function values and gradients of fξ at w1, w2, w3.

It follows from well-known error bounds for bivariate Powell-Sabin interpo-
lation [30] (see also [21]) that

|fξ(ξ) − sξ(ξ)| ≤ K1h
3‖fξ‖W 3

∞
(Bξ),

where K1 is a constant depending only on the smallest angle in △ξ. By the
definition of the Sobolev norm on Ω, taking the maximium over ξ ∈ Ω gives
(4.2).

5 A Two-Stage Data Fitting Method
scheme

In practice we are frequently given only values of an unknown function f at
a set X of scattered data points on the manifold Ω. In this case we can use a
two-stage method to construct an approximation. First we select a consistent
triangulation T of Ω satisfying (3.3). Let V be the set of vertices of T . Note
that we do not require that the vertices be located at the data points of X,
and the number of vertices may be much smaller than the number of data
points.

14



In the first stage of the algorithm we compute approximations to the
values {f(v),∇vf(v)}v∈V based on the data {f(ξ)}ξ∈X. We perform these
calculations in the sets Bv ⊂ R

2 using techniques available for local fitting
of bivariate data. To carry this out, we suppose that

X is sufficiently dense so that X ∩ Uv 6= ∅ for each v ∈ V. (5.1) fine2

Experience with the bivariate case [10] suggests that for each v ∈ V, we
compute both av ≈ f(v) and σv ≈ ∇vf(v) by averaging several estimates of
the same quantities based on different sets of nearby data. It follows from
the consistency of T that for each vertex v ∈ V, all vertices of T connected
to v belong to the set Uv.

1st Algorithm 5.1. Given {f(ξ)}ξ∈X, compute {av, σv}v∈V

1. For each v ∈ V,

(a) Let v0 := v, and let v1, v2, . . . , vn ∈ V be the set of vertices of T
connected to v. Let ṽi = φv(vi), i = 1, . . . , n.

(b) Choose a set X̃v ⊂ φv(X ∩ Uv) of points in Bv near φv(v).

(c) Compute a bivariate approximation pv defined on Bv based on the
data {fv(ξ̃)}ξ̃∈X̃v

, where fv := f ◦ φ−1
v .

(d) Store the numbers av,vi
:= pv(ṽi) and vectors σv,vi

:= ∇pv(ṽi) Jvvi
(vi)

for i = 0, . . . , n.

2. For each v ∈ V, set

av :=
1

n+ 1

n
∑

i=0

avi,v, σv :=
1

n + 1

n
∑

i=0

σvi,v.

In the second stage of the algorithm we construct our approximant sT as
the interpolant (4.1) to the data {av, σv}v∈V obtained from Algorithm 5.1.

We have not specified how T is selected and how the steps 1(b) and 1(c)
of Algorithm 5.1 are to be performed. However, the overall performance of
the two-stage method will depend significantly on the particular techniques
used in these steps. Numerical examples in our paper [9] make use of recently
developed adaptive techniques based on local least squares fitting by bivariate
polynomials and radial basis functions [7, 8, 10].
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6 An Error Bound for the Two-Stage Method
error

Suppose that f is a smooth function defined on Ω, and that sT = sT (f) is the
approximant of f constructed in the previous section based on measurements
{f(ξ)}ξ∈X of f at some scattered setX of data points on Ω. Let h be the mesh
size of the triangulation T . In this section we show that sT approximates
f to order h3 as h → 0 provided that for each vertex v of T , the local
approximation pv of fv := f ◦ φ−1

v approximates the function value fv(v) to
order at least h3, and the first derivatives of fv at v to order h2.

Given ξ ∈ Ω, let △ξ be the associated planar triangulation in Bξ, as in
Section 3.4. Let κ(ξ) be the maximum of max{‖Jξv(v)‖2, ‖Jvξ(v)‖2} over all
v ∈ V ∩Uξ such that φξ(ξ) belongs to the closure of a triangle of △ξ attached
to φξ(v). We assume that

κ := sup
ξ∈Ω

κ(ξ) <∞. (6.1) kappa

For each v ∈ V, let Nv be the union of all triangles of △v attached to v,
and let pv be the bivariate approximation to fv, as in Algorithm 5.1.

b1 Theorem 6.1. Let f ∈W 3
∞(Ω). Then

‖f − sT ‖C(Ω) ≤ K
[

h3‖f‖W 3
∞

(Ω)

+ max
v∈V

{

‖fv − pv‖C(Nv) + h‖∇fv −∇pv‖C(Nv)

}

]

,

where K is a constant depending only on κ and the smallest angle α.

