
Approximation by Polynomial Splines on Curved

Triangulations

Larry L. Schumaker and Annan Yu

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

January 13, 2021

Abstract

Spaces of polynomial splines defined on curved triangulations of curved domains are introduced
and studied along with applications to interpolation and data fitting problems.

1 Introduction

In practice we are often faced with the problem of finding an approximation to a function that
is defined on a curved planar domain Ω. Typical problems would involve interpolation or fitting
of data, as well as the solution of boundary-value problems. A common approach to solving such
problems is to use piecewise polynomial spline functions defined on some triangulation which only
approximately covers the domain. Although it would seem more natural to work with piecewise
polynomial splines defined directly on a curved triangulation of Ω, it seems that there has been
very little study of such splines in the spline literature, see Remark 12.1. The purpose of this paper
is to rectify this situation by developing basic properties of such spline spaces and then showing
how to use them in practice.

The paper is organized as follows. In Sects. 2–4 we introduce curved domains and curved triangu-
lations and show how to construct them. Polynomial splines defined on curved triangulations and
how to store and evaluate them are discussed in Sect. 5. In Sect. 6 we describe a quasi-intepolation
operator which is used in the following section to investigate the approximation power of our
splines. Macro-element spaces defined on curved triangulations are discussed in Sect. 8 and used
in Sects. 9 and 10 to solve certain scattered data interpolation problems. Finally, in Sect. 11 we
present a useful algorithm for picking well-spaced points in a curved domain. We leave a treatment
of boundary-value problems on curved domains to a separate paper, see [12].

2 Curved planar domains

Throughout the paper when we talk about a curved domain Ω we mean a closed connected
set lying in IR2 whose boundary ∂Ω is defined by m + 1 disjoint non-self intersecting Lipschitz
continuous parametric curves, where m is the number of holes in the domain. We do not require Ω
to be convex, nor that the parametrizations of the boundary curves be arc-length parametrizations.
Several examples of typical curved domains that might arise in practice are shown in Fig. 3.

In practice the curves definining the boundary of a curved domain Ω are usually defined as closed
NURBs curves. But they could also be defined in terms of piecewise elementary parametric curves

1



3 CURVED TRIANGULATIONS 2

such as lines, circles, ovals, etc.. For our purposes we may assume without loss of generality that
the boundary curves are oriented so we can tell on which side of the curve the domain lies on.

3 Curved triangulations

We begin by defining what we mean by a curved triangle.

Definition 3.1. Suppose v1, v2, v3 are three noncollinear points in the plane. Suppose e1 is a curve
segment with endpoints at v1 and v2. Similarly, let e2 and e3 be curve segments joining v2, v3 and
v3, v1, respectively. Suppose that the ei intersect each other only at at their endpoints. Then we
define a curved triangle with vertices v1, v2, v3 and edges e1, e2, e3 to be the closed subset T̃
of IR2 enclosed by the three edges.

A curved triangle has three vertices and three edges. If all three edges are straight lines we call it an
ordinary triangle. A curved triangle need not be convex. Each curved triangle T̃ is associated
with a unique ordinary triangle T obtained by replacing each curved edge with a straight edge. We
call this the companion triangle. We can now define what we mean by a curved triangulation.

Definition 3.2. Suppose Ω is a curved domain in IR2, and suppose that 4̃ = {T̃i}nti=1 is a set
of curved triangles whose union exactly covers Ω, and is such that any two curved triangles in
4̃ can intersect each other only at a vertex or along a common edge. Then we call 4̃ a curved

triangulation of the domain Ω. If we replace each of the T̃i by its companion triangle, then we
get an ordinary triangulation 4 which we call the companion triangulation to 4̃.

Note that according to this definition, all edges of a curved triangulation (including interior edges)
can be curved. However, in practice we will work only with curved triangulations whose interior
edges are all straight lines. Curved triangulations constructed by the methods of the following
section will always have this property.

4 Constructing curved triangulations

Suppose Ω is a curved domain. In this section we outline an algorithm for constructing a curved
triangulation of Ω. The first step is to construct a so-called inscribed triangulation.

Definition 4.1. Suppose that 4 = {Ti}nti=1 is an ordinary triangulation whose vertices lie in the
domain Ω, and whose boundary vertices lie on the boundary of Ω. We call such a triangulation an
inscribed triangulation of Ω.

To construct an inscribed triangulation for a given curved domain Ω we first have to identify the
points inside Ω and on the boundary of Ω that will be used for the vertices of the triangulation.
The choice of the vertices depends on what kind of problem we are solving: a) For scattered data
fitting methods such as those discussed in Sections 8-9 below, these points will be given to us as
part of the problem. b) For constructing a quasi-interpolant as discussed in Sect. 6 (and also for
solving boundary-value problems, see [12],) we are free to choose the vertices. In Section 11 we
describe an algorithm that can be used for picking vertices.

Once we have selected the vertices, the next step is to construct the triangulation. For this
step we use a constrained Delaunay triangulation 4 where the constraints make sure that
the boundary vertices of 4 lie on the boundary of Ω. For the purposes of this paper we have
carried out this step using the Matlab function delaunayTriangulation. This code produces
triangulations whose smallest angles are maximized.



