Non-Existence of Star-supported Spline Bases

Peter Alfeld V and Larry L. Schumaker 2

Abstract. We consider polynomial spline spaces Sj(A) of degree d and

smoothness r defined on triangulations. It is known that for d > 3r 4 2, S;(4A)
possesses a basis of star-supported splines, i.e., splines whose supports are at
most the set of triangles surrounding a vertex. Here we extend the theory by
showing that for all d < 3r + 1, there exist triangulations for which no such
bases exist.
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§1. Introduction

Given a regular triangulation A, let
Sg(A):={se€C"(Q): s|r € Py for all triangles T' € A},

where Py is the space of polynomials of degree d, and €2 is the union of the triangles
in A. Such spline spaces have been heavily studied, cf. e.g. [1-10] and references
therein.

Of particular interest for applications are spline spaces that possess a basis
where every spline is supported only on the star of a vertex. (The star of a vertex
is the set of triangles sharing that vertex.) Using such bases in applications leads to
sparse linear systems. We call such splines star-supported. In [1] they are referred
to as minimally supported, while in [5] they are called vertex splines. It is easy to
see that for all d > 1, the spaces S(A) have star-supported bases. In addition,
for r > 1, it is known [6,7] that the spaces Sj(A) possess bases of star-supported
splines for all d > 3r +2. The following complement to this result is the main result
of this paper.

Theorem 1.1. Supposer > 1 and d < 3r + 1. Then there are triangulations A\
for which Sj(/A\) does not have a star-supported basis.

Our proof of this theorem is based on showing that there exist triangulations
such that the number of linearly independent star-supported splines in the space
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S7(A) is less than the dimension of the space. Clearly, it suffices to work with an
upper bound on the number of linearly independent star-supported splines, and a
lower bound on the dimension.

Concerning the dimension of §7(A), as shown in [9],

dim Sj(A) EVB(d2 +d—2rd +1r* — r)/2+ VI(d2 — 3rd + 2r2)

: 1.1
+8rd—d? —3r(r —1)/2+ 140, (1.1)

where Vg and V; are the number of boundary vertices and interior vertices of A\,
respectively, and
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Here V; is the set of interior vertices, and e, is the number of edges of different
slopes attached to the vertex v.

To help simplify the proof, we shall work with uniform type-I triangulations.
Such a triangulation is obtained by starting with a rectangular grid, which we may
assume is generated by the lines z; = ¢/L and y; = j/L for ¢,j = 0,...,L, and
then drawing in all diagonals in the northeasterly direction. For a uniform type-I
triangulation, the number of edges attached to each interior vertex v is six, and the
number of edges with different slopes is three. Thus,
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Oy = (r+1-25),, all v € Vy. (1.3)
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Moreover, for this type of triangulation, the number of interior vertices is signifi-
cantly larger than the number of boundary vertices when L is large, and the term
involving V7 dominates in (1.1). In view of this, to prove Theorem 1.1 it suffices to
establish

Theorem 1.2. Let A g be the triangulation formed by the six triangles surround-
ing a typical interior vertex v of a type-I triangulation. Suppose r > 1 and

d <3r+1, and let
Vi(Ag)={s € S§(Apn): s vanishes up to order r on the boundary of Ap} .

Then
dim Vj(Ap) < Nyg(v) = d*> = 3rd + 2r* + o,. (1.4)
Theorem 1.2 (and thus also Theorem 1.1) is trivial in the case d < r since

in this case SJ(A) = Py, and clearly there are no star-supported splines in the
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Fig. 1. A determining set for V) (Ap).

space. We give a proof of Theorem 1.2 for r + 1 < d < 2r in Sect. 2, and for
2r +1<d<3r 41 in Sect. 4.

Throughout the paper we assume familiarity with the Bernstein-Bézier ma-
chinery as used e.g. in [1-7]. In particular, given a vertex v of /A, we recall that the
J-th ring R;(v) around v is the set of domain points at a distance j from v, while
the j-th disk Dj(v) around v is the set of domain points at a distance of at most j
from v. For each domain point P, we write Aps for the associated coefficient of a
spline s. We recall that a subset I' of the domain points associated with a spline
space § is called a determining set for § provided that the identically zero spline is
the only spline s € § whose coeflicients Aps are zero for all P € I'. We also recall
that if T' is a determining set, then dim § < #T.