Proof. Let ξ ∈ Ω. We have |f(ξ)−sT (ξ)| = |fξ(ξ)−sξ(ξ)|, where fξ := f◦φ−1
ξ

and sξ is the bivariate Powell-Sabin interpolating spline on the planar trian-
gulation △ξ, computed using the values avi

and vectors σvi
corresponding to

the vertices {wi := φξ(vi)}
3
i=1, of the triangle T in Bξ that contains φξ(ξ).

Recall that avi
, σvi

are computed in the first stage using Algorithm 5.1. By
Algorithm 4.1,

sξ(wi) = avi
, ∇sξ(wi) = σvi

Jviξ(vi), i = 1, 2, 3.

Let ŝ be the bivariate Powell-Sabin spline on the triangulation △ξ inter-
polating the exact values and gradients of fξ, i.e.,

ŝ(wi) = âvi
= fξ(wi) = f(vi), ∇ŝ(wi) = σ̂vi

= ∇fξ(wi) = ∇ξf(vi),
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for i = 1, 2, 3. Then by Theorem 4.3,

|fξ(ξ) − ŝ(ξ)| ≤ K1h
3‖f‖W 3

∞
(Ω),

where K1 is a constant depending only on α. Now by a standard argument
involving the cardinal functions of Powell-Sabin interpolation,

|ŝ(ξ) − sξ(ξ)| ≤ K2 max
i=1,2,3

{

|âvi
− avi

| + h‖σ̂vi
− σvi

Jviξ(vi)‖2

}

,

with a constant K2 depending only on α. For each i = 1, 2, 3,

âvi
− avi

= f(vi) −
1

n+ 1

n
∑

j=0

auj ,vi
=

1

n+ 1

n
∑

j=0

[

fuj
(wij) − puj

(wij)
]

,

where u0 = vi, the u1, . . . , un are the vertices of T connected to vi, and
wij = φuj

(vi). Since wij ∈ Nuj
, it follows that

|fuj
(wij) − puj

(wij)| ≤ ‖fuj
− puj

‖C(Nuj
),

and hence

|âvi
− avi

| ≤ max
v∈V

‖fv − pv‖C(Nv), i = 1, 2, 3.

Similarly, by (3.2) and the definition of σvi
,

σ̂vi
− σvi

Jviξ(vi) = ∇ξf(vi) −
1

n+ 1

n
∑

j=0

σuj ,vi
Jviξ(vi)

=
1

n+ 1

n
∑

j=0

(

∇vi
f(vi) − σuj ,vi

)

Jviξ(vi).

Since σuj ,vi
= ∇puj

(wij) Jujvi
(vi) and ∇uj

f(vi) = ∇fuj
(wij), (3.2) implies

∇vi
f(vi) − σuj ,vi

=
(

∇uj
f(vi) −∇puj

(wij)
)

Jujvi
(vi)

=
(

∇fuj
(wij) −∇puj

(wij)
)

Jujvi
(vi).

Hence

‖∇vi
f(vi) − σuj ,vi

‖2 ≤ ‖∇fuj
(wij) −∇puj

(wij)‖2 ‖Jujvi
(vi)‖2

≤ κ‖∇fuj
−∇puj

‖C(Nuj
),

and
‖σ̂vi

− σvi
Jviξ(vi)‖2 ≤ κ2 max

v∈V
‖∇fv −∇pv‖C(Nv).

Combining the above inequalities, we get the desired estimate.
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7 C2-Manifolds Embedded in R
3

R3

In this section we examine the case when Ω is an arbitrary compact 2-
dimensional C2-manifold embedded in R

3. Our main task is to show how
to construct an atlas for Ω that satisfies the smoothness assumptions of Sec-
tion 3.1. More details on our method for scattered data fitting on surfaces,
including extensive numerical tests, can be found in [9].

Throughout this section, we write 〈·, ·〉 for the usual inner product in R
3,

and ‖a‖2 for the Euclidean norm of any 3-vector a.

