
Solving Elliptic PDE’s on Domains with Curved Boundaries

with an Immersed Penalized Boundary Method

Larry L. Schumaker

May 20, 2019

Abstract

The purpose of this paper is to describe a method (which we call IPBM) for solving boundary
value problems on domains with curved boundaries. The method combines two ideas from
the PDE literature: a) the idea of immersing the problem in a larger and simpler domain,
and b) the idea of enforcing boundary conditions by using a penalty term. The method
has a number of advantages as compared to existing methods in the literature and can be
considered as a viable alternative to the very popular isogeometric analysis (IGA) methods. It
can be used with a wide variety of spline spaces including tensor-product splines and splines
on triangulations. It also works with splines on H-triangulations and splines on T-meshes,
which opens the door to adaptive methods. The paper contains a series of examples both in
2D and 3D to illustrate the capability of the method to produce high order approximations.

1 Introduction

Suppose L is a linear elliptic partial differential operator defined on a domain Ω with boundary ∂Ω.
Given f defined on Ω, suppose there exists a unique u satisfying the partial differential equation
Lu = f on Ω along with certain boundary conditions defined at points on ∂Ω. The problem of
numerically computing approximate solutions to such problems has been heavily studied for many
years. Recently a lot of attention has been devoted to an approach called isogeometric analysis
(IGA) which is based on using the same functions used in CAD systems to define the domain Ω,
see e.g. [10] or one of the more recent papers such as [30]. In IGA practice these approximating
functions are usually Nurbs defined on rectangular domains, so to apply the method the first step is
to find a parametric mapping to Ω from the simple domain on which the Nurbs are defined. Since
in currently available CAD systems designers usually produce a representation of the boundary
∂Ω only, finding this parametric mapping is a significant first step to using IGA.

The purpose of this paper is to describe a method (see Sect. 2), which we call the immersed
penalized boundary method (IPBM), that may be a viable alternative to IGA. The method combines
two ideas from the PDE literature (see Remarks 9.1–9.3): a) the idea of immersing the problem
in a larger and simpler domain D, and b) the idea of enforcing boundary conditions by using a
penalty term. The method has the following features:

• Unlike the IGA approach, the IPBM approach does not require a map from some computa-
tional domain (such as a rectangle) to the desired domain Ω.

• The method makes use of boundary conditions only at points on the boundary ∂Ω, not at
some nearby points.

• The method works with a variety of standard boundary conditions, including Dirichlet, Neu-
mann, and mixed boundary conditions.

1



2 THE IPBM APPROACH IN TWO VARIABLES 2

• The method works with standard spline spaces defined on triangulations or tetrahedral parti-
tions, and also with tensor-product splines defined on rectangles or boxes. It also works with
splines defined on partitions with hanging vertices such as H-triangulations and T-meshes.
These are particularly convenient for use with adaptive methods.

• The method works with any given representation of the boundary that permits us to find a
set of points on the boundary. In particular, we can use boundary representations defined by
NURBs curves or surfaces as produced by standard CAD software. It is also possible to work
with other simpler direct parametric representations of ∂Ω (such as lines, circular arcs, and
conic sections). In fact, to apply the methods here we require only a cloud of (reasonably
spaced) points on the boundary.

• The method can be used with a Galerkin type approach, or with least-squares collocation. In
either case, we do not have to construct approximating functions that vanish on the boundary.
For curved boundaries constructing such functions can be complicated.

• Unlike many immersion methods in the literature, there is no need to modify or stabilize our
approximating functions in a neighborhood of ∂Ω or to refine the mesh near the boundary
∂Ω, and no need to compute integrals along the boundary.

Our goal in this paper is restricted to illustrating the usefulness of immersed penalized boundary
methods for solving elliptic boundary problems in two and three variables. A mathematical analysis
of the methods is in progress.

2 The IPBM approach in two variables

We first explain the IPBM approach in the following simple setting involving a second order PDE
in two variables with Dirichlet boundary conditions. Let Ω be a bounded domain in IR2 with
boundary ∂Ω. We allow Ω to have one or more holes, and assume that the boundary is piecewise
smooth. Let a1, a2, a3, f be functions defined on Ω, and let

Lu := a1(x, y)uxx + a2(x, y)uxy + a3(x, y)uyy. (2.1)

Given a function g defined on ∂Ω, suppose a1, a2, a3, f are such that the following problem has
a unique solution

Lu = f, on Ω, (2.2)

u = g, on ∂Ω. (2.3)

Suppose D is a polygonal domain D containing Ω, and that L is defined not only on Ω, but also
on D. In the examples below we will take D to be the smallest rectangle containing Ω. Let S be
a space of approximating functions defined on D. For example S might be a space of polynomial
splines on a triangulation of D, or a space of tensor-product splines. Suppose {φj}

N
j=1 is a basis

for S. We are looking for a numerical solution of the form

s =
N
∑

j=1

cjφj . (2.4)

We now describe two approaches to finding the coefficient vector c, both of which reduce to solving
a linear system of equations.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 3

(A) The IPBM/F method: Following the standard Galerkin (FEM) approach, we require

∫

D

Lsφi =

∫

D

fφi, i = 1, . . . , N. (2.5)

Note that we are integrating over D, not Ω, and that we will need to use approximating spaces for
which Ls is in L2(D). Next, let {(ξi, ηi)}

nb

i=1 be a set of points lying on the boundary ∂Ω. Then
given λ > 0, we consider the following penalized least-squares problem: Find c to minimize

Φ(c) :=

N
∑

i=1

[

∫

D

(Ls− f)φi

]2
+ λ

nb
∑

i=1

[s(ξi, ηi)− g(ξi, ηi)]
2. (2.6)

This problem can be reduced to a linear system of equations of the form Gc = r with G a symmetric
and nonnegative definite matrix. In general, G will actually be positive define, which ensures there
is a unique solution vector c. We call the corresponding approximating function (2.4) an IPBM/F
solution of the boundary-value problem.

(B) The IPBM/C method: Suppose that Γ is a finite set of points in D, and that (ξi, ηi)}
nb

i=1

are points on the boundary ∂Ω. Then given a positive function w defined on D and λ > 0, we
consider the following penalized least-squares problem: Find c to minimize

Ψ(c) :=
∑

ζ∈Γ

w(ζ) [Ls(ζ)− f(ζ)]2 + λ

nb
∑

i=1

[s(ξi, ηi)− g(ξi, ηi)]
2. (2.7)

As before this leads to a system of equations of the form Gc = r, where the matrix G is symmetric
and nonnegative definite. In general, G will actually be positive definite, which ensures there is
a unique solution vector c. We call the corresponding approximating function (2.4) an IPBM/C
solution of the boundary-value problem. For a discussion of why we included a weight function w
in this formulation and how to choose it in practice, see Remarks 9.16–9.17.

The rest of the paper is organized as follows. In Sect. 3 we illustrate the performance of IPBM/F.
We give examples using a macro-element space, C0 splines, and tensor-product splines on a variety
of domains, some with holes. In the course of this discussion we address the issues of how to choose
the points on the boundary and discuss the role of λ. The examples in Sect. 4 make use of the
IPBM/C method, while problems with mixed boundary conditions are discussed in Sect. 5. The
use of IPBM methods with splines on H-triangulations and T-meshes are treated in Sects. 6 and
7. The focus is on adaptive methods involving partitions with hanging vertices. Finally, in Sect. 8
we give two examples in 3D. All of the computations were done in Matlab using the spline package
associated with my SIAM book [31].

3 Examples of IPBM/F to solve Poisson’s equation in 2D

In this section we solve the Poisson equation

∆u = uxx + uyy = f (3.1)

on a curved domain Ω in IR2 with Dirichlet boundary conditions. For each example we begin
with a known true solution u, set f = ∆u and g = u|∂Ω. Since we have the true solution, we
can compute error estimates for our spline approximation s by comparing s with u on some large
well-distributed set of points in Ω. We will report both max and RMS errors.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 4

3.1 IPBM/F with S1,2
5

(△)

In this section we illustrate the use of IPBM methods using the Argyris macro-element space
S1,2
5 (△). It consists of piecewise polynomials of degree five that are C1 globally, and that have

C2 supersmoothness at the vertices of △, see Sect. 6.1 of [21] or Sect. 5.5 of [31]. Our first two
examples explore the interplay between the size of λ and the number nb of boundary points used
for the Dirichlet boundary condition.