4 CONSTRUCTING CURVED TRIANGULATIONS 3

v1

v2

v3

v4

T1

T2

v1

v2

v3

v4

T1

T2

Figure 1: An inscribed triangulation of a curved domain and the associated curved triangulation

v1

v2

v3

v4v5

v6

v7

v8 v9

v10

v11

v12

v13

v14

v15

v16

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10
T11

T12

T13

T14

T15

T16

Figure 2: An inscribed triangulation of a curved domain that cannot be converted to a curved
triangulation

We now present an algorithm for converting an initial inscribed triangulation into a curved trian-
gulation of the curved domain. Let 4 = {Ti}nti=1 be an inscribed triangulation associated with a
curved domain Ω with m holes. Such a domain is defined by m+1 nointersecting boundary curves
∂Ω0, . . . , ∂Ωm.

Algorithm 4.1. For each j = 0, . . . ,m,

1) Suppose uj1, . . . , u
j
nj are the boundary vertices of 4 that lie on ∂Ωj, ordered in counterclockwise

order around ∂Ω, and let ujnj+1 = uj1.

2) For each 1 ≤ i ≤ nj, replace the edge of the triangle in 4 with endpoints uji and uji+1 by the

curve segment eji of ∂Ωj that connects uji and uji+1.

Fig. 1 shows an example of a curved domain along with an inscribed triangulation that has been
converted to a curved triangulation. It turns out that for a given curved domain Ω, not all inscribed
triangulations of Ω can be converted to curved triangulations. Consider the inscribed triangulation
shown in Fig. 2, and consider the triangle T8 with vertices v7, v8 and v9. If we replace the edge
〈v8, v9〉 of T8 by the part of ∂Ω that connects these two vertices, we do not get a curved triangle,
see Fig. 2 (right). The problem is that this curve segment intersects an interior edge of 4 at a
point in the interior of that edge. For an inscribed triangulation to be convertible, we will have to
exclude such anomalies.

Definition 4.2. Suppose that 4 = {Ti}nti=1 is an inscribed triangulation associated with a curved

domain Ω, and let ej1, . . . , e
j
nj be the curve segments introduced in step 2 of the algorithm above.

Then we say that 4 is convertible provided that for all 0 ≤ j ≤ m,

1) The union of ej1, . . . , e
j
nj cover all of ∂Ωj,

2) A boundary segment eji of ∂Ωj can intersect an interior edge e of 4 only at the endpoints of e.



5 POLYNOMIAL SPLINES ON CURVED TRIANGULATIONS 4

Figure 3: Curved triangulations of several curved domains

The inscribed triangulation in Fig. 1 (left) is convertible, but the one in Fig. 2 (left) is not. For
curved domains Ω with well-behaved boundaries, we will generally get convertible inscribed tri-
angulations if we choose enough well-spaced vertices on the boundary to follow the shape of the
boundary.

In Fig. 3 we show curved triangulations of several different curved domains defined by NURBs,
parametric curves, and implicit curves. Note that those in the last row have holes in them.

5 Polynomial splines on curved triangulations

We are ready to introduce the spline spaces of interest in this paper.

Definition 5.1. Suppose 4̃ is a curved triangulation of a curved domain Ω, and let 0 ≤ r < d.
Then we define the space of polynomial splines of degree d and smoothness r on 4̃ as

Srd(4̃) := {s ∈ Cr(Ω) : s|T̃ ∈ Pd, all T̃ ∈ 4̃}. (5.1)

where Pd is the space of bivariate polynomials of degree d.

This space is clearly a finite dimensional linear space of functions. There is a close relationship
between it and the classical polynomial spline spaces defined on ordinary triangulations, see [7]
and [11]. Indeed, if s̃ is a polynomial spline on a curved triangulation, then it can be considered as
the extension/restriction of a polynomial spline s on the associated ordinary triangulation. This
holds since any polynomial is defined globally, and if T is the companion triangle associated with
the curved triangle T̃ then both s̃|T̃ and sT are represented by the same polynomial. It follows

that the dimension of Srd(4̃) and Srd(4) are the same. For example,

dimS0d(4̃) = nv + (d− 1)ne +

(
d− 1

2

)
nt, (5.2)

where nv, ne, nt are the numbers of vertices, edges, and triangles in 4̃.

Because of the close connection between polynomial splines on a curved triangulation and polyno-
mial splines on the associated ordinary triangulation, we can easily modify computational methods



5 POLYNOMIAL SPLINES ON CURVED TRIANGULATIONS 5

developed for polynomial splines on ordinary triangulations (see [11]) to work with splines on curved
triangulations.

5.1 Storing a spline on a curved triangulation

The computational methods discussed in [11] for dealing with splines on an ordinary triangulation
are based on the fact that for any r ≥ 0, Srd(4) is a subspace of S0d(4). This means that we
can store a spline s in Srd(4) as a spline in S0d(4). As explained in Sect.4.9 of [11], this can
accomplished most efficiently by storing a vector c containing the Bernstein–Bézier coefficients of
s, see the books [7] and [11]. Each such coefficient is associated with a domain point which may
be at a vertex, in the interior of an edge, or inside a triangle. It follows that to store a spline
s̃ ∈ Srd(4̃), we simply consider the associated spline s ∈ Srd(4) and store its coefficient vector.
The Matlab package accompanying the book [11] contains a function getindex that can be used to
recover the indices of the B-coefficients associated with the

(
d+2
2

)
domain points in a given triangle

T . The resulting coefficients are precisely the coefficients defining s on T and T̃ .