7.1 Projection atlas
projections

Since Ω is embedded in R
3, it can be represented locally as a regular level

surface of a C2 function of three variables. More precisely, each point ξ ∈ Ω
has a neighborhood Gξ in R

3 such that Gξ ∩ Ω = F−1
ξ (0), where Fξ : Gξ → R

is a C2 function with nonzero gradient ∇Fξ everywhere in Gξ ∩ Ω, see [19].
Then nξ := ∇Fξ(ξ)/‖∇Fξ(ξ)‖2 is a normal vector to Ω at ξ. Moreover, the
tangent plane Γξ is the unique plane in R

3 that contains ξ and is orthogonal
to nξ. Clearly, for all ζ ∈ Gξ ∩ Ω, a normal vector to Ω at ζ can also be
computed as ∇Fξ(ζ)/‖∇Fξ(ζ)‖2. It coincides with either nζ or −nζ . Clearly,
〈nξ,∇Fξ(ζ)〉 > 0 for all ζ ∈ Gξ ∩ Ω.

We are now ready to define an atlas associated with Ω. For each ξ ∈ Ω,
let Uξ be the connected component of the open set {ζ ∈ Ω : 〈nξ, nζ〉 6= 0} that
contains ξ. Then Uξ is an open neighborhood of ξ. Clearly, the orthogonal
projection πξ : Uξ → Γξ defined by

πξ(ζ) = ζ + 〈ξ − ζ, nξ〉nξ, ζ ∈ Uξ,

is invertible. Assuming that γ
[1]
ξ , γ

[2]
ξ are orthogonal unit vectors in Γξ such

that γ
[1]
ξ × γ

[2]
ξ = nξ, we can also write

πξ(ζ) = ξ + 〈ζ − ξ, γ
[1]
ξ 〉 γ

[1]
ξ + 〈ζ − ξ, γ

[2]
ξ 〉 γ

[2]
ξ .

Define φξ by the formula

φξ(ζ) := [〈ζ − ξ, γ
[1]
ξ 〉, 〈ζ − ξ, γ

[2]
ξ 〉]T , ζ ∈ Uξ.

We call Φ = {Uξ, φξ}ξ∈Ω the projection atlas associated with Ω. The
remainder of this subsection is devoted to a proof that Φ satisfies the hy-
potheses of Section 3.1.
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proadm Theorem 7.1. The projection atlas Φ is an admissible atlas for Ω.

Proof. By the choice of Uξ, φξ is invertible. Consider the coordinate system

for R
3 with coordinate vectors γ

[1]
ξ , γ

[2]
ξ , nξ and origin ξ. For any µ ∈ Uξ,

the equation Fµ = 0 determines an implicit function x[3] = δµ(x
[1], x[2]) in a

neighborhood of φξ(µ), such that

φ−1
ξ (x[1], x[2]) = ξ + x[1]γ

[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ.

Since 〈nξ,∇Fµ(µ)〉 = 〈nξ, nµ〉‖∇Fµ(µ)‖2 6= 0, the implicit function theo-
rem implies that δµ(x[1], x[2]) is a C2 function in a neighborhood of φξ(µ).
Assuming µ ∈ Uξ ∩ Uζ , we also have

φζξ(x
[1], x[2]) = (φζ ◦ φ

−1
ξ )(x[1], x[2]) = [φ

[1]
ζξ(x

[1], x[2]), φ
[2]
ζξ(x

[1], x[2])]T ,

where for i = 1, 2,

φ
[i]
ζξ(x

[1], x[2]) = 〈ξ − ζ + x[1]γ
[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ, γ

[i]
ζ 〉 (7.1) phizx

in a neighborhood of φξ(µ). Therefore φζξ : φξ(Uξ ∩ Uζ) → φζ(Uξ ∩ Uζ) is a
C2 mapping.