Figure 1: A slotted disk immersed in a 9 × 9 type-2 triangulation of the unit square and the
associated IPBM/F spline for Example 3.1

Example 3.1 Solve the Poisson problem with true solution u(x, y) = sin(10x) + sin(10y) on the
slotted disk Ω shown in Fig. 1 using IPBM/F with the Argyris space S1,2

5 (△) on the type-2 trian-
gulation of the unit square with 9 grid lines in each direction.

Discussion: The boundary of the domain Ω is defined by four simple parametric curves. Here
is a table of the results based on 322 points on the boundary. The column labeled size gives the
number of degrees of freedom (size of the linear system being solved), and the one labeled cond
gives the estimated condition number of this system. To estimate the error on Ω, we pick a large
number of nearly equally-spaced points in Ω. For this domain we used 33466 points for the error
calculations. The associated max and RMS errors are given in the columns labelled emax and rms.
The columns labelled emaxB and rmsB report the max and RMS errors measured at 3278 points
on the boundary. The reported time is for assembling and solving the system of equations for the
spline coefficients, measured in seconds.

λ time size cond emaxB rmsB emax rms
.001 0.15 1270 1.26e+14 4.68e-05 9.65e-06 4.68e-05 4.04e-06
.01 0.16 1270 1.11e+13 3.11e-05 5.87e-06 3.11e-05 2.39e-06
.10 0.16 1270 5.35e+11 1.02e-05 2.16e-06 1.02e-05 1.18e-06
1 0.16 1270 9.96e+10 2.27e-06 7.36e-07 3.49e-06 9.80e-07
10 0.16 1270 5.11e+10 1.26e-06 3.86e-07 1.45e-05 5.05e-06
100 0.16 1270 1.10e+12 2.13e-06 2.02e-07 4.25e-05 1.22e-05
1000 0.16 1270 7.99e+13 3.80e-06 2.37e-07 1.75e-04 2.06e-05
10000 0.16 1270 7.03e+15 2.74e-05 1.12e-06 3.70e-04 5.31e-05

The table shows that we can get very good results with a wide range of lambdas, although using
too large a value for λ leads to a large condition numbers and some loss of accuracy. The errors
are minimal for the choice λ = 1.

Example 3.2 Repeat Example 3.1 keeping λ = 1 but varying the number of equally spaced sample
points used for the Dirichlet boundary conditions.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 5

Discussion: The following table displays the same information as the table in the previous ex-
ample, except that the first column now gives the number of boundary points nb while the third
column gives the spacing hb of the points along the boundary.

nb hb time cond emaxB rmsB emax rms
76 0.0400 0.16 1.71e+11 8.50e-06 1.44e-06 8.50e-06 1.39e-06
159 0.0200 0.16 1.20e+11 2.51e-06 8.00e-07 3.50e-06 9.98e-07
322 0.0100 0.22 9.96e+10 2.27e-06 7.36e-07 3.49e-06 9.80e-07
651 0.0050 0.23 8.47e+10 2.15e-06 6.88e-07 3.61e-06 1.01e-06
1307 0.0025 0.17 7.35e+10 2.03e-06 6.46e-07 3.78e-06 1.11e-06
2622 0.0013 0.22 6.54e+10 1.88e-06 6.01e-07 4.58e-06 1.34e-06
5249 0.0006 0.40 5.97e+10 1.70e-06 5.49e-07 5.94e-06 1.81e-06
10502 0.0003 0.52 5.57e+10 1.46e-06 4.87e-07 8.04e-06 2.60e-06
21009 0.0002 0.79 5.27e+10 1.33e-06 4.20e-07 1.11e-05 3.77e-06

The table shows that for this problem the choice of hb = .01 which leads to 322 points on the
boundary gives the smallest error, although there is only a small difference in accuracy over the
entire range. Use of more points requires extra computational time and actually makes the errors
slightly worse.

These experiments shed some light on the interplay between the number of boundary points
and the parameter λ. However, they do not suggest a simple prescription for how to select nb and
λ in general. Clearly, optimal choices of nb and λ will depend on a variety of factors: 1) the mesh
size of the partitions, 2) size and support of the basis functions, 3) complexity of the solution both
inside and on the boundary Ω, and 4) the nature of the boundary. For the remaining examples in
this section we have generally taken the spacing of the boundary points to be hb = .01, which gave
values of nb between 300 and 800. We also do all of the examples using λ = 1.

We now give an example to explore the rate of convergence using the Argyris space on a nested
sequence of type-2 triangulations of the unit square.

Example 3.3 Solve the Poisson problem on the domain shown in Fig. 1 (left) with true solution
u(x, y) = sin(10x) + sin(10y) using the Argyris space S1,2

5 (△) on type-2 triangulations of the unit
square.

Discussion: We work with a nested sequence of type-2 partitions with m grid lines in each
direction. Since the mesh sizes decrease by a factor of two for each refinement, we can compute
the log base 2 of the ratio of two successive errors to estimate the rate of convergence. The results
are shown in the supplementary table. We do not attempt to find the optimal values of nb and λ
for each mesh, but instead use nb = 322 and λ = 1 for all meshes.

m time size cond emax rms
3 0.00 106 8.73e+06 7.91e-03 1.80e-03
5 0.05 350 4.05e+08 2.99e-04 8.29e-05
9 0.12 1270 9.49e+10 3.43e-06 9.73e-07
17 1.85 4838 7.69e+13 6.73e-08 1.23e-08

rates

4.72 4.44
6.45 6.41
5.67 6.31

The table shows that the method is exhibiting order 6 convergence, which is optimal order conver-
gence for quintic splines. Fig. 1 (right) shows a plot of the corresponding spline solution for m = 9.
It is visually indistinguishable from the true solution.

Example 3.4 Solve the Poisson problem on the domain Ω shown in Fig. 2 (left) with true solution
u(x, y) = sin(10x) + sin(10y) using the Argyris space S1,2

5 (△) on type-2 triangulations.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 6

Figure 2: A domain defined by a Nurbs curve immersed in a 5 × 5 type-2 triangulation and the
associated IPBM/F quintic spline for Example 3.4

Discussion: This domain is defined by a NURBS curve of degree 2 with 12 control points in IR2.
We imbed the domain in type-2 triangulations with m grid lines in both the x and y variable.
Fig. 2 (left) shows the case m = 5. Here is the corresponding table of errors for a nested sequence
of triangulations, calculated on 33261 nearly equally spaced points in Ω. Here nb = 394 and λ = 1.

m time size cond emax rms
3 0.00 106 1.31e+07 4.08e-02 9.65e-03
5 0.01 350 9.07e+08 1.10e-03 2.72e-04
9 0.13 1270 2.00e+11 1.70e-05 3.69e-06
17 1.81 4838 1.95e+14 2.75e-07 5.35e-08

rates

5.21 5.15
6.02 6.21
5.95 6.11

This table shows that the method is providing order six convergence, which is optimal for splines
of degree five. Fig. 2 (right) shows a plot of the Argyris spline surface for this triangulation.

We now give an example of a domain with two holes.

Figure 3: A domain with two holes immersed in a 5× 3 type-2 triangulation
and the associated IPBM/F spline for Example 3.5

Example 3.5 Solve the Poisson problem on the domain Ω shown in Fig. 3 (left) with true solution
u(x, y) = sin(10x) + sin(10y) using the Argyris space S1,2

5 (△).

Discussion: This domain is defined directly via four simple parametric curves in IR2. Fig. 3 (left)
shows the domain imbedded in a type-2 triangulation with m = 5 and n = 3 grid lines in the x and
y variables, respectively. The Argyris spline surface corresponding to this triangulation is shown in
Fig. 3 (right). For this domain we are using 782 points on the boundary with λ = 1. The errors are
calculated on a set of 42930 points. Here is the corresponding table of errors for a nested sequence
of type-2 triangulations.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 7

m n time size cond emax rms
5 3 0.02 192 1.54e+07 1.05e-02 1.72e-03
9 5 0.05 666 6.03e+08 2.89e-04 6.15e-05
17 9 0.53 2478 2.99e+11 3.83e-06 7.73e-07
33 17 8.00 9558 3.80e+14 5.07e-08 1.08e-08

rates

5.18 4.80
6.24 6.31
6.24 6.16

This table shows that the method is providing order six convergence, which is optimal for splines
of degree five.

To conclude this subsection we give one example with a more complicated true solution and a
more complicated domain.