We conclude this section with an example to illustrate the basic ideas. Figure 1
shows the B-net of a typical spline in the space V] (Ag). Coefficients marked with
dots on the outermost two rings must be zero because we require function values
and first derivatives of a spline in V}(Ap) to vanish on the boundary of Ag.
We can identify the points in rings Ro(v), ..., R2(v) with the B-net of a spline in
S3(Ap). The subset of points which are marked with a box in the figure form
a minimal determining set for S (Apg). This follows from the general theory of
minimal determining sets for spline spaces on vertex stars given in [10], but can also
easily be verified directly. For a spline s € V}(Ap), not all of these coefficients can
be set independently, since the smoothness conditions coupled with the boundary
conditions imply that certain coefficients in the second ring must be automatically
zero. In particular, the C'! conditions indicated by the quadrilaterals in Figure 1
force the coefficients in the centers of the interior edges to vanish. We see that
five coefficients associated with points in the minimal determining set of S)(Ap)
must vanish. These are marked with boxes containing dots. Thus the dimension

3



4 3
Fig. 2. Theorem 2.1 for V§(Ap).

of V}(Ap) cannot exceed the number of remaining empty boxes, which is 4. Since
Ni,4 = 6, this establishes Theorem 1.2 in this case.

§2. Proof of Theorem 1.1 for r +1 < d < 2r

Given an interior vertex v of a triangulation, let A, be the triangulation consisting
of the triangles which make up star(v). Let

Vi(Ay) ={s € §;(A,) : s vanishes up to order r on the boundary of A,}. (2.1)

In this section we show that for r +1 < d < 2r, VJ(A,) is trivial in the sense
that it contains only the zero function. Applying this to an interior vertex v of a
type-1I triangulation Ay and noting that N, 4 is positive, this implies Theorem 1.2
and thus also Theorem 1.1 in this case. We have the following slightly more precise
result:

Theorem 2.1. V}(A,) = {0} for all d < 2r if r is even, and for all d < 2r + 1 if r
1s odd.

Proof: Consider first the case r = 2m. Suppose vq,...,v, are the vertices con-
nected to v, and let s € VJ(A,). Then by the boundary conditions, all coefficients
of s associated with domain points on the rings R4—,(v),...,Ra(v) are zero. Let

( ) = =(rv+(d—r)v;)/dfori =1,...,n. Applying Lemma 2.2 below to the rings

R]( 51)), L Ry(w a )) for y = 1,...,m shows that all coefficients of s are zero for
domain points on these rings. Then all of the coeflicients associated with points on
the ring Rq_,—1(v) are zero if and only if d < 2r. Now the process can be repeated
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based on the points wgz) =({(r+1)v+(d—r—1)pv;, i =1,...,n. Repeating this
process a total of d — r — 1 times, we find that all of the coefficients of s are zero.

The case r = 2m + 1 is similar. In the first step we apply Lemma 2.2 to the
rings Rj(wgl)), e ,Rj(zuﬁf)) for y =1,...,m + 1. Then all coefficients associated
with the ring Rq_,41(v) are zero if and only if d < 2r + 1. We then repeat as
before. O

Figure 2 illustrates Theorem 2.1 for V§(Apg). The points wgl) alluded to in
the proof are marked with a plus sign in a box. The boundary conditions imply
that the coefficients associated with points on R4(v) are zero. Then carrying out
the first step of the proof, we see that the coefficients associated with the rings
Rl(wl(l)) and R (wl(l)) are zero. These are marked with open triangles and with
filled triangles, respectively. In the second step of the proof we get the coefficients
in the rings Rg(wgz)) to be zero — these are marked as boxes containing a dot.
Finally, in the third step, we find that the coeflicient associated with the point at
v (marked with an open circle) is also zero.

The following restatement of Lemma 3.3 of [7] was used in the proof of Theo-
rem 2.1, and will also be used again later.

Lemma 2.2. Let T = (vg,v1,v2) and T2l = (vo,v2,v3) be two triangles sharing
the common edge e := (vg,v2). Suppose py,ps are polynomials of degree d on
T, T which join together with C* smoothness across the edge e for some 0 <
k < d. Given k < j < d, suppose that all coefficients of p; and p, in the set
Dj;_1(vy) are zero, and define

(1]

Ci = Cd—j,ij—i

(2]

—=cC L
d_]7]_l7l

i=0,....,].

c—;
Suppose that
ci=c_;=0 fori=k—q+1,....k

for some q with m = k — 2q > —1. Suppose in addition that
c;=0 fore=0,...,m ifm>0.