For later use, we now obtain explicit formulas for the Jacobian Jζξ(ξ) :=
J(φζξ)(φξ(ξ)) as defined in Section 3.1, and its determinant. By the above
construction, the implicit function x[3] = δξ(x

[1], x[2]) is C2 in a neighborhood
of the origin φξ(ξ). Moreover, it vanishes together with its gradient at the
origin. Hence, by (7.1),

Jζξ(ξ) = [〈γ
[i]
ζ , γ

[j]
ξ 〉]i,j=1,2. (7.2) Jzx

Clearly, the determinant of this matrix is the projection of nζ = γ
[1]
ζ ×γ

[2]
ζ on

nξ, i.e.,
det Jζξ(ξ) = 〈nζ, nξ〉. (7.3) detJzx

It remains to show that the charts (Uξ, φξ) depend smoothly on ξ in the
sense of Definition 3.1. To this end, we fix ξ ∈ Ω and choose Ũξ ⊂ Uξ to
be an open neighborhood of ξ such that the closure of Ũξ is a compact set
contained in Uξ. Then infµ∈Ũξ

|〈nξ, nµ〉| > 0 and hence 〈nζ, nµ〉 6= 0 for all

µ ∈ Ũξ and all ζ in some neighborhood of ξ. This implies that Ũξ ⊂ Uζ for
all ζ sufficiently close to ξ.
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For any ζ ∈ Uξ we define a coordinate system in Γζ with origin ζ and

orthonormal coordinate vectors γ̃
[1]
ζ , γ̃

[2]
ζ , where

γ̃
[1]
ζ = γ̂

[1]
ζ /‖γ̂

[1]
ζ ‖2, γ̂

[1]
ζ = γ

[1]
ξ − 〈γ

[1]
ξ ,∇Fξ(ζ)〉∇Fξ(ζ),

γ̃
[2]
ζ = ñζ × γ̃

[1]
ζ , ñζ = ∇Fξ(ζ)/‖∇Fξ(ζ)‖2.

Set
φ̃ζ(µ) := [〈µ− ζ, γ̃

[1]
ζ 〉, 〈µ− ζ, γ̃

[2]
ζ 〉]T , µ ∈ Ũξ ⊂ Uζ .

Since the coordinate system γ
[1]
ζ , γ

[2]
ζ can be obtained from γ̃

[1]
ζ , γ̃

[2]
ζ by an

orthogonal linear transformation rζ : R
2 → R

2,

φ̃ζ = rζ ◦ φζ.

Since Fξ is a C2 function and ∇Fξ(ζ) 6= 0 for all ζ ∈ Uξ, it follows that φ̃ζ(µ),
as a function of ζ , is continuously differentiable at ζ = ξ.

Finally, for a fixed µ ∈ Ũξ consider M(ζ) := Jµ(rζ ◦φζ)(µ) = J(rζ)Jζµ(µ).
In view of (7.2),

M(ζ) = J(rζ)[〈γ
[i]
ζ , γ

[j]
µ 〉]i,j=1,2 = [〈γ̃[i]

ζ , γ
[j]
µ 〉]i,j=1,2,

which is continuously differentiable at ζ = ξ, as required.

7.2 Projected gradients
pgrad

Let f ∈ C1(Ω), and let fξ = f ◦φ−1
ξ . Since Ω is embedded in R

3, the gradient

∇fξ =
[

∂fξ

∂x[1] ,
∂fξ

∂x[2]

]

of fξ can be identified with the 3-vector

grad fξ =
∂fξ

∂x[1]
γ

[1]
ξ +

∂fξ

∂x[2]
γ

[2]
ξ

lying in the tangent plane Γξ ⊂ R
3. Adopting a notation similar to that in

Section 3.2, we write

gradξf(µ) := (grad fξ)(φξ(µ)), µ ∈ Uξ,

for the gradient of fξ evaluated at φξ(µ). We call gradξf(µ) the projected
gradient of f at µ. It is easy to see that gradξf(ξ) coincides with the standard
gradient of a function on a 2-surface in R

3, as defined for example in [33,
p. 96]. We also need projected gradients when µ 6= ξ.
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pgradtrans Lemma 7.2. For any ξ ∈ Ω and ζ ∈ Uξ, the projected gradient gradζf(ζ) is
the orthogonal projection of gradξf(ζ) onto Γζ . In particular,

gradζf(ζ) = gradξf(ζ) − 〈gradξf(ζ), nζ〉nζ , (7.4) pro1

and

gradξf(ζ) = gradζf(ζ) −
〈gradζf(ζ), nξ〉

〈nζ , nξ〉
nζ , if 〈nζ, nξ〉 6= 0, (7.5) pro2

where nζ and nξ are the unit normal vectors to Γζ and Γξ, respectively.

Proof. We have

gradξf(ζ) =
∂fξ

∂x[1]

(

φξ(ζ)
)

γ
[1]
ξ +

∂fξ

∂x[2]

(

φξ(ζ)
)

γ
[2]
ξ .

