Math 3890, Machine Problem 12: Due 11/19

- 1) Write a function lscOdh to compute an approximate solution of the BVP defined by $\Delta u := u_{xx} + u_{yy} = f$ on the unit square Ω with homogeneous Dirichlet boundary conditions. Use the spline space $S_d^0(\Delta)$ associated with a given triangulation Δ of Ω . You should use my functions domT, getindex, bcoord, basisder, and clsmooth. The collocation should be done at the domain points of order m. The function will set up a system of collocation equations of the form Oc = r.
 - a) You should add the equations $\lambda Ec = 0$, where E is the C^1 smoothness matrix produced by clsmooth, and λ is a parameter to control smoothness.
 - b) You can find values of the xx-derivatives of the Bernstein basis polynomials with the call bxx = basisder(d,2,rq,sq,tq,rx,sx,tx), where rq,sq,tq are the barcentric coordinates of the domain points of order m in T, and rx,sx,tx are the direction coordinates for the unit directional derivative pointing in the x-direction.
- 2) Write a script to
 - a) define u and f as anonymous functions
 - b) read in a triangulation and compute the lists
 - c) prompt for a value of $\tt d$ and $\tt lams$ and call your function $\tt lscOdh$ to find the coefficients
 - d) report the value of clck for our spline
 - e) call valspgrid to evaluate it on a 51×51 grid and report the max and RMS errors and time to solve
 - f) plot the spline surface
- 3) Test your script with the test function $u(x, y) = \sin(\pi x) \sin(\pi y)$ on the unit square. Define $f(x, y) = -2 * \pi^2 * u(x, y)$, d = 4, and lams = 1e6. Run the script for type2 triangulations with 25, 81, and 289 vertices and tabulate the times, max and RMS errors. Turn in a plot of the spline for the first triangulation only.

Here is a suggestion for the parameters of lsc0dh:

[c,t1] = lsc0dh(d,x,y,v1,v2,v3,e1,e2,e3,ie1,ie2,tril,trir,bdy,f,lams)