5.2 Evaluating a spline on a curved triangulation

Let s̃ be a polynomial spline defined on a curved triangulation 4̃ of a curved domain Ω, and suppose
we want to evaluate s̃ at a point u in Ω. The first step in finding s̃(u) is to locate which curved
triangle T̃ of 4̃ that u lies in. Once we know this we can look up the coefficients corresponding to
the domain points Dd,T lying in the associated companion triangle T . We can then use them to
find the value of the corresponding polynomial at any point in IR2, and in particular at u. That
will give us the value of s̃(u).

To help solve the problem of which curved triangle T̃ contains a given point u ∈ Ω, it is conve-
nient to construct another ordinary triangulation 4̄ associated with 4̃ which we call the extended
triangulation. Here is an outline of an algorithm that can be used to create an extended trian-
gulation associated with a given curved triangulation 4̃. Let 4 be the companion triangulation.

Algorithm 5.1. Suppose (x, y) are the vectors of Cartesian coordinates of the vertices of 4 and
let nb be the number of boundary vertices.

1) pick an offset value ε > 0

2) For each boundary vertex of (xi, yi) of 4̃, let (x̄i, ȳi) be the point that lies at an offset distance
of ε in the direction of the outward normal vector at (xi, yi),

3) To define 4̄, supplement 4 with a ring of 2nb triangles whose vertices are chosen from the
boundary vertices of 4 along with thet new points (x̄i, ȳi) introduced in step 2.

In Fig. 4 (right) we show an extended triangulation 4̄ associated with the curved triangulation in
Fig. 4 (left).

Note that the union of the triangles in an inscribed triangulation 4 may not cover all of Ω.
However, if we choose ε large enough the union of the triangles in the extended triangulation 4̄
will cover Ω. Now suppose we want to evaluate a spline s at a point u in Ω. If u lies in one of
the triangles T of the inscribed triangulation, then we look up the B-coefficients associated with
T and evaluate the corresponding polynomial. If u lies in one of the triangles in the outer ring,
we have to use the coefficients associated with a neighboring triangle in 4. The indices of these
neighbors can be stored in a vector of length 2nb.



6 A QUASI-INTERPOLATION OPERATOR 6

Figure 4: A curved triangulation and an associated extended triangulation

6 A quasi-interpolation operator

Let 4̃ be a curved triangulation of a curved domain Ω. In this section we show how to construct
a quasi-interpolation operator Q that maps continuous functions on Ω to splines in S0d(4̃). The
mapping Q will be a locally bounded linear projection which we will use in the following section
to show that the space S0d(4̃) has full approximation power.

Algorithm 6.1. For i = 1, . . . , nt

1) Given a curved triangle T̃i, let Ti be the companion triangle associated with T̃i, and let T̂i be an
ordinary triangle that is contained in T̃i,

2) Let Dd,T̂i be the set of domain points of order d associated with T̂i,

3) Find the nd :=
(
d+2
2

)
B-coefficients of a polynomial pi of degree d that interpolates the values of

f at the points in Dd,T̂i ,

4) Use these coefficients to calculate the values F = {Fξ := pi(ξ)}ξ∈Dd,Ti ,

5) For each edge e of Ti that is an interior edge of 4̃ and for each domain point ξ ∈ Dd,Ti lying
on e, replace the value Fξ by f(ξ),

6) Compute the coefficients of a polynomial of degree d that interpolates the modified values F at
the domain points Dd,Ti ,

7) Store these coefficients in a vector c according to the storage convention described in Sect. 4.9.1
of [11].

This algorithm defines a mapping from C(Ω) to a piecewise polynomial Qf of degree d defined on
the curved triangulation 4̃. Moreover, for every interior edge e of 4̃, the polynomials defined on
the two triangles sharing e interpolate the same data, and thus are the same. This guarantees that
Qf is continuous and thus belongs to S0d(4̃).

For curved triangles T in 4 that contain their companion ordinary triangle, we can take T̂i to be
that companion triangle. Otherwise we will have to select a smaller triangle for T̂i. It is not hard
to write code to do this automatically. To get the best possible error bounds, we should choose T̂i
to be the largest triangle that fits in T̃i. Its orientation is not important.

To illustrate how Algorithm 6.1 works, consider the curved triangulation 4̃ shown in Fig. 5 (left).
For this example there are six triangles T̃ where we cannot choose T̂i to be the companion triangle
to T̃i. These are marked in Fig. 5 (left), where rather than showing the triangles T̂i themselves, we
have plotted the degree three domain points that each of them contains.



6 A QUASI-INTERPOLATION OPERATOR 7

Figure 5: (left) Domain points in the triangles T̂i chosen in step 1 of Algorithm 6.1. (right) The
quintic quasi-interpolating spline of Example 6.1

In the remainder of this section we give several examples exploring how well Q approximates
smooth functions.

Example 6.1. Approximate the function f = sin(10x) + sin(10y) on the curved domain shown in
Fig. 5 (left) on a sequence of finer and finer curved triangulations. Use the spline space S0d(4̃) with
d = 5.