Then ¢; =c_; =0 forallt=0,...,k.

Figure 3 illustrates Lemma 2.2 in the case j = k = d = 3 and ¢ = 2. Here we
are assuming that the coefficients associated with the small dots are all zero, and
that the four coefficients associated with the points marked with a plus sign are
also zero. Then the lemma asserts that the three points associated with the large
dots must be zero.



Fig. 3. Use of Lemma 2.2 for j =k =d =3 and ¢ = 2.

§3. Constructing Minimal Determining Sets on Cells

Let A, be a triangulation which is obtained by connecting a vertex v to boundary
vertices v1,...,vn. Such a triangulation is called a cell. For £ = 1,...,n, let Tl be
the triangle with vertices v, vy, v¢41, where for convenience we identify v, 41 := vy.
We denote the Bézier points in triangle T4 by Pi[ﬁc. We now establish the following
modification of Theorem 3.3 in [10].

Theorem 3.1. Let Ty be the set of all Bézier domain points in the triangle T!].
Suppose pip—eq1 < -+ < ptn, = n+1 are such that the associated edges are pairwise
noncollinear, and let yuy < -+ < pn—e be a complementary set so that M =
{1, pn} =1{2,...,n+1}. Foreachj =1,...,d—r, let '; be the first nj —
(r+74+1)+(r+7+1—je); points in the ordered set

(1] (1] [1n] (1]
{Pdlij—r,o,j—l—r? T 7Pdﬁij—r,j—1,r—|—17 T 7Pdiij—r,0,j—|—r7 T 7Pdlij—r,j—1,r—|—1}7 (31)
and let
d—r
r=Toul Ty
j=1

Then the set I' is a determining set for Sj(A,).

Proof: This theorem differs from Theorem 3.3 of [10] in as much as the points
in each group of (3.1) are written in reverse order. The proof of this version is
nearly identical to the original one. Suppose s is a spline in §j(A,) such that
the coefficients Aps corresponding to points P € T' are all zero. We claim that
this implies s = 0, and thus I is a determining set for Sj(A,). To see this involves
examining the rank of a certain block diagonal matrix A, cf. Lemma 2.1 of [10]. Here
the submatrix B; appearing in the proof of Theorem 2.2 in [10] involves different
columns in the last block, and now corresponds to a Hermite-Birkhoff interpolation
problem of the type described in Lemma 3.2 below. O



Lemma 3.2. Let 6; < -+ < 641 and let 0 < k < m be integers. Then the
Hermite-Birkhoff interpolation problem of finding a polynomial p of degree n :=
Im + k — 1 satisfying

p(j_l)(ei):rij7 J=L...,m i=1,...,1 (32)
P (O41) = riprm—je G =10k |

is poised, i.e., there exists a unique solution for every choice of the data r;;.

Proof: It suffices to show that the homogeneous problem admits only the solution
p = 0. Suppose p satisfies (3.2) with 0 data. Then by Rolle’s theorem, we conclude
that ¢ := p{™ =% has a k-tuple zero at each 6;, i = 1,...,1, m — k zeros in each
interval (6;,6,41), ¢ = 1,...,1 — 1, and an additional k-tuple zero at ;41. Thus ¢
has a total of (k4 (I—1)(m —k)+k = n—(m—k)+1 zeros, counting multiplicities.
But ¢ is a polynomial of degree n — (m — k), and hence ¢ must be identically zero.
Integrating m — k times and using the fact that pU=1(8;) = 0for j = 1,...,m, we
conclude that p=0. O

We will apply Theorem 3.1 to the hexagonal triangulation Ay where n = 6
and e = 3. In this case we take M = {2,3,4,5,6,1}.

84. Proof of Theorem 1.1 for 2r +1<d<3r+1

Throughout this section we assume that
d=2r+k+1 (4.1)

with 0 < k < r. Suppose v is an interior vertex of a uniform type-1 triangulation,
and as before, let A g be the hexagonal triangulation corresponding to star(v). To
prove Theorem 1.2 (and thus also Theorem 1.1), we need to show that the dimension
of Vi(Ap) is bounded by the number N, 4 in (1.4). First, we observe that for this

range of d,

m?, if r =2m,
Oy = (4.2)
m2+m, if r =2m 41,
and thus . )
+m+1)7, = 2m,
Nya = { (k+m+1) e (4.3)
(k+m+1)(k+m+2), r=2m+1.