Figure 4: A domain immersed in a 15× 15 type-2 triangulation
and the associated IPBM/F spline for Example 3.6

Example 3.6 Solve the Poisson problem on the domain shown in Fig. 4 (left) with true solution
u(x, y) = sin(x2 + y2) + .1 sin(25(x2 + y2) using the Argyris space on type-2 triangulations.

Discussion: This domain is defined by a quadratic NURBs curve with seven control points in IR2.
Here we use 616 points on the boundary with λ = 1. The number of points used to estimate the
errors was 26,615. The S1,2

5 (△) spline surface corresponding to the triangulation in Fig. 4 (left) is
shown in Fig. 4 (right).

m time size cond emax rms
5 0.03 350 4.42e+09 2.06e-01 4.16e-02
9 0.16 1270 3.23e+12 7.08e-02 7.49e-03
17 2.12 4838 2.57e+15 3.10e-03 2.83e-04
33 27.68 18886 2.30e+18 6.91e-05 5.93e-06

rates

1.54 2.47
4.51 4.73
5.49 5.58

The rate of convergence is somewhere between five and six.

3.2 IPBM/F with the space S0

d(△)

As discussed in Sect. 2, to work with the space S0
d(△) we need to add a penalty term of the form

λsc
TETEc where E is a matrix such that s ∈ C1(D) if and only if Ec = 0. For the problems

examined here, the choice of λs does not seem to be very critical – in our experiments we take
λs = 1. Other values may give small improvements in accuracy.

Example 3.7 Solve the Poisson problem on the domain shown in Fig. 1 (left) with true solution
u(x, y) = sin(10x) + sin(10y), but with the space S1,2

5 (△) replaced by S0
5 (△).



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 8

Discussion: We present results for a nested sequence of type-2 triangulations of the unit square
with m grid lines in both the vertical and horizontal directions, respectively. Fig. 1 (left) shows the
domain imbedded in a type-2 triangulation with m = 9. Here is the corresponding table of errors
based on using 322 points on the boundary. The spline surfaces are visually indistinguishable from
the one shown in Fig. 1 (right).

m time size cond emax rms
3 0.02 221 7.03e+05 7.97e-03 1.89e-03
5 0.08 841 3.21e+06 1.62e-04 4.17e-05
9 0.37 3281 8.57e+08 3.33e-06 9.10e-07
17 3.82 12961 1.08e+11 7.18e-08 2.10e-08

rates

5.62 5.50
5.60 5.52
5.53 5.43

Comparing with the table shown in Example 3.3, we see that using the C0 quintic spline space
instead of the superspline space S1,2

5 (△) leads to comparable errors, although the convergence rate
is a bit lower. Condition numbers are somewhat lower, but the linear systems are larger and the
computational times are somewhat larger.

We now present an example to show the effect of increasing the degree of the splines while
holding the triangulation fixed.

Example 3.8 Solve the Poisson problem with true solution u(x, y) = sin(10x) + sin(10y) on the
domain shown in Fig. 2 (left) using the space S0

d(△) for different values of d.

Discussion: For this example we use the NURBS domain shown in Fig. 2 (left) imbedded in a
type-2 triangulation with m = n = 5. Here is the corresponding table of errors for a sequence
of values of d calculated on 33405 points in Ω. The table also includes the max and RMS errors
computed on the 3942 points on the boundary.

d time size cond emaxB rmsB emax rms
3 0.01 313 4.21e+04 1.73e-02 5.73e-03 5.21e-02 1.65e-02
4 0.04 545 6.52e+05 2.28e-03 7.28e-04 1.16e-02 3.39e-03
5 0.03 841 1.09e+07 1.32e-04 3.87e-05 4.52e-04 1.22e-04
6 0.13 1201 3.70e+08 1.98e-05 3.58e-06 7.01e-05 1.61e-05
7 0.27 1625 5.90e+09 7.65e-07 1.40e-07 3.14e-06 6.19e-07
8 0.42 2113 1.78e+11 1.55e-07 1.22e-08 3.25e-07 7.03e-08
9 0.64 2665 4.12e+12 2.98e-09 3.28e-10 1.32e-08 2.56e-09

As we see from the table, the size of the system and the time for finding a solution increases
somewhat as d increases, but the accuracy improves very significantly even though the condition
numbers are also rising.

3.3 IPBM/F with tensor-product splines

In this subsection we examine the performance of IPBM/F when used with tensor-product spline
spaces defined on equally-spaced grids covering the enclosing rectangle.

Example 3.9 Solve the Poisson problem on the domain shown in Fig. 2 (left) with true solution
u(x, y) = sin(10x) + sin(10y) using tensor-product splines of bidegree 5 × 5 on an m × m grid
covering the enclosing rectangle.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 9

Discussion: Here is the corresponding table of errors for a nested sequence of tensor partitions,
using 394 points on the boundary and λ = 1.

m time size cond emax rms
5 0.06 81 3.26e+07 6.19e-02 1.74e-02
9 0.12 169 2.79e+08 8.31e-04 2.68e-04
17 0.44 441 5.76e+10 5.75e-06 1.93e-06
33 2.75 1369 1.64e+13 7.84e-08 2.36e-08

rates

6.22 6.02
7.17 7.12
6.20 6.35

This table shows that the method is providing order six convergence, which is optimal order for
biquintic splines. As compared with polynomial splines on type-2 triangulations, we see that
tensor-splines provide higher accuracy with far fewer degrees of freedom and in less computational
time.

We now explore how accuracy improves with tensor-product splines as we increase their degrees.

Example 3.10 Solve the Poisson problem with true solution u(x, y) = sin(10x) + sin(10y) on the
domain shown in Fig. 2 (left) using tensor-product splines of bidegree d×d on a 9×9 grid covering
the enclosing rectangle.

Discussion: We use 394 points on the boundary and take λ = 1. Here is the corresponding table of
errors for a sequence of increasing values of d, measured on 33405 points in Ω. The columns labelled
emaxB and rmsB report the max and RMS errors measured at 3942 points on the boundary. The
relative size of the errors on the boundary as compared to the size of the errors at points inside Ω
can help in selecting λ to balance these errors.

d time size cond emaxB rmsB emax rms
3 0.03 121 1.38e+06 7.43e-03 2.87e-03 1.20e-02 4.11e-03
4 0.07 144 4.06e+07 1.82e-03 6.59e-04 3.18e-03 9.73e-04
5 0.14 169 2.79e+08 7.07e-04 1.74e-04 8.31e-04 2.68e-04
6 0.12 196 1.58e+09 1.70e-04 4.06e-05 2.53e-04 7.10e-05
7 0.15 225 1.44e+10 3.57e-05 1.02e-05 4.75e-05 1.53e-05
8 0.22 256 5.84e+11 7.31e-06 2.36e-06 2.17e-05 5.26e-06
9 0.27 289 2.05e+13 2.03e-06 6.03e-07 5.89e-06 1.31e-06

As we can see the accuracy improves as we increase d, although the condition numbers increase.
Times are almost the same for all d since the numbers of degrees of freedom increases very slowly.

3.4 Examples with variable coefficients

In this section we give three examples involving second order elliptic PDE’s with nonconstant
coefficients.

Example 3.11 Solve the boundary value problem (2.2)–(2.3) with a1(x, y) = 2 − .1y, a2(x, y) =
.1x, and a3(x, y) = 1 + .1y, with right-hand side f chosen to give a true solution of u(x, y) =
sin(20x) + xy+ sin(20y). Use the domain with a hole shown in Fig. 5 (left), and use IPBM/F with
biquintic tensor-product splines.



3 EXAMPLES OF IPBM/F TO SOLVE POISSON’S EQUATION IN 2D 10

Figure 5: A NURBS domain with a hole immersed in a 17× 17 tensor grid and the corresponding
biquintic tensor-product spline for Example 3.11

Discussion: Here is the corresponding table of errors for a nested sequence of m×m grids on the
unit square.

m time size cond emax rms
9 0.23 169 2.49e+10 3.08e-01 8.44e-02
17 0.67 441 1.34e+13 8.26e-04 2.43e-04
33 1.77 1369 3.33e+15 6.13e-06 1.92e-06
65 20.87 4761 4.85e+17 6.48e-08 2.33e-08

rates

8.54 8.44
7.07 6.98
6.56 6.37

This table again shows order of approximation six which is optimal for tensor-product splines of
bidegree 5 × 5. We show a plot of the tensor-product spline surface corresponding to m = 17 in
Fig. 5 (right).