Discussion: To explore the rate of convergence, we need a sequence of triangulations whose mesh
sizes go down by approximately a factor of 1/2 in each step. To construct such a sequence, we use
Algorithm 11.1 in Sect. 11 below for ny = 5, 9, 17, 33, 65. The following table shows the value of
ny, the number of triangles, the number of coefficients of the spline, and both the max and RMS
errors on a set of 57092 points covering Ω.

ny nt nc emax rms

5 49 676 4.37e-03 2.47e-04
9 160 2106 5.40e-05 3.44e-06
17 542 6961 9.64e-07 6.76e-08
33 1989 25216 6.77e-09 1.22e-09
65 7638 96166 1.12e-10 2.16e-11

rates

6.34 6.17
5.81 5.67
7.15 5.80
5.92 5.82

Fig. 5 (right) shows the quintic quasi-interpolating spline Qf corresponding to the curved triangu-
lation on the left. The table show an approximation rate of six for both the max and RMS errors.
This is optimal for splines of degree five.

Here is an example with a more unusual curved domain.

Example 6.2. Repeat Example 6.1 for the second curved domain shown in Fig. 3 with d = 6.

Discussion: Using Algorithm 11.1 with ny = 5, 9, 17, 33, 65 leads to a sequence of curved trian-
gulatons whose mesh sizes go down by a factor of approximately 1/2 at each step. The following
table shows the values of ny, the number of triangles, the number of coefficients of the spline, and
both the max and RMS errors on a set of 44755 points covering Ω.

ny nt nc emax rms

5 40 823 2.23e-03 1.64e-04
9 118 2287 5.59e-06 2.81e-07
17 409 7648 4.85e-08 1.96e-09
33 1543 28318 1.45e-10 1.16e-11
65 5921 107626 1.43e-12 1.02e-13

rates

8.64 9.19
6.85 7.16
8.39 7.40
6.66 6.83



7 APPROXIMATION POWER OF S0D(4̃) 8

Fig. 6 (left) shows the the quasi-interpolating spline of degree six corresponding to the curved
triangulation of Ω with ny = 9. The table shows an approximation rate of seven. This is optimal
for splines of degree six.

We now present an example of a curved domain with a hole.

Example 6.3. Approximate the function f = sin(10x)+sin(10y) on the fifth curved domain shown
in Fig. 3. Use the spline space S0d(4̃) with d = 5.

Discussion: We again use Algorithm 11.1 with ny = 5, 9, 17, 33, 65 to construct a sequence of
triangulations with mesh sizes going down by a factor of approximately 1/2 at each step. The
following table shows the value of ny, the number of triangles, the number of coefficients of the
spline, and both the max and RMS errors on a set of 43149 points covering Ω.

ny nt nc emax rms

5 38 535 7.46e-02 5.21e-03
9 122 1625 8.34e-04 8.01e-05
17 414 5355 1.20e-05 1.42e-06
33 1498 19060 1.46e-07 2.74e-08
65 5772 72790 7.44e-09 4.68e-10

rates

6.48 6.02
6.11 5.82
6.37 5.69
4.30 5.87

Fig. 6 (right) shows the resulting quasi-interpolating spline corresponding to the triangulation with
ny = 9. The table shows an approximation rate of six. This is optimal for splines of degree five.

Figure 6: The quasi-interpolating splines for Examples 6.2 and 6.3

7 Approximation power of S0
d(4̃)

Error bounds for how well smooth functions can be approximated by polynomial splines on ordinary
triangulations play a central role in classical spline theory. We can derive results for polynomial
splines on curved triangulations using the quasi-interpolation operator introduced in Sect. 6. For
any bounded set of points P in IR we define its diameter |P | to be the diameter of the smallest disk
that contains P . Given a curved triangulation 4̃ = {T̃i}nti=1, let T̂1, . . . , T̂nt be the subtriangles
selected in Algorithm 6.1, and let

β := max
i

|T̃i|
|T̂i|

. (7.1)

Theorem 7.1. The quasi-interpolation operator Q defined above has the following properties:

1) Q is a linear projection mapping C0(Ω) onto S0d(4̃),



8 MACRO-ELEMENT SPACES 9

2) Q is local in the sense that for every curved triangle T̃ , Qf |T̃ depends only on values of f in T̃ ,

3) Q is locally bounded in the max norm, i.e., there exists a constant KQ depending only on β such

that for every curved triangle T̃ , ‖Qf‖T̃ ≤ KQ‖f‖T̂ .

Proof: For any curved triangle T̃i, the polynomial defining Qf on T̃i is the polynomial interpolating
f at the domain points Dd,T̂i . This gives properties 1) and 2). The B-coefficients of Qf relative to

the triangle T̂i are computed from a linear system whose matrix M is the same for all such triangles.
Then ‖M−1‖‖f‖T̂i provides an upper bound for the size of these coefficients. By properties of the

Bernstein polynomials, we conclude that ‖Qf‖T̂i ≤ K1‖f‖T̂i , where K1 = ‖M−1‖. Since Qf is

a polynomial of degree d on T̃i, its max norm on T̃i is bounded by βd times its norm on T̂i, and
property 3) follows.

We are ready to present our approximation theorem. Let T̃ be a curved triangle in a curved
triangulation 4̃. We define the shape parameter of T̃ to be the ratio

κT̃ :=
|T̃ |
ρT̃

,

where ρT̃ is the radius of the largest disk that can be embedded in T̃ .