To get an upper bound on dim V}(Ag), we proceed as in the example V; (Ap)
discussed in the introduction. We need to find a set I" which determines Sj(Ap)
on Dy_,_1, and then examine which of these points can be dropped in view of the
interaction of the smoothness conditions with the boundary conditions. Note that
d—r—1=r+k.

To find a set I' which determines SJ(Ag) on Dg_,_1, we identify the do-
main points of s € Sj(Ap) lying in Dy_,_; with the domain points of a spline
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Ring g TR B T r=2m | r=2m+1

Ro(0) 1 0 0 0

R (0) 0 0 0

Rr(v) r+1 0 0 0
Rr+1(1}) T —|— 2 1 0 0
Rrstm(v) r+m+41 m 0 0
Ritm+1(v) r+m-+42 m+1 1 0
Rirtms2(v) r+m+43 m+ 2 3 2

Rar(v) 2r +1 r 2m — 1 2m

Tab. 1. Number of points in T'.

in §§_._,(Apn), and then apply Theorem 3.1. We can choose I' one ring at a
time. The rows marked R;(v) in Table 1 gives the number of points on the rings
Ro(v),...,Rryr. For each ring Ri(v), I' includes all of the points on that ring
in triangle T, The number of such points is 2 + 1 and is listed in the second
column of the table. In addition, for each + = r + 1,...,r + k, ' also includes
the last ¢ — r points on R;(v) in the triangles T 73] T The numbers of these
points are shown in the third column of the table. If r = 2m, T’ also includes
the last 2(i —m) — 1 points on R,4;(v) in the triangles TP for i = m +1,... k.
These points are shown in the fourth column of the table. Finally, if r = 2m + 1,
T also includes the last 2(i — m — 1) points on R,4;(v) in the triangles T1] for
i =m+2,...,k. These points are shown in the fifth column of the table.

We now show how to select a subset I' of I' which is a determining set for
VI(Ap). Since the cardinality of I' is an upper bound on dim Vj(A ), our proof

of Theorem 1.2 will be complete if we show that #f < Ny 4. There are two cases.
Case 1 (r = 2m). For each i =1,...,m, let

I'; 1 := {the 2¢ domain points in Ry4g—m+i(v) N T closest to edge (v,01)},
and set
T, ; := {the 2i domain points in R,4x—m+i(v) N TU closest to edge (v,v;)},

for y = 2,...,6. Define



Note that the sets I'; ; may contain some points which are not contained in I'. To
see that T is a determining set for VJ(Ap), suppose s is a spline in this space
with Aps = 0 for all P € T. Then since none of the points of T' in the rings
Ro(v),..., Rrsk—m(v) have been removed, all coefficients of s corresponding to
points on these rings are zero. Now combining this with the fact that all coefi-
cients of s on the rings Ry4x41(v),...,Ra(v) are zero, Lemma 2.2 implies that all
coeflicients corresponding to the remaining points in I’\,Fv are zero. But then s = 0,

and we have shown that T is a determining set. B
We now compute the cardinality of I'. The number of points in I on the rings
Ro(v),. .., Rmax(v) and lying in triangle T is

m+k+1
k+2
K1 1= Z i:<m+2+).

=1
The number of points in ' on rings Rot1(v), ..., Rmar(v) outside of TM is given
by
pasy 3(k —m+ 1)(k —m)
Ko =3 ;l(i—r): 9 *.

We get the factor 3 since such points occur in each of the triangles T for ¢ =
2,3,4. Now the number of points in T lying in triangle T! and on the rings

Rin+k+1(0), ..., Reyr(v) is given by

m

kyi= Y [mtk+itl—dily =) [m+k+1-3iy <

(m+k)(m+k—1)
G )

Finally, we count the number of points in T which lie outside the triangle T
and on the rings Ry4x+1(v),..., Rr4r(v). There are no such points near the edge
(v,v6). Using the values in the fourth column of Table 1, we get

3(k —m)(k—m — 1)+‘
2

K4 ::3Z[m+k+i—r—2i]+:3Z[k—m—i]+:
=1

=1

It follows that n, 4 := K1 + K2 + k3 + K4 is an upper bound on the cardinality of f,
and

<{(2k2+4km—|—4k—|—2m2—|—4m—|—3)/3, if 0 <k <m,

Ned >

= (11k2 < 14km + 4k + 11m? + 4m + 3)/3, ifm <k < 2m.