Example 3.12 Solve the boundary value problem (2.2)–(2.3) with a1(x, y) = .01, a2(x, y) = 0,
and a3(x, y) = 1 on the domain shown in Fig. 2 (left). Choose f to give the true solution u(x, y) =
sin(25x) + sin(10y). Use IPBM/F with biquintic tensor-product splines on an m×m grid.

Discussion: We use tensor-product splines of bidegree 5 × 5 defined on the minimal enclosing
rectangle for a nested sequence of tensor partitions. Here is the corresponding table of errors.

m time size cond emax rms
9 0.11 169 2.38e+08 1.29e+00 4.51e-01
17 0.47 441 1.77e+08 3.57e-03 1.00e-03
33 2.66 1369 1.38e+10 3.27e-05 6.45e-06
65 19.07 4761 1.82e+13 2.29e-07 6.68e-08

rates

8.49 8.81
6.77 7.28
7.16 6.59

This table again shows order of approximation six which is optimal for tensor-product splines of
bidegree 5× 5.

This example involves anisotropy – the coefficient a1 is much smaller than the coefficient a3 and
the solution behaves much differently in the x variable than in the y variable. When we are aware
of anisotropy, we can use different mesh sizes in the two directions, or different degrees in the two
variables for the tensor-product splines.

Example 3.13 Repeat Example 3.12 using different degrees or different mesh sizes in the two
variables.

Discussion: Here are two different ways to take account of the anisotropy.



4 EXAMPLES OF IPBM/C TO SOLVE POISSON’S EQUATION IN 2D 11

Figure 6: A domain immersed in a 65× 33 grid and the associated IPBM/F tensor-product spline
for Example 3.13

d d̃ m n time size cond emax rms
5 5 65 33 6.96 2553 3.08e+12 2.08e-07 6.83e-08
9 5 33 33 4.80 1517 2.99e+13 9.97e-08 1.75e-08

This example shows that by taking advantage of the anisotropy, we can get the same accuracy as
obtained in the last line of the table in the previous example, but with fewer degrees of freedom
and faster computational times. The spline is shown in Fig. 6 (right).

4 Examples of IPBM/C to solve Poisson’s equation in 2D

In this section we repeat a few of the examples of Sect. 3 using IPBM/C instead of IPBM/F. For
examples involving splines of degree d on triangulations we choose

(

d+2
2

)

equally spaced collocation
points in each triangle T , the so-called domain points associated with T . For rectangular partitions,
for each rectangle H, we choose the collocation points to lie on an equally spaced d×d rectangular
grid in H. For rectangles, it is also possible to choose points associated with tensor-product Gauss
quadrature. We get similar results using fewer collocation points per triangle or rectangle, see
Remark 9.18.

4.1 IPBM/C with the spline spaces S1,2
5

(△) on type-2 triangulations

Example 4.1 Solve the Poisson problem on the domain Ω shown in Fig. 1 (left). with true solution
u(x, y) = sin(10x) + sin(10y) using IPBM/C with the Argyris space S1,2

5 (△).

Discussion: The domain is the slit disk shown in Fig. 1 (left) and is imbedded in the unit square.
We use type-2 triangulations with m grid lines in each of the variables x and y. This problem
was solved with the same space using IPBM/F in Example 3.3. Here is the corresponding table
of errors for a nested sequence of type-2 triangulations, where we use 324 points on the boundary
and λ = 1.

m time size cond emax rms
3 0.01 106 1.90e+06 4.24e-02 8.36e-03
5 0.03 350 2.95e+07 8.13e-04 2.60e-04
9 0.20 1270 1.67e+09 1.73e-05 4.02e-06
17 2.14 4838 1.77e+11 2.92e-07 8.10e-08

rates

5.71 5.00
5.55 6.02
5.89 5.63



4 EXAMPLES OF IPBM/C TO SOLVE POISSON’S EQUATION IN 2D 12

This table sugggests that the order of convergence is somewhere between five and six. The errors
reported here are somewhat larger than those given in Example 3.3 for the IPBM/F method. The
times of computation are about the same, but the condition numbers here are somewhat smaller.

Example 4.2 Solve the Poisson problem of Example 3.5 with the space S1,2
5 (△) but replacing

IPBM/F with IPBM/C.

Discussion: The domain is shown in Fig. 3 (left) and has two holes. We use 782 boundary points
and λ = 1. The following table gives results for the same nested sequence of uniform type-2
triangulations used in Example 3.5.

m n time size cond emax rms
5 3 0.01 192 2.65e+06 2.76e-02 6.97e-03
9 5 0.09 666 6.56e+07 7.40e-04 2.27e-04
17 9 0.75 2478 4.33e+09 1.28e-05 3.09e-06
33 17 7.96 9558 5.12e+11 2.18e-07 6.59e-08

rates

5.22 4.94
5.85 6.20
5.88 5.55

This table should be compared with the one in Example 3.5. Computational times are about the
same, but the condition numbers are smaller while the errors are slightly larger than in the FEM
case. The rate of convergence is somewhere between five and six.

4.2 IPBM/C with C
0 spline spaces

As discussed in Sect. 2, to make IPBM/C work with C0 spline spaces we will have to modify the
objective function in (2.7) by adding a penalty term to make the spline (approximately) C1. As
before, given a positive number λs, we add the term λsc

TETEc, where E is the matrix such that
s ∈ C1(D) if and only if Ec = 0.

Example 4.3 Solve the Poisson equation on the domain used in Example 3.3 using IPBM/C with
the space S0

5 (△) on type-2 triangulations of the unit square.

Discussion: The domain is the slit disk shown in Fig. 1 (left). For this experiment we take λ =
λs = 1. Here is a table of the results for the same nested sequence of type-2 partitions as in
Example 3.7 where IPBM/F was used.

m time size cond emax rms
3 0.01 221 1.58e+05 2.03e-02 4.15e-03
5 0.03 841 2.37e+06 4.98e-04 1.33e-04
9 0.12 3281 1.70e+08 1.04e-05 2.75e-06
17 2.56 12961 4.95e+10 2.33e-07 5.99e-08

rates

5.35 4.96
5.57 5.60
5.49 5.52

The results here should be compared with those given in Example 3.3 where the IPBM/F method
was used. The condition numbers here are about the same, and the errors here are only slightly
larger. Also, we may be getting a little less than the optimal convergence rate of six.



4 EXAMPLES OF IPBM/C TO SOLVE POISSON’S EQUATION IN 2D 13

4.3 IPBM/C with tensor-product splines

In this section we give two examples of IPBM/C based on tensor-product splines on a equally
spaced grid covering the enclosing rectangle.

Example 4.4 Solve the Poisson problem on the domain shown in Fig. 2 (left) with true solution
u(x, y) = sin(10x) + sin(10y) using IPBM/C with the space of biquintic tensor-product splines.

Discussion: We use a nested sequence of partitions to allow us to estimate the rate of convergence.
We use 394 points on the boundary with λ = 1.

m time size cond emax rms
5 0.04 81 9.68e+05 2.99e-01 4.49e-02
9 0.14 169 1.63e+07 6.86e-03 1.16e-03
17 0.56 441 7.39e+08 6.32e-05 7.51e-06
33 2.35 1369 1.04e+11 1.05e-06 1.12e-07

rates

5.44 5.27
6.76 7.27
5.91 6.07

This table should be compared with the one in Example 3.9 where the same spline spaces were used
with the IPBM/F method. The condition numbers here are lower than for the IPBM/F method,
although the accuracy is not quite as good. The method seems to be order six, which is what we
expect for quintic splines.

Example 4.5 Repeat Example 4.4 using tensor-product splines of bidegree 6× 6.

Discussion: The domain is shown in Fig. 2. Here is the corresponding table of errors.

m time size cond emax rms
5 0.03 100 1.20e+07 7.15e-02 1.92e-02
9 0.14 196 1.72e+08 1.25e-03 1.78e-04
17 0.69 484 8.84e+09 5.49e-06 5.85e-07
33 2.73 1444 2.67e+12 6.97e-08 6.29e-09

rates

5.84 6.75
7.83 8.25
6.30 6.54

The errors with d = d̃ = 6 are much better than with d = d̃ = 5. This example does not clearly
show the convergence order, but it is clearly between six and seven.

We conclude this section with one example with variable coefficients.