Theorem 7.2. Let Q be the quasi-interpolant defined above. Then there exists a constant K such
that for every f ∈ Cm+1(Ω) with 0 ≤ m ≤ d.

‖Dα
xD

β
y

(
f −Qf

)
‖T̃ ≤ K |T̃ |

d+1−α−β |f |d+1,T̃ , (7.2)

for all 0 ≤ α+ β ≤ d. The constant K depends only on d, the shape parameter κT̃ , the constant β

defined above, and the Lipschitz constant of the boundary of T̃ .

Proof: By Theorem 1.9 of [7], there exists an averaged Taylor polynomial p of degree d depending
on f such that (7.2) holds with Qf replaced by p. By the triangle inequality we have

‖Dα
xD

β
y

(
f −Qf

)
‖ ≤ ‖Dα

xD
β
y

(
f − p

)
‖+ ‖Dα

xD
β
y

(
p−Qf)

)
‖. (7.3)

Now using the fact that Qp = p, and applying the Markov inequality for derivatives of polynomials,
we can write

‖Dα
xD

β
y

(
p−Qf)

)
‖ = ‖Dα

xD
β
y

(
Qp−Qf)

)
‖

≤ Cρ−(α+β)
T̃

‖Q
(
f − p

)
‖ ≤ CKQρ

−(α+β)
T̃

‖
(
f − p

)
‖

≤ CKQκ
α+β

T̃
|T̃ |d+1−α−β∣∣f |d+1,T̃ ,

(7.4)

where all norms are taken to be the max norm over T̃ , and C is the constant in the Markov
inequality. Inserting this in (7.3) we get (7.2).

8 Macro-element spaces

So-called macro-element spaces play an important role in classical spline theory, see [7] and [11].
They are typically spaces of so-called super splines. Here is the definition of a general super-spline
space on a curved triangulation.

Definition 8.1. Suppose 4̃ is a curved triangulation of a curved domain Ω, and let 0 ≤ r < ρ < d.
Then we define the space of super splines of degree d, smoothness r, and super-smoothness

ρ on 4̃ as
Sr,ρd (4̃) := {s ∈ Srd(4̃) ∩ Cρ(v) for every vertex v of 4̃}. (8.1)



9 TWO-STAGE METHODS FOR SCATTERED DATA INTERPOLATION 10

Macro-element spline spaces are often defined on some kind of regular refinement of a given tri-
angulation. For ordinary triangulations, the most commonly used refinements are the so-called
Clough-Tocher and Powell-Sabin refinement, see [7] and [11]. The Clough-Tocher refinement
involves splitting each triangle into three subtriangles using the barycenter, while the Powell-Sabin
refinement involves splits into six subtriangles using incenters. The fact that a given inscribed
triangulation is convertible does not imply that a refinement of it will also be convertible. How-
ever, for cuved domains with well-behaved boundaries, if we use inscribed triangulations with
enough boundary points we will generally be able to construct associated curved triangulations.
Fig. 7 shows the Clough-Tocher and Powell-Sabin refinements of the curved triangulation shown
in Fig. 4 (left).

Figure 7: The Clough-Tocher and Powell-Sabin refinements of the curved triangulation shown in
Fig. 4 (left)

9 Two-stage methods for scattered data interpolation

In this section we discuss several algorithms for solving the following scattered data interpolation

problem. Let 4̃ be a curved triangulation of a curved domain Ω.

Problem 9.1. Suppose {(xi, yi)}ni=1 is a set of scattered points in Ω, and let f be a function
defined on Ω, Find a spline s defined on a curved triangulation 4̃ of Ω such that

s(xi, yi) = f(xi, yi), i = 1, . . . , n. (9.1)

We are going to solve this problem by adapting the two-stage methods described in Sect. 6.7 of [11].
The basic idea is to use Hermite interpolation schemes where the needed derivative information is
approximated from the scattered data. In [11] five such methods are developed using polynomial
splines on ordinary triangulations. In the following subsections we show how to adapt three of
these methods to the case of curved domains. The other two method discussed there can also be
extended in a similar way to the curved case.

9.1 A local scattered data method based on S1,2
5 (4̃)

As discussed in Sect. 5.5 of [11] for scattered data interpolation problems using ordinary triangu-
lations, the first stage in working with this kind of super-spline space is to estimate derivatives up
to order two at each scattered data point along with a cross-derivative at the midpoint of each
boundary edge. By working on the companion ordinary triangulation we can carry out this step
using local least-square polynomial approximation with the function derest15 in the spline pack-
age distributed with the book [11]. The coefficients of the interpolating spline can then be found
with the function arg15.

Here are several examples illustrating the performance of the method.



9 TWO-STAGE METHODS FOR SCATTERED DATA INTERPOLATION 11

Example 9.1. Consider the function f(x, y) = sin(20x) + sin(20y) on the domain shown in
Fig. 5 (left). Approximate this function with polynomial splines in the spaces S1,25 (4̃) for a sequence
of curved triangulations with decreasing mesh size.