Its projection onto Γζ is therefore

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ
[1]
ξ , γ

[1]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ
[2]
ξ , γ

[1]
ζ 〉

)

γ
[1]
ζ

+

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ
[1]
ξ , γ

[2]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ
[2]
ξ , γ

[2]
ζ 〉

)

γ
[2]
ζ .

This last expression coincides with gradζf(ζ), since

∇ζf(ζ) = ∇ξf(ζ)Jξζ(ζ) = ∇ξf(ζ) [〈γ
[i]
ξ , γ

[j]
ζ 〉]i,j=1,2

by (3.2) and (7.2).
The formulas (7.4) and (7.5) for the projection and inverse projection,

respectively, follow immediately.

7.3 Consistent triangulations
triR3

As mentioned in Section 3.4, every compact 2-dimensional smooth manifold
Ω admits a triangulation T . Let Ω be embedded into R

3, and let Φ be
the projection atlas for it. For any ǫ > 0 there is a triangulation T of Ω
consistent with Φ and with the mesh size h < ǫ. Clearly, any triangulation
will be consistent with Φ if it is sufficiently fine in the sense that for each ξ ∈ Ω
there is a triangle τ ∈ T with vertices in Ũξ such that φξ(ξ) ∈ φξ(τ), and
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the maximum distance in R
3 between connected vertices of T is sufficiently

small. See [2] for a construction of suitable triangulations using sufficiently
dense samples of points on 2-dimensional manifolds embedded in R

3.
Recall that Ũξ of Section 7.1 may be any open set whose closure is a

compact subset of Uξ. Therefore Definition 3.2 can be simplified when Φ
is the projection atlas by removing any reference to Ũξ, and requiring that
△ξ ⊂ {φξ(τ) : τ ⊂ Uξ} instead of △ξ ⊂ {φξ(τ) : τ ⊂ Ũξ}, see [9].

7.4 Interpolation and data fitting
interp-fit

Using projected gradients, we can reformulate the interpolation problem

sT (v) = av, ∇vsT (v) = σv, all v ∈ V, (7.6) interp1

of (4.1) as
sT (v) = av, gradvsT (v) = cv, all v ∈ V, (7.7) interpR3

where cv = σ
[1]
v γ

[1]
ξ + σ

[2]
v γ

[2]
ξ is a vector in Γv.

An advantage of the formulation (7.7) over (7.6) is that each cv is deter-
mined by just three real numbers (the Cartesian coordinates of cv), whereas

σv requires two real numbers and the tangent vectors γ
[1]
ξ , γ

[2]
ξ . Thus, when

defining sT by (7.7), we do not need any coordinate systems in the tangent
planes Γv.

Clearly, Algorithms 4.1 and 5.1 can now be formulated without refer-
ence to any coordinate systems in the tangent planes provided we use pro-
jected gradients. Assume the data is given as {av, cv}v∈V , where av are
real numbers and cv are 3-vectors in Γv. Then to construct a C1 function
sT defined on Ω that satisfies the interpolation conditions (7.7), we sim-
ply apply Algorithm 4.1, where we replace the formula for gi in step 3 by

gi := cvi
−

〈cvi
,nξ〉

〈nvi
,nξ〉

nvi
, and require in step 4 that sξ interpolates the values

{avi
}3

i=1 and the gradients corresponding to the tangent vectors {gi}
3
i=1 at

the vertices {wi}
3
i=1. Algorithm 5.1 describing the first stage of the two-stage

data fitting method can also be reformulated by replacing the vectors σv,vi
in

step 1d by cv,vi
:= grad pv(ṽi) − 〈grad pv(ṽi), nvi

〉nvi
for i = 0, . . . , n, and by

taking the average of cvi,v’s instead of σvi,v’s in step 2. Precise formulations
can be found in [9].