We claim that n,.q < N,gq4 for all choices of k¥ and m. To see this, note that

6(k) := Ny q — nrq is a quadratic polynomial on each of the intervals [0,m] and
[m, 2m]. Simple calculus shows that both pieces are positive on their domains.
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Case 2 (r = 2m + 1). This case is very similar to Case 1. For each : = 0,...,m
let

I'; 1 := {the 2¢ + 1 domain points in Ryqkr—m+i(v) N T closest to edge (v,01)},
and set
I'; j := {the 2¢ 4+ 1 domain points in Ryqr—m+i(v) N TU=1 closest to (v, v;)},

for y = 2,...,6. Define

If s € Vi(Ag)and Aps = 0 for all P € f, then all coefficients corresponding to
points on the rings Ro(v), ..., Rrqk—m—1(v) and Ry4r4+1(v),...,Ra(v) are zero.
Then Lemma 2.2 implies that all coefficients corresponding to the remaining points
in '\ I are zero. But then s = = 0, and we have shown that Tisa determining set.

To compute the cardinality of T, first we note that x; is the same as in Case 1.

Now
m+k
. 3(k—m—-—1(k—m
/452::3‘20—7“): ( 2)( )'1"
1=r+1
- . . i . E+m)?2+3(k+m)+2
ro i Yolmhi 22202 Dl = Yl < SRS,
and

Ky 1= Bi[m—l—k—l—i—r—l—l—(%—l—l)h = 3zm:[k—m—@']+ — 3(k —m)(k —m — 1)+.

; ; 2
1=0 1=0
This leads to
<{(2k2—|—4k‘m—|—6k—|—2m2—|—6m—|—4)/3, if 0 <k <m,
= (11k2—14km—3k—|—11m2—|—15m—|—4)/3, Hfm<k<2m+1.

As in the first case, the difference 6(k) := N, 4 — n,q is a positive quadratic poly-
nomial on each of the intervals [0, m] and [m,2m + 1]. This completes the proof.

Figure 4 illustrates the choice of T for the spaces V#(Ag) and Vi,(Ap). The
boxes represent points in the set I', and the boxes containing dots represent points
in the set T N T. The numbers of linearly independent splines in VZ(Ap) and
V3, (A ), respectively, are bounded by the numbers of empty boxes. The numbers
are 14 and 26, respectively (see also Table 2 below).
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Fig. 4. Determining sets for VZ(Ap) and Vi, (Ag).
§5. Remarks

Remark 5.1. To give an idea of the tightness of our upper bounds on the di-
mensions of the spaces VJ(Ap), we have used the algebra package REDUCE to
compute the dimensions for the case d = 3r + 1 for r = 1,...,10. The results are
displayed in Table 2 which lists the true dimension D, := dim V3, (A ), the value
of our upper bound on n, := n, 3,41, and the value of the coefficient N, := N, 3,41

defined in (1.4).

T D, Ny N,
1 4 4 6

2 14 14 16
3 25 26 30
4 44 45 49
5 64 66 72
6 92 94 100
7 121 124 132
8 158 161 169
9 196 200 210
10 242 246 256

Table 2. Computed values of D,., n, and N,.

Remark 5.2. As explained in the introduction, to simplify the analysis, we have
worked on uniform type-I triangulations generated by L — 1 interior lines in each
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direction on a unit square, and we have ignored the number of star-supported splines
supported on the stars of boundary vertices. It is not difficult to include such splines
in the counts. For example, it is easy to see that for S}, the total number of star-
supported splines is bounded by 4L? + 16L + 4, while the dimension of the space
is 6L% + 12L + 3. Thus, we see that S} does not admit a star-supported spline
basis for all L > 3. Similarly, for SZ, the total number of star-supported splines is
bounded by 14L? + 40L + 8, while the dimension of the space is 16L% 4 28L + 7.
Thus, we see that S? does not admit a star-supported spline basis for all L > 7.

Remark 5.3. The problem of computing the exact number of star-supported
splines in S7(A) which are associated with an interior vertex v of A is currently
under study. The case r = 1 is considered in [5].

Remark 5.4. The figures for this paper were generated using a Java applet which
can be found at http://www.math.utah.edu/~alfeld/MDS/.
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