Discussion: We create the sequence of triangulations using the algorithm discussed in Sect. 11.
It requires choosing a number ny of horizontal lines to control the mesh size. Here we work with
ny = 9,17,33,65. For each choice of ny the table gives the total time to compute the spline, the
number of triangles and number of coefficients and the max and RMS errors measured on a well
distributed set of 57092 points spread out across Ω.

ny time nc cond emax rms

9 0.51 160 2106 1.35e+00 4.09e-01
17 0.44 542 6961 2.69e-01 4.49e-02
33 1.45 1989 25216 4.66e-02 3.00e-03
65 1.47 7638 96166 2.24e-03 1.73e-04

rates

2.32 3.19
2.53 3.90
4.38 4.12

The table shows that the method is producing a rate of convegence of at least four. As discussed
in Sect. 5.5 of [11], if we had exact derivatives we should be getting order six convergence since we
are working with quintic splines. However, as explained in Sect. 6.7.3 of that book, since we are
using cubic polynomials to estimate derivatives, we can only expect a rate of convergence of four,
which is what we are getting here.

Here is an example involving a curved domain with a hole.

Example 9.2. Consider the function f(x, y) = sin(20x) + sin(20y) on the fifth domain shown in
Fig. 3 (left). Approximate this function with polynomial splines in the spaces S1,25 (4̃) for a sequence
of curved triangulations with decreasing mesh size.

Discussion: We construct the sequence of triangulations using Algorithm 11.1 with ny = 9,17,33,65.
For each choice of ny the following table gives the total time to compute the spline, the number of
triangles and number of coefficients and the max and RMS errors measured on a well distributed
set of 43149 points spread out across Ω.

ny time nc cond emax rms

9 0.03 122 1625 8.25e-01 2.54e-01
17 0.08 414 5355 1.48e-01 2.51e-02
33 0.42 1498 19060 1.06e-02 1.46e-03
65 1.11 5772 72790 8.97e-04 8.81e-05

rates

2.48 3.34
3.80 4.11
3.57 4.05

The results are quite similar to those in the previous example. We are again getting fourth order
convergence.

9.2 A local scattered data method based on S1
3 (4̃CT )

Given a curved triangulation 4̃, let 4̃CT be the associated Clough-Tocher refinement of 4̃. In this
section we are going to work with the macro-element space S13 (4̃CT ) of C1 cubic splines defined
on 4̃CT . Following Sect. 6.7.2 of [11] the first step is to estimate the gradients of f at each of
the points {(xi, yi)}ni=1 using a local quadratic least-squares polynomial. We also must estimate
a cross-derivative at the center of each edge of the initial triangulation. For this we can use the
function derestct described in Sect. 6.7.2 of [11].

Here is an example.



10 MINIMAL ENERGY INTERPOLATION OF SCATTERED DATA 12

Example 9.3. Consider the function f(x, y) = sin(20x) + sin(20y) on the domain shown in
Fig. 5 (left). Approximate this function with polynomial splines in the spaces S13 (4̃CT ) for a se-
quence of curved Clough-Tocher triangulations with decreasing mesh size.

Discussion: We construct the curved triangulations using Algorithm 11.1 with ny = 9,17,33,65.
For each choice of ny the following table gives the total time to compute the spline, the number of
triangles and number of coefficients, and the max and RMS errors measured on a well distributed
set of 57092 points spread out across Ω.

ny time nc cond emax rms

9 0.54 480 2224 1.53e+00 4.18e-01
17 0.68 1626 7429 2.63e-01 4.34e-02
33 2.04 5967 27064 4.34e-02 2.56e-03
65 2.35 22914 103528 2.01e-03 1.19e-04

rates

2.54 3.27
2.60 4.08
4.43 4.43

The table shows that we are getting a convergence rate of four which is optimal for cubic splines.

9.3 A local scattered data method based on S1
2 (4̃PS)

Given a curved triangulation 4̃, let 4̃PS be the associated Powell-Sabin refinement of 4̃ discussed
above. In this section we are going to work with the macro-element space S12 (4̃PS) of C1 quadratic
splines defined on 4̃PS. Following Sect. 6.7.1 of [11] the first step is to estimate the gradients of f
at each of the points {(xi, yi)}ni=1 using a local quadratic least-squares polynomial.

Here is an example.

Example 9.4. Consider the function f(x, y) = sin(20x) + sin(20y) on the domain shown in
Fig. 5 (left). Approximate this function with polynomial splines in the spaces S12 (4̃PS) for a se-
quence of curved Powell-Sabin triangulations with decreasing mesh size.

Discussion: We work with values of ny = 9,17,33,65. For each choice of ny the following table
gives the total time to compute the spline, the number of triangles and number of coefficients, and
the max and RMS errors measured on a well distributed set of 57092 points spread out across Ω.

ny time nc cond emax rms

9 0.02 960 2005 1.56e+00 4.28e-01
17 0.06 3252 6653 3.05e-01 4.82e-02
33 0.22 11934 24151 5.12e-02 3.43e-03
65 0.77 45828 92209 2.46e-03 2.64e-04

rates

2.36 3.15
2.57 3.81
4.38 3.70

Since we are using quadratic splines we expect convergence of order three – here we seem to be
getting an even higher rate.