Theorems 4.3 and 6.1 give error bounds for our interpolation and scat-
tered data fitting methods, respectively, in terms of the mesh size h of T ,
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i.e., the length of the longest edge in the triangles in the set {△ξ}ξ∈Ω, the
smallest angle α appearing in the triangles in this set, and the parameter
κ defined in (6.1). In the case of surfaces embedded in R

3, there are more
convenient parameters to play the role of h, α, κ. Let us define the mesh size
h̃ as the maximum distance in R

3 between any pair of vertices v ∈ V con-
nected in T . By actually connecting these pairs of vertices by straight line
segments, we obtain a 2-dimensional triangulation in R

3. Let α̃ be the small-
est angle appearing in its triangles. Let, furthermore, κ̃(ξ) be the maximum
of 〈nξ, nv〉

−1 over all v ∈ V ∩ Uξ such that ξ = φξ(ξ) belongs to the closure
of a triangle of △ξ attached to φξ(v), and let κ̃ = maxξ∈Ω κ̃(ξ). Assuming
Φ is the projection atlas, it is not difficult to see that (a) h ≤ h̃, (b) α̃ > 0
implies α > 0 if h̃ is sufficiently small, and (c) κ < ∞ if and only if κ̃ < ∞.
(Note that (c) follows from (3.1), (7.2) and (7.3).) Thus, in the case of the
projection atlas, Theorems 4.3 and 6.1 can be reformulated with h̃, α̃, κ̃ in
place of h, α, κ, see [9].

8 Remarks

hist Remark 8.1. The problem of fitting functions defined on surfaces arises in
many applications, see for example [1, 3, 4, 5, 11, 12, 14, 15, 16, 22, 23, 28,
29, 32, 34], and references therein. Used parametrically, such functions can
be applied to the problem of modelling surfaces of arbitrary topological type
from point clouds, see for example [17, 18, 35].

sph Remark 8.2. Many of the papers mentioned in the above remark deal with
the sphere in R

3. For a survey of interpolation and scattered data fitting
methods on the sphere, see [14]. For some specific methods, see [16, 22, 23,
28, 32, 34].

Dem Remark 8.3. The method of this paper is closely related to work of Dem-
janovich [11, 12]. He also computes an interpolant s at a point ξ on the
manifold by using local charts (Uξ, φξ) and finite element interpolation in
φξ(Uξ). A key difference is that for each evaluation point ξ, his method in-
volves interpolation of the original function values and derivatives assigned
to certain points in φξ(Uξ) determined by the finite element scheme, whereas
in our methods we only interpolate projected gradients corresponding to the
vertices of the underlying triangulation T , compare steps 3 and 4 of Algo-
rithm 4.1. Therefore, our interpolation operator only requires function values
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and gradients at the vertices of T , which makes it possible to design a two-
stage scattered data fitting method. Only one of the methods in [11, 12]
(based on interpolation with Courant hat functions) has similar properties
for general manifolds, but it does not produce a C1 interpolant.

Pot Remark 8.4. The special case of our method for surfaces in R
3 (Section 7)

is also closely related to work of Pottmann [29], which also makes use of
projected gradients. (It is not difficult to see that equation (7.5) describes the
π-transform of [29].) However, instead of using local approximation methods
to estimate gradients, he constructs a kind of minimum norm network.

CT Remark 8.5. Here we have made use of the standard bivariate C1 quadratic
Powell-Sabin macro-element to solve the interpolation problem in the tangent
plane. Its key feature is that it is constructed from only nine pieces of data,
the values and gradients at the three vertices of the macro-triangle. Using
the same data, we can also construct an interpolant based on the classical C1

reduced Clough-Tocher macro-element. It is based on a split of the macro-
triangle into three subtriangles (typically using the barycenter), and is a cubic
polynomial on each piece. Along each edge its cross derivative is restricted
to be a linear polynomial. Yet another possibility is a modified quadratic
Powell-Sabin macro-element on a 12-split [30], where the cross derivatives
are assumed linear rather than piecewise linear on the edges of the macro-
triangles. Note that with either the Clough-Tocher or Powell-Sabin-12 macro-
element, the assumption (3.3) will not be needed.

hairy_ball Remark 8.6. It follows from the Poincaré-Hopf index theorem [26] that any
continuous tangent vector field on a compact differentiable manifold without
boundary vanishes at a point unless the Euler number of the manifold is zero.
Recall that the Euler number of an oriented surface of genus g is 2−2g. Thus,
the Euler number is zero for the torus, but is nonzero for surfaces of other
topological types, including the sphere. For the sphere, this is just the ‘hairy
ball’ theorem which states that there is no nonvanishing continuous tangent
vector field on the sphere, and explains why we need to use local rotations
rζ in Definition 3.1. Indeed, if the charts (Uξ, φξ) for Ω can be found such
that Definition 3.1 holds with rζ being the identity in all cases, then one can
easily construct a smooth tangent vector field on Ω by taking unit vectors
corresponding to partial derivatives of all local parametrizations. Then the
Poincaré-Hopf theorem implies that the Euler number of Ω is zero, which is
a severe restriction on the topology of the manifold.
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Whitney Remark 8.7. By the Whitney immersion theorem, any 2-dimensional man-
ifold can be immersed in R