Example 4.6 Solve the boundary value problem (2.2)–(2.3) on the domain with a hole shown in
Fig. 5 (left) with a1(x, y) = 2 − .1y, a2(x, y) = .1x, and a3(x, y) = 1 + .1y, with right-hand side f
chosen to give a true solution of u(x, y) = sin(20x) + xy + sin(20y). Use IPBM/C with biquintic
tensor-product splines on equally-spaced m×m grids.

Discussion: This problem was solved with the IPBM/F method in Example 3.11. Here is the
corresponding table of errors for IPBM/C.

m time size cond emax rms
9 0.27 169 5.29e+07 4.55e-01 1.04e-01
17 1.06 441 4.08e+09 3.00e-03 5.15e-04
33 2.65 1369 1.02e+12 5.28e-05 6.08e-06
65 12.29 4761 3.85e+14 1.03e-06 9.56e-08

rates

7.25 7.66
5.83 6.41
5.68 5.99

Comparing this table with the one in Example 3.11 which were computed with IPBM/F shows
that the errors are slightly larger, although the condition numbers are quite a bit smaller. We are
getting an optimal order rate of convergence of six.



5 IPBM WITH MIXED BOUNDARY CONDITIONS 14

5 IPBM with mixed boundary conditions

Given a domain Ω, suppose its boundary is split into disjoint sets ∂ΩD and ∂ΩN such that ∂Ω =
∂ΩD∪∂ΩN . Now suppose we are given functions gd and gn defined on ∂ΩD and ∂ΩN , respectively.
For each point in ∂ΩN , let Dn denote the unit outward-pointing normal derivative to the boundary
at that point. Our problem is to find a function u such that

Lu = f, on Ω (5.1)

u = gd, on ∂ΩD, (5.2)

Dnu = gn, on ∂ΩN . (5.3)

Both IPBM/F and IPBM/C can be used for problems with mixed boundary conditions. We
need only modify the second term in (2.6) or (2.7). Given a set of collocation points on the
boundary of Ω, let {(ξi, ηi)}

nD

i=1 be those lying in ∂ΩD and {(ξ̃i, η̃i)}
nN

i=1 those lying in ∂ΩN . Given
positive weights λD and λN , we now replace the second term in (2.6) or (2.7) by

λD

nD
∑

i=1

[s(ξi, ηi)− gd(ξi, ηi)]
2 + λN

nN
∑

i=1

[Dns(ξ̃i, η̃i)− gn(ξ̃i, η̃i)]
2. (5.4)

Assuming the approximating spline s is written in terms of a basis as in (2.4), we can compute
the corresponding coefficient vector c by solving a linear system of equations of the form Gc = r
with G a symmetric positive-definite matrix. To set up this system, we will need not only the
locations of each of the chosen points on ∂ΩN , but also the unit outward-pointing normal vector
at those points. For simple collections of parametric curves, these can easily be computed exactly.
For NURBS curves, they can be computed from tangent vectors to the curve. In this section we
discuss only the case of least-squares collocation with polynomial splines on triangulations of the
enclosing rectangle.

Example 5.1 Consider the Poisson problem on the disk Ω of radius 1/2 centered at the origin
with true solution u(x, y) = sin(10x) + sin(10y). We use mixed boundary conditions taken from
u where ∂ΩD is the upper half of the circle, and ∂ΩN is the lower half. Use the Argyris space
S1,2
5 (△) defined on type-2 triangulations of the enclosing rectangle.

Discussion: Here is a table of results for a nested sequence of type-2 triangulations with m grid
lines, where we have used 627 points on the boundary with λD = λN = 1. The errors are computed
on 42485 points in the disk.

m time size cond emax rms
3 0.02 106 4.05e+06 2.26e-01 1.17e-01
5 0.05 350 3.93e+07 7.69e-03 3.25e-03
9 0.23 1270 1.37e+09 1.66e-04 6.43e-05
17 2.35 4838 2.40e+11 3.00e-06 9.74e-07

rates

4.88 5.17
5.53 5.66
5.79 6.04

For comparision purposes, we also present the analogous table in the case where we enforce Dirichlet
boundary conditions on the entire boundary of the disk.



6 IPBM WITH SPLINES ON H-TRIANGULATIONS 15

m time size cond emax rms
3 0.01 106 1.15e+06 1.33e-01 3.69e-02
5 0.03 350 1.62e+07 4.35e-03 1.36e-03
9 0.20 1270 7.99e+08 8.02e-05 2.22e-05
17 1.89 4838 8.70e+10 2.21e-06 6.49e-07

rates

4.93 4.76
5.76 5.93
5.18 5.10

Using mixed boundary conditions runs a bit slower and has somewhat larger condition numbers.
There is only a slight loss in accuracy.

6 IPBM with splines on H-triangulations

A collection of triangles whose union covers a domain in such a way that any two triangles intersect
only at points on their edges is called an H-triangulation. They are more general than ordinary
triangulations since they allow so-called hanging vertices, i.e. vertices that lie in the interior of
an edge of another triangle. It is straightforward to define spaces of splines on H-triangulations
in the same way as for ordinary triangulations. For a detailed study of properties of such spline
spaces, see [33]. For examples of H-triangulations, see Fig. 8. They were produced by the adaptive
methods in Examples 6.1 and 6.2.

In this section we explore how IPBM/F and IPBM/C work with C0 splines on H-triangulations.
We represent our splines in terms of Bernstein basis polynomials on each triangle as discussed in
[33]. It is easy to derive conditions for such splines to be in C1. In particular, there exists a matrix
E such that s is C1 if and only if Ec = 0. To use splines on H-triangulations with either IPBM/F
or IPBM/C, we need to add a penalty term of the form λsc

TETEc. We focus on adaptive methods
based on splitting triangles into four similar pieces, guided by the size of the residuals as measured
by approximations to ‖Ls− f‖L1(T ) for all T ∈ △. To improve efficiency, we refine those triangles
whose residuals are in the top 30% of all residuals, cf. e.g. [24]. We are going to solve the Poisson
equation with Dirichlet boundary conditions taken from a known solution u. For test purposes we
take our domain to be the disk Ω inscribed in the unit square and take the Dirichlet boundary
conditions from the following true solutions:

u(x, y) = e−200((x−.5)2+(y−.5)2), (6.1)

and
u(x, y) = tanh(40y − 80x2)− tanh(40x− 80y2). (6.2)

The first of these is a sharp peak Fig. 7 (left), and the second is an example used in [24] to study
adaptive FEM methods on H-triangulations of the unit square. It has very large derivatives along
two curves, see Fig. 7 (right) and also Fig. 9.

Figure 7: Two functions for use in testing adaptive methods



6 IPBM WITH SPLINES ON H-TRIANGULATIONS 16

Example 6.1 Solve the Poisson problem on the disk Ω of radius 1/2 centered at the point (.5, .5)
with true solution (6.1) using C0 quintic splines on adaptively refined H-triangulations.

Discussion: We solve the problem using four methods: a) adaptive IPBM/F with C0 quintic
splines starting with a 5× 5 type-2 triangulation and performing 10 cycles, b) adaptive IPBM/C
with C0 quintic splines starting with a 5×5 type-2 triangulation of the unit square with and using
11 cycles, c) IPBM/F with biquintic tensor-product splines on a 41× 41 uniform grid, d) IPBM/C
with biquintic tensor-product splines on a 41× 41 uniform grid. For both a) and b), we adaptively
refine using the residual as an error indicator. In the following table we give the size of the system
matrix G and its condition number for the final refined triangulation, along with the usual max
and RMS errors at boundary points on ∂Ω and at 36114 points covering the disk Ω. The resulting
H-triangulations for a) and b) are shown in Fig. 8.

time size cond emaxB rmsB emax rms
a) 9.18 8633 2.91e+14: 1.06e-08 2.32e-09 6.22e-06 1.96e-06
b) 7.25 9057 3.78e+11 2.42e-08 9.54e-09 4.24e-05 9.50e-06
c) 5.31 2025 5.55e+13 6.85e-17 2.44e-17 3.36e-05 1.93e-06
d) 3.73 2025 2.69e+11 5.52e-13 3.76e-13 3.15e-05 1.94e-06

Both adaptive methods produce reasonable triangulations for this test function. However, IPBM
with tensor-product splines gave comparable accuracy with fewer degrees of freedom and in less
time.

Figure 8: H-triangulations obtained by adaptive IPBM/F and IPBM/C for Example 6.1

For our second example we use the true solution given in (6.2). This is a more difficult function
to approximate, and will require more degrees of freedom. Due to the nature of the solution, for
this example we start with a uniform type-1 triangulation rather than a type-2 triangulation.