10 Minimal energy interpolation of scattered data

In this section we show how the minimal energy method discussed in Sect. 6.3 of [11] for polynomial
splines on ordinary triangulations can be adapted to work with curved triangulations. Suppose
4̃ := {T̃i}nti=1 is a curved triangulation of a curved domain Ω and let 4 := {Ti}nti=1 be the assso-
ciated inscribed triangulation of Ω. Let {(xi, yi)}ni=1 be the Cartesian coordinates of the vertices
of 4̃, and let S(4̃) be a space of splines defined on 4̃. Our aim is to find a spline s ∈ S(4̃) that
interpolates the data in the sense that

s(xi, yi) = f(xi, yi), i = 1, . . . , n, (10.1)



10 MINIMAL ENERGY INTERPOLATION OF SCATTERED DATA 13

and which has minimal energy, where we measure the energy of the spline by the expression

E(s) =

nt∑
ν=1

∫
T̃ν

[(sxx)2 + 2(sxy)2 + (syy)2]dxdy, (10.2)

Definition 10.1. Suppose

U := {s ∈ S(4̃) : s(xi, yi) = zi, i = 1, . . . , n}. (10.3)

and that s is a spline in S(4̃) that minimizes E(s) over the set U . Then we call s a minimal

energy interpolating spline.

Note that to compute the energy as defined in (10.2) we need to compute integrals over curved
triangles. In practice, this would require quadrature formulae for integrating functions over curved
triangles. Such formulae can be constructed (see Remark ??). But numerical experiments show
that the method works just as well if we compute energy using the ordinary triangulations in the
inscribed triangulation 4 associated with 4̃.

As discussed in Sect.6.3 of [11], finding a minimal energy spline interpolant is just a matter of
setting up and solving an appropriate linear system of equations. The Matlab package that goes
with that book includes scripts to carry this out for ordinary triangulations. To make them work
on curved triangulations we simply have to add commands to deal with evaluation on the the entire
curved domain. This is easily done by building an extended triangulation. We now give several
examples based on the space S12 (4̃PS), where 4̃PS is a curved triangulation created by applying a
Powell-Sabin split to a given initial curved triangulation.

Example 10.1. Consider the function f(x, y) = sin(20x) + sin(20y) on the domain shown in
Fig. 5 (left). Approximate this function with minimal energy splines in the spaces S12 (4̃PS) for a
sequence of curved Powell-Sabin triangulations with decreasing mesh size.

Discussion: We use Algorithm 11.1 to create curved triangulations with ny = 5,9,17,33. For
each choice of ny the following table gives the total time to compute the spline, the number of
triangles and number of coefficients and the max and RMS errors measure on a well distributed
set of 57092 points spread out across Ω.

ny time nc cond emax rms

5 0.02 294 639 3.49e+00 1.31e+00
9 0.17 960 2005 8.45e-01 2.27e-01

17 0.46 3252 6653 1.16e-01 2.08e-02
33 5.98 11934 24151 2.54e-02 3.02e-03

rates

2.04 2.53
2.87 3.45
2.19 2.78

As discussed in Sect.6.3.3 of [11], with minimal energy spline interpolation we can only expect
second order convergence, which is what we are getting in this example.

Here is an example involving a curved domain with a hole.

Example 10.2. Consider the function f(x, y) = sin(20x) + sin(20y) on the fifth domain shown
in Fig. 3 (left). Approximate this function with minimal energy polynomial splines in the spaces
S12 (4̃PS) for a sequence of curved Powell-Sabin triangulations with decreasing mesh size.

Discussion: The following table gives the same information as the previous one.

ny time nc cond emax rms

5 0.02 228 504 3.98e+00 1.25e+00
9 0.05 732 1544 3.97e-01 9.95e-02

17 0.45 2484 5112 5.99e-02 1.08e-02
33 3.70 8988 18244 1.12e-02 1.59e-03

rates

3.33 3.65
2.73 3.21
2.42 2.76



11 PICKING WELL-SPACED POINTS IN A CURVED DOMAIN 14

Figure 8: Points selected by Algorithm 11.1 with ny = 17 for two curved domains

The results are quite similar to those in the previous example. We are again getting quadratic
convergence.

11 Picking well-spaced points in a curved domain

Suppose Ω is a curved planar domain with m holes whose boundary ∂Ω is defined by m+1 separate
parametric curves ∂Ω0, . . . , ∂Ωm. Let a = min{y : (x, y) ∈ Ω} and b = max{y : (x, y) ∈ Ω}. In
this section we give an outline of a simple algorithm that can be used to pick well-spaced points
in Ω and on its boundaries.

Algorithm 11.1. 1. Pick a positive integer ny and let h = (b − a)/ny. Start with empty sets
I and B.

2. For i = 1, . . . , ny − 1 let `i be the horizontal line {(x, y) : y = a+ ih}.

3. Find the intersections of `i with ∂Ω. This creates one or more line segments with endpoints
on ∂Ω. Add the endpoints to B, and add points at spacing approximately h in the interior of
each line segment to the set I.

4. Add enough points to B (and adjust if necessary) to get nearly equally spaced points with
spacing h on each of the boundary curves ∂Ω0, . . . , ∂Ωm.