3. Clearly, the projection atlas can be used on
these immersions, where the correct tangent planes have to be chosen for
the points of self-intersection. For any 2-dimensional C2-submanifold of R

n,
n > 3, arguing as in Section 7.1, we can use local orthogonal projections on
tangent planes to define an admissible atlas in the sense of Definition 3.1.
This construction is also applicable to arbitrary 2-dimensional C2-manifolds
in view of the Whitney embedding theorem, which says that any smooth
2-dimensional manifold can be smoothly embedded into R

4.

boundary Remark 8.8. For the sake of simplicity, in this paper we consider only com-
pact 2-dimensional manifolds without boundary. Clearly, our method is local,
and therefore can be used on non-compact manifolds that have a countable
basis for their topology. Indeed, by a theorem of Radó, such manifolds can
be triangulated such that every point has a neighborhood that meets only
finitely many triangles [24]. The method is also applicable to manifolds with
boundary. However, in this case we have to assume that all points on the
boundary of Ω are edge points with respect to the triangulation T , see Sec-
tion 3.4. Definition 3.2 needs obvious adjustments for the points ξ on the
boundary, requiring that φξ(ξ) is on the boundary of Pξ instead of its interior.

Rn Remark 8.9. To extend our method to higher dimensional manifolds, one
would need a construction of local C1 interpolants in n variables, with n > 2,
completely determined by the function and gradient values at vertices, and
depending smoothly on this data and the vertex locations. Similarly, to
obtain C2 or higher smoothness Cr with our scheme, a local bivariate Cr

interpolant determined by the function and gradient values at vertices is
needed, whereas all known macro-elements of higher smoothness [21] require
higher order derivative values.

sphe Remark 8.10. If Ω is the 2-dimensional sphere S
2, then an admissible atlas

{(Uξ, φξ)}ξ∈S2 can be defined using either central or stereographic projec-
tions onto the tangent planes rather than the orthogonal projections as in
Section 7.1. The central projection has the property that the edge points
with respect to any consistent triangulation are segments of great circles on
S

2. The advantage of the stereographic projection is that Uξ can be chosen
to be S

2\{−ξ} provided −ξ is the center of the stereographic projection that
defines φξ. Therefore very coarse triangulations, for example the one defined
by a tetrahedron inscribed in the sphere, are consistent with the atlas.
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toru Remark 8.11. In the case when Ω is the torus T
2, the following simple atlas

is admissible. The torus with inner radius R − r and outer radius R + r is
defined parametrically by the equations

x = (R + r cos v) cosu,
y = (R + r cos v) sinu,
z = r sin v,

with u, v ∈ [0, 2π). For each ξ on the torus, let uξ, vξ be its parameter values.
We can reparametrize the torus as

x = (R + r cos(vξ + v)) cos(uξ + u),
y = (R + r cos(vξ + v))) sin(uξ + u),
z = r sin(vξ + v)),

with u, v ∈ [−π, π), and define the chart (Uξ, φξ) by setting φξ(ζ) = (u, v) ∈
R

2, where u, v are the parameter values of ζ , and letting Uξ be the set of
all points ζ with φξ(ζ) ∈ (−π, π)2. This family of charts depends smoothly
on ξ in the sense of Definition 3.1, where no local transformations rζ are
needed. Moreover, the transition mappings φζ ◦ φ

−1
ξ are the shifts (u, v) 7→

(u+ uξ − uζ , v + vξ − vζ). Hence, all Jacobians Jζξ are unit matrices, which
makes the transformations in Step 3 of Algorithm 4.1 and in Step 1(d) of
Algorithm 5.1 trivial. Note that using this atlas with our method is equivalent
to interpreting the data on T

2 as periodic data on R
2, constructing a periodic

triangulation, and interpolating or approximating the data by the ordinary
Powell-Sabin spline.
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