Example 6.2 Solve the Poisson problem on the disk Ω of radius 1/2 centered at the point (.5, .5)
with true solution (6.2) using C0 quintic splines on adaptively refined H-triangulations.

Discussion: We solve this problem in the following different ways: a) using IPBM/F with S0
5 (△)

and an adaptive algorithm starting with a 10 × 10 type-1 triangulation and applying 15 cycles
of uniform refinement, b) using IPBM/C with S0

5 (△) and an adaptive algorithm starting with a
10×10 type-1 triangulation and applying 20 cycles of uniform refinement, c) IPBM/F with degree
five tensor-product splines on a 121× 121 uniform mesh, and d) IPBM/C with degree five tensor-
product splines on a 121× 121 uniform mesh. The following table shows the same values as in the
previous example.



7 IPBM WITH SPLINES ON T-MESHES 17

time size cond emaxB rmsB emax rms
a) 25.20 11898 2.72e+16 6.44e-04 8.10e-05 5.88e-03 6.51e-04
b) 32.80 16293 7.90e+16 1.91e-03 3.26e-04 1.08e-02 1.66e-03
c) 155.87 15625 1.57e+18 1.06e-02 8.75e-04 1.16e-02 7.02e-04
d) 103.25 15625 2.82e+15 1.55e-02 2.71e-03 1.55e-02 8.09e-04

The H-triangulations produced by the adaptive IPBM/C methods a) and b) are shown in Fig. 9
– they are quite similar to each other. We can see how the refinements are concentrated along
the curves where u has very steep derivatives. Here we can clearly see the advantage of using
H-triangulations. We got the best accuracy in the least time with the adaptive IPBM/F method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: H-triangulations obtained by adaptive IPBM/C and IPBM/F for Example 6.2

7 IPBM with splines on T-meshes

A T-mesh is similar to an H-triangulation except that instead of using triangles we use rectangles.
More precisely, a T-mesh of a domain Ω is a union of axis-aligned rectangles that cover Ω such
that two rectangles touch each either only at points on their edges. T-meshes are more general
than tensor-product meshes since they allow hanging vertices, and moreover the domain need not
be a rectangle. For examples of T-meshes, see Fig. 10.

Given a T-mesh △, a spline s of bidegree d× d̃ is a piecewise function defined on △ such that in
each subrectangle of △, s is a tensor-product polynomial of bidegree d× d̃. Theoretical properties
of spaces of splines on T-meshes have been studied in a number of papers in the literature, see e.g.
[32, 34] and references therein. We will work with splines on T-meshes in terms of the coefficients
of the Bernstein–Bézier representation of the tensor-product polynomial pieces of the spline. We
can assemble these coefficients in a vector c of length nr(d+ 1)(d̃+ 1), where nr is the number of
rectangles in the mesh. It is easy to construct a matrix E so that such a piecewise polynomial on
the mesh is continuous and continuously differentiable if and only if Ec = 0. So instead of working
with splines that are exactly C1, in carrying out the IPBM/C and IPBM/F methods using splines
on T-meshes we can deal with smoothness as a penalty term as described in Sect. 2.

To illustrate the use of IPBM with splines on T-meshes, we now redo Examples 6.1 and 6.2
replacing H-triangulations by T-meshes. As in those examples, we take our domain Ω to be the
disk of radius 1/2 inscribed in the unit square. Our aim is to solve the Laplace equation with
Dirichlet boundary conditions taken from the functions (6.1) and (6.2) shown in Fig. 7.

As for H-triangulations, we begin with a simple partition, in this case a tensor-product grid,
and then iteratively refine it by splitting certain rectangles. The decision of which rectangles to
split can be made using an estimate for the residuals ‖Ls− f‖L1(H) associated with each rectangle



7 IPBM WITH SPLINES ON T-MESHES 18

H in the mesh. In the following experiments we refine those rectangles whose residuals are in the
top 30% of all residuals, and then repeat the process by computing the new spline and associated
residual and performing another round of splits.

A given T-mesh can be refined in a variety of ways, see Remark 9.25. Here we focus on uniform
refinement in which each rectangle H is split into four subrectangles by inserting one new vertex
at the center of H, and additional hanging vertices at the centers of each edge.

Example 7.1 Solve the Poisson problem (3.1) on the disk Ω of radius 1/2 centered at the point
(.5, .5) using adaptive C0 splines on T-meshes, where the true solution u is the peak function defined
in (6.1).

Discussion: We solve the problem using the following approaches: a) adaptive IPBM/F on T-
meshes with splines of bidegree 6 starting with a 5×5 tensor-product grid and executing 11 cycles,
b) adaptive IPBM/C with degree 6 splines starting with a 5× 5 tensor-product grid and executing
10 cycles, c) IPBM/F with tensor-product bidegree 6 splines on a 45 × 45 uniform grid, and d)
IPBM/C degree 6 tensor-product splines on a 45× 45 uniform grid. In the following table we give
the size of the system matrix G and its condition number for the final refined partition, along with
the usual max and RMS errors at boundary points on ∂Ω and at 36,114 points covering the disk
Ω. The T-meshes produced in a) and b) are shown in Fig. 10.

time size cond emaxB rmsB emax rms
a) 11.10 10813 2.69e+13 1.63e-06 3.91e-07 1.63e-06 2.15e-07
b) 13.48 16758 2.73e+09 7.21e-07 2.13e-07 1.85e-05 9.92e-06
c) 9.74 2500 2.39e+15 6.20e-16 1.51e-16 3.80e-06 2.44e-07
d) 5.77 2500 1.98e+13 2.16e-15 1.29e-15 3.88e-06 2.44e-07

For this test function the adaptive methods do not show any advantage as both the tensor-spline
IPBM/F and IPBM/C methods get better accuracy in less time and with fewer coefficients. For
this problem the tensor-product collocation was fastest.

Figure 10: T-meshes obtained by adaptive IPBM/F and IPBM/C for Example 7.1

For our second example we use the true solution given in (6.2), see Fig. 7 (right). We start the
adaptive methods with a uniform 5× 5 grid on the enclosing rectangle.

Example 7.2 Solve the Poisson problem on the disk Ω in Fig. 10 (left) with true solution (6.2)
using splines on T-meshes.

Discussion: We solve this problem in the following ways: a) using IPBM/F with splines of bidegree
5 and an adaptive algorithm using 10 cycles starting with a 10× 10 type-1 triangulation. b) using



8 THE 3D-CASE 19

IPBM/C with splines of bidegree 6 and an adaptive algorithm starting with a 10×10 tensor-product
grid and applying uniform refinement with 15 cycles, c) using IPBM/F with tensor-product degree
six splines on a 81×81 uniform mesh, and d) using IPBM/C with tensor-product degree six splines
on a 81× 81 uniform mesh. For a) and b) we used λs = 1000, while for c) and d) we used λ = 10.

time size cond emaxB rmsB emax rms
a) 34.71 20327 1.33e+15 5.86e-02 1.09e-02 5.86e-02 2.33e-03
b) 38.08 23627 3.32e+16 5.60e-04 8.25e-05 2.00e-02 2.86e-03
c) 60.48 7396 9.01e+19 2.81e-02 2.96e-03 4.95e-02 4.30e-03
d) 26.57 7396 3.81e+15 7.71e-02 8.84e-03 7.71e-02 4.48e-03

T-meshes corresponding to methods a) and b) are shown in Fig. 11. We can clearly see how the
refinement was concentrated along the curves where u has very steep derivatives. We got compa-
rable errors with all four methods, although the tensor-product splines have far fewer coefficients.
They are also the smoothest.

Figure 11: The T-meshes produced by adaptive IPBM/F and IPBM/C in Example 7.2

8 The 3D-case

In this section we explore the performance of IPBM in the case where the domain of interest lies
in IR3. Although we could use 3D analogs of all of the approximating spaces discussed above,
we shall limit our discussion to C0 polynomial splines on a tetrahedral partition of an enclosing
rectangular box D. Our examples involve solving the Laplace equation with Dirichlet boundary
conditions. For each example we take the true solution to be

u(x, y, z) = sin(5x) + sin(5y) + sin(5z). (8.1)

Example 8.1 Solve Poisson’s problem on the domain shown in Fig. 12 (left) with true solution
(8.1) using the IPBM/F method with C0 quintic splines on tetrahedral partitions as shown in the
figure.

Discussion: We solve the problem for a sequence of nested partitions corresponding to m = 3, 5
and 9 grid lines in each direction. Since we are using C0 splines, we must add a penalty term to
make the splines approximately C1. The following table reports the computational times, numbers
of degrees of freedom, condition number of the system, l2 norm of the smoothness conditions, and
the max and RMS errors on the boundary and in the interior of Ω.



9 20

Figure 12: Two 3D domains imbedded in tetrahedral partitions of a rectangular box

m time size cond smooth MaxB RMSB Max RMS
3 0.97 1331 1.32e+07 2.26e-05 9.88e-05 1.76e-05 4.44e-04 7.69e-05
5 9.49 9261 2.69e+09 4.85e-07 2.27e-06 5.17e-07 9.90e-06 1.51e-06
9 315.68 68921 1.31e+12 6.02e-09 5.12e-08 1.11e-08 1.66e-07 2.41e-08

More experimentation is needed to determine the order of convergence of this method, but this
table is showing approximately six, which would be optimal for quintic splines.

Example 8.2 Repeat Example 8.1 for the domain shown in Fig. 12 (right).

Discussion: This domain is constructed from two partial spheres joined together. We solve the
problem for a sequence of nested partitions corresponding to m = 3, 5 and and 9 grid lines in each
direction. The following table shows the same information as in the previous example.

m time size cond smooth MaxB RMSB Max RMS
3 0.64 1331 3.77e+06 1.20e-04 4.94e-04 1.43e-04 3.44e-03 1.14e-03
5 8.4 9261 3.18e+08 2.07e-06 2.00e-05 4.09e-06 8.66e-05 2.71e-05
9 333.01 68921 1.21e+11 4.11e-09 1.03e-07 2.28e-08 4.17e-07 9.40e-08

More experimentation is needed to determine the order of convergence of this method, but this
table is showing approximately six, which would be optmal for quintic splines.

9

Remark 9.1 The idea of solving a boundary problem by immersing the domain in a larger set
has been heavily studied in the literature, mostly as relates to solving problems in fluid dynamics
where moving boundaries are involved, or for so-called interface problems, see e.g. [27] or the book
[25] and references therein. They have also been used for problems with discontinuous coefficients.
Other names used in the literature include ghost fluid method and fictitious domain method.

Remark 9.2 The immersion idea has been used to solve boundary-value problems on domains
with curved boundaries using so-called WEB splines, see [1], [19] and the book [18]. This method
works with modified tensor-product splines on an enclosing rectangle, and requires constructing a
weight function that vanishes on the boundary.



9 21

Remark 9.3 There are a number of papers in the literature that deal with so-called boundary
penalty methods or penalty boundary methods, see e.g. [2, 9]. Second order elliptic problems with
Dirichlet boundary conditions are treated with a finite-element method involving the immersion
idea and imposing the boundary condition weakly via a penalty term involving the integral over
the boundary.

Remark 9.4 An extensive survey of least-squares methods for solving PDE’s (as of 1976) can be
found in [13]. Of 170 papers referenced, only one is listed as involving discrete least-squares terms
for both the differential equation and the boundary conditions, see [14], and it deals with two-point
boundary-value problems for ODE’s.

Remark 9.5 The referee kindly pointed out recent work of Bochev and Gunzburger on least-
squares methods for PDE, see e.g.[3] and the book [4]. In Sect. 5.1 of [3] they formulate a collocation
method similar to our (2.7) except that they do not use immersion and so their collocation points
must be chosen in Ω itself. Immersion with a discrete least-squares formulation was used in [22],
albeit for an advection-diffusion problem.

Remark 9.6 Methods for solving elliptic boundary-value probems with Dirichlet boundary con-
ditions on curved boundaries based on a version of the Ritz-Galerkin method that eliminates the
need to impose boundary conditions have been studied in several papers, see e.g. [5, 7, 8, 15, 36].
One approach is to use Nitsche’s formulation of the variational problem which requires computing
integrals along the boundary. In some of these papers the methods are called fictitious domain
methods.

Remark 9.7 There are also related papers on the so-called finite-cell method, see [28, 30]. These
methods require adaptive quadrature rules to compute the needed integrals when dealing with
problems on domains with curved boundaries.

Remark 9.8 In our formulation of the IPBM/F method we work with a least-squares problem
involving the integrals of Ls−f against the basis functions φi. As an alternative, we could replace
the first term in (2.6) by

∫

D
(Ls− f)2. Our experience is that using (2.6) works better.

Remark 9.9 Another way to handle boundary-value problems on domains with curved bound-
aries is to use the classical FEM approach, but working with approximating spaces defined on
meshes which include curved triangles. If the boundary is piecewise conic, this can be done using
appropriate piecewise polynomial spline spaces, see [11]. Alternatively, one can work with piecewise
rationals instead, see [37].

Remark 9.10 Collocation is frequently used in the meshfree radial basis function (RBF) ap-
proach to solving boundary-value problems, see the book [16] or the survey article [23] and refer-
ences therein. This approach typically collocates both the differential equation and the boundary
conditions.

Remark 9.11 Classical finite-element methods based on polynomal splines work on partitions
with polygonal boundaries. They can be used for problems involving curved boundaries by creating
partitions whose boundaries approxate the curved boundary. But then the boundary conditions
have to be imposed on the polygonal boundary, which have to be estimated from nearby points on
the true boundary, with a resulting loss of accuracy, see e.g. Example 9.14 in [31].

Remark 9.12 In the examples presented here we have chosen the immersing domain to be the
smallest rectangle containing the actual domain Ω. When using non-tensor splines, we can often
choose smaller enclosing polygonal domains whose boundaries more closely follow the boundary of
Ω. This reduces the number of degrees of freedom, but otherwise does not seem to have a major
impact on the performance of the methods.



9 22

Remark 9.13 Depending on how the immersing domain is chosen, we will usually be working with
some collocation points that fall outside the domain Ω where the problem is formulated. Assuming
the problem has a solution on the larger domain, we do not find that this causes any problems. If
desired, one could reduce the influence of collocation points falling outside of Ω by assigning small
weights to the corresponding equations, but we did not find this useful in our examples.

Remark 9.14 To use the IPBM approach in practice, we need to select reasonably spaced points
on the boundary to be used in forming the penalty terms in (2.6) and (2.7). This is a relatively easy
task for 2D problems. If ∂Ω is given by a collection of simple curves (such as lines and circles) with
arc-length parametrizations, it is easy to find points which are exactly equally spaced. For other
boundary representations such as NURBs where we may not have arc-length parametrizations,
we often can get almost equally spaced points by taking equally spaced points in the parameter
domain. Alternatively, one can write an algorithm which starts with an initial point and a desired
spacing h, then computes the next point on the curve that is approximately h away, and then
iterates. The examples in this paper involving nurbs curves were done in this way.

Remark 9.15 Finding reasonably spaced points on the boundary of a 3D domain is more difficult.
Again the simplest approach is to take well-spaced points in the parameter domain and use the
corresponding points on ∂Ω.

Remark 9.16 If we work with piecewise polynomials on a partition of an immersing domain D
in IR2, then the second derivative of a basis function will be of size O(h2) where h is the mesh
size. Assuming we are working with local basis functions of height O(1), it follows that terms
of the form

∫

D
φiLφj will be of size O(1). This implies that λ in (2.6) can be thought of as a

dimensionless parameter.

Remark 9.17 However, the situation is different for the IPBM/C method. Here we must work
with point values of the products LφiLφj , and not their integrals. Assuming we are working with
a second order differential operator L, in this case to make λ dimensionless we need to multiply
these products by h4, where h is the mesh size.

Remark 9.18 All of our experiments involving collocation were done using equally spaced collo-
cation points in the mesh triangles or rectangles. For triangles, we use the

(

d+2
2

)

domain points,

while for rectangles we use a grid of (d+ 1)(d̃+ 1) points. Collocation does not require this many
points, and certainly the assembly of the collocation equations will run faster if we use fewer points.
For smaller problems the reduction in running time is barely noticable, but could make a difference
for very large problems.

Remark 9.19 T-splines are a generalization of polynomial splines on T-meshes that are piecewise
rational rather than piecewise polynomial, see [35]. The IPBM approach can also be used with
such splines. But for our purposes there does not seem to be any clear benefit in using them. We
also do not have to worry about working with so-called analysis suitable meshes.

Remark 9.20 All of the results shown here are based on writing the linear systems as normal
equations and using the built-in Matlab system solver. This accounts for why the condition num-
bers are sometimes rather large, although we got very good accuracy anyway. The performance of
the algorithms can certainly be improved by using better least-squares solvers.

Remark 9.21 In solving the boundary value problems we do not need a mesh defined on the
domain Ω. However, we do create such a mesh using a grid of interior points in Ω to construct a
constrained Delaunay triangulation for the purpose of displaying the spline surfaces.



REFERENCES 23

Remark 9.22 All of the programs used here were written in Matlab and run on a standard iMac.
The times reported here are only for comparison purposes. No effort was made to optimize the
code.

Remark 9.23 Although we introduced a basis in (2.4) to formulate the IPBM methods, no global
basis functions are ever computed. Everything is done in terms of Bézier coefficients relative to a
triangle or rectangle. Since we are not using any parametric map, no Bézier extraction techniques
are required.

Remark 9.24 Adaptive methods for solving boundary-value problems have been studied in the
literature in a variety of papers, including recently in the IGA literature [12, 30]. The test function
(6.2) was used in [20, 24] to explore adaptive methods with splines on rectangles. In [20] the
refinement strategy works only with ordinary triangulations, while in [24] triangulations with
hanging vertices are used.

Remark 9.25 In the adaptive methods using H-triangulations we have chosen to split triangles
into four similar subtriangles. An alternative would be to split them into two subtriangles. Simi-
larly, for our adaptive methods using splines on T-meshes, we have split rectangles equally into four
subrectangles, but of course there are other splitting algorithms that yield only two subrectangles
for example.

Remark 9.26 In the adaptive methods of Section 6 we have opted to consider all triangles in the
partition of D for possible refinement, not just those that overlap Ω. Limiting the refinement to
only those triangles that overlap Ω does not seem to lead to better refinements. The same comment
applies to the adaptive methods of Section 7 where we refine rectangles.

Remark 9.27 Heirarchical refinement of tensor-product meshes seems to be fashionable in the
IGA community, and of course we can use that refinement strategy here too. This would amount
to splitting a rectangle into a larger number of congruent subrectangles.

Remark 9.28 Here we have illustrated IPBM methods only for second order PDE’s. They are
of course also applicable to higher order problems such as the biharmonic equation. The simplest
approach would be to use tensor-product splines on an enclosing rectangle. This way we can have
whatever smoothness is required just by choosing the degree of the splines sufficiently large.

References

[1] Apprich, C., Höllig, K., Hörner, J., Reif, U.: Collocation with WEB-splines, Adv. Comput.
Math. 42 (2016), 823-842.

[2] Barrett, J. W., Eilliot, C. M.: Finite element approximation of the Dirichet problem using the
boundary penalty method, Numer. Math. 49 (1986), 343–366.

[3] Bochev, P., Gunzburger, M.: Least-squares finite element methods, in Int. Congress Mathe-
maticians. Vol. III, Eur. Math. Soc. Zürich, 2006, 1137–1162.

[4] Bochev, P. B., Gunzburger, M. D.: Least-squares Finite Element Methods, Applied Mathe-
matical Sciences Vol. 166, Springer (New York), 2009.

[5] Bramble, J.: Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without
boundary condiitions, Comm. Pure Appl. Math. 23 (1970), 653–675.



REFERENCES 24

[6] Buffat, M., Penven, Lionel; A spectral fictitious domain method with internal forcing for solving
elliptic PDEs, J. Comp. Physics 230 (2011), 2433–2450.

[7] Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I.
A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg. 199 (2010),
2680-2686.

[8] Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A
stabilized Nitsche method, Appl. Numer. Math. 62 (2012), 328–341.

[9] Clark, B. W., Anderson, D. C.: The penalty boundary method, Finite Elements in Analysis
and Design 39 (2003), 387–401.

[10] Cottrell, J.A., Hughes, T. J. R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of
CAD and FEA, Wiley (New York), 2009.

[11] Davydov, O., Kostin, G., Saeed, A.: Polynomial finite element method for domains enclosed
by piecewise conics, Comput. Aided Geom. Design 45 (2016), 48–72.

[12] Dörfel, M.R., Simeon, B., Jüttler, B.: Adaptive isogeometric analysis by local h-refinement
with T-splines, Comput. Methods Appl. Mech. Engrg. 199 (2010), 264-275.

[13] Eason, E. D.: A review of least-squares methods for solving partial differential equations, Int.
J. Numer. Methods Engrg. 10 (1976), 1021–1046.

[14] Eason, E. D., Mote, C. D.: Solution of non-linear boundary value problems by discrete least
squares, Int. J. Numer. Methods Engrg. 11 (1977), 641–652.

[15] Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsches
method and spline-based finite elements, Int. J. Numer. Methods Engrg. 83 (2010), 877-898.

[16] Fasshauer, G.: Meshfree Approximation Methods with MATLAB, World Scientific (Singa-
pore), 2007.

[17] Glowinski, R., Pan, T., Periaux, J.; A fictitious domain method for Dirichlet problem and
applications, Comput. Meth. Appl. Mech. and Engrg 111 (1994), 283-303.

[18] Höllig, K.: Finite Element Methods with B-splines, SIAM (Philadelphia), 2003.

[19] Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet
problems, SIAM J. Numer. Anal. 39 (2001), 442-462.

[20] Lai, M.-J., Mersmann, C.; An adaptive triangulation method for bivariate spline solutions
of PDE’s; in Approximation Theory XV: San Antonio 2016, G. Fasshauer, and L. Schumaker
(eds.), Springer Verlag (New York), 2017, 155–175.

[21] Lai, M. J., Schumaker, L. L.: Spline Functions on Triangulations, Cambridge University Press
(Cambridge), 2007.

[22] Laible, J. P., Pinder. G. F.: Least squares collocation solution of differential equations on
irregularly shaped domains using orghogonal meshes, Numer. Meth. PDEs 5 (1989), 347–361.

[23] Larsson, E., Fornberg, B.: A numerical study of some radial function based solution methods
for PDEs, Comput. Math. Appl. 46 (2003), 891-902.

[24] Li, Shiying, Schumaker, L. L.: Adaptive computation with splines on triangulations with hang-
ing vertices, in Approximation Theory XV: San Antonio 2016, G. Fasshauer, and L. Schumaker
(eds.), Springer Verlag (New York), 2017, 197–218.



REFERENCES 25

[25] Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving
Interfaces and Irregular Domains, SIAM (Philadelphia), 2006.

[26] Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes, Vis. Comput. 26 (2010),
277-286.

[27] Peskin, C.: The immersed boundary method, Acta Numer. 11 (2002), 1-39.

[28] Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling,
isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg.249-352
(2012), 104–115.

[29] Sanches, R., Bornemann, P., Cirak, F.: Immersed B-spline (I-spline) finite element method for
geometrically complex domains, Comput. Methods Appl. Mech. Engrg. 200 (2011), 1432-1445.

[30] Schillinger, D., Dedè, L., Scott, M. A., Evans, J. A., Borden, M. J., Rank, E., Hughes, T.
J. R.: An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical
Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces, Comput.
Methods Appl. Mech. Engrg 249–252 (2012), 116–150;

[31] Schumaker, L. L.: Spline Functions: Computational Methods, SIAM (Philadelphia), 2015.

[32] Schumaker, L. L., Wang, L.: Spline spaces on TR-meshes with hanging vertices; Numer.
Math. 118 (2011), 531–548.

[33] Schumaker, L. L., Wang, L.: Splines on triangulations with hanging vertices,; Constr. Ap-
prox. 36 (2012), 487–511.

[34] Schumaker, L. L., Wang, L.: Approximation power of polynomial splines on T-meshes, Com-
put. Aided Geom. Design 29 (2012), 599–612.

[35] Sederberg, T. W., Zheng, J., Bakenov,A., Nasri, A.: T-splines and T-NURCCSs, ACM Trans.
Graph. 22 (3) (2003) 477-484.

[36] Serbin, S. M.: Computational investigations of least-squares type methods for the approximate
solution of boundary value problems, Math. Comp. 29 (1975), 777-793.

[37] Wachspress, E. L.: A Rational Finite Element Basis, Academic Press (New York), 2012.

[38] Yao, Guangfa: Immersed Boundary Method for CFD: Focusing on its Implementation, Cre-
ateSpace (Amazon), 2016.

[39] Zhu, T., Atluri, S.N.: A modified collocation method and a penalty formulation for enforcing
the essential boundary conditions in the element free Galerkin method, Comput. Mech. 21
(1998), 211-222.