We have two applications in mind for the points produced by this algorithm: a) to construct an
inscribed triangulation of Ω, b) to produce large sets of well-spaced points that cover Ω. We will
use those for computing errors and plotting splines on curved triangulations. The parameter ny
controls the number of points selected and their spacing. Doubling the size of ny generally reduces
the mesh size of the corresponding constrained Delaunay triangulation by a factor of approximately
1/2. Our implementation can produce tens of thousands of points in a couple of seconds. Fig. 8
shows the points selected by Algorithm 11.1 for two curved domains whose boundaries are defined
by NURBs curves. These points were generated with ny = 17. But we get much denser sets of
points if use larger values of ny. In the examples above we took ny = 251, which for the domains
examined here gave between forty and fifty thousand points.

The spacing of the points produced by this algorthm can usually be improved by making minor
adjustments to the location of some of the vertices, in particular those near the boundaries. This
can be beneficial when the points are used to construct inscribed triangulations since we generally
want to make sure that the smallest angle in the triangulation is not too small. Indeed, the
adjustments can be accomplished by creating the constrained Delaunay triangulation, computing
smallest angles for each triangle, and then using them to guide how to move the points.



12 REMARKS 15

12 Remarks

Remark 12.1. For recent work on the use of piecewise polynomials defined directly on curved
triangulations in solving boundary-value problems on curved domains, see [3, 4, 5]. These papers
deal with the restricted class of domains with piecewise conic boundaries, and use polynomials of
different degrees on selected curved triangles. For references to older work, see [1, 2, 8, 10, 13],
and references therein.

Remark 12.2. It should be emphasized that in this paper we are dealing only with domains Ω
that lie in the plane. We are not allowing triangles that are curved in space such as those lying on
the surface of a sphere.

Remark 12.3. Allowing the interior edges of a curved triangulation to be curved makes it very
difficult to be able to locate which curved triangle in the triangulation contains a given point. This
is why in practice we restrict ouselves to curved triangulations whose interior edges are straight
lines.

Remark 12.4. Throughout this paper we are assuming the reader is familiar with the Bernstein–
Bézier approach to dealing with piecewise polynomials on triangulations, see [7] and [11], so we
don’t bother to review this theory here.

Remark 12.5. The spaces of polynomial splines on curved triangulations considered in this paper
are finite dimensional linear spaces. Following what was done in the literature for splines on
ordinary triangulations, see [7], we can construct explicit bases for these spaces. However, it
should be emphasized that none of the computational methods described here make use of any
basis.

Remark 12.6. There is a particularly nice set of basis functions for the space S0d(4̃) introduced
in Sect. 5. Suppose Dd,4 is the set of domain points of degree d for the companion triangulation

4 associated with 4̃. For each ξ ∈ Dd,4, let sξ be the spline in S0d(4̃) whose coefficients are all
zero except for cξ = 1. Then just as for for the case of ordinary triangulations (see Sect. 5.4 of

[7]), the splines {sξ}ξ∈Dd,4̃ form a basis for S0d(4̃). These basis functions are nonnegative, form a
partition of unity, and have local supports, namely a single curved triangle, two adjoining curved
triangles, or the union of all curved triangles attached to a common vertex.

Remark 12.7. In Sect. 7 we discussed the approximation power of our spline spaces as measured
in the max-norm. Following developments in the classical spline literature for ordinary splines, it
is possible to extend the results to deal with the Lp norms.

Remark 12.8. The local two-stage scattered data interpolation methods discussed here make use
of C1 splines, but it is also possible to construct similar methods for curved triangulations using
splines of higher smoothness. For example, we could easily extend the method based on C2 splines
on the so-called Wang refinement, see Sect. 6.7.4 of [11].

Remark 12.9. In Sect. 10 we illustrated the use of the minimal energy method for solving scattered
data fitting problems using the space S12 (4̃PS). But as shown in [11], the method can also be used
with other macro-element spaces such as S13 (4̃CT ) or S1,25 (4̃).

Remark 12.10. Quadrature rules for computing integrals over ordinary triangles are discussed
in Sect. 4.6 of [11]. For a curved triangle T̃ , we can first approximate T̃ by a union of ordinary
triangles or rectangles, and then use the standard quadature rules on each of the pieces. For
example, rectangles are used in [9].

Remark 12.11. In Chapter 8 of [11] a variety of methods based on polynomial splines on ordinary
triangulations were presented for fitting functions with various kinds of shape constraints. All of
these methods can also be extended to deal with problems on curved domains by working with
curved triangulations instead.



REFERENCES 16

Remark 12.12. Polynomial splines on triangulations are also useful tools in solving data fitting
problems, especially in the setting of noisy data, see Chapter 7 of [11]. All of the methods dis-
cussed there, including penalized least-squares methods, can also be extended to work with curved
triangulations of curved domains.

References

[1] Bernardi, C.: Optimal finite-element interpolation of curved domains. SIAM J. Numer. Anal.
26 (1989), 1212 – 1240.

[2] Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer (New
York), 1994.

[3] Davydov, O., Kostin, G., Saeed, A.: Polynomial finite element method for domains enclosed
by piecewise conics. Comput. Aided Geom. Design 45 (2016), 48 - 72.

[4] Davydov, O., Saeed, A.; C1 quintic splines on domains enclosed by piecewise conics and nu-
merical solution of fully nonlinear elliptic equations. Appl. Numer. Math. 116 (2017), 172 –
183.

[5] Davydov, O., Yeo, W. P.: Approximation by C1 splines on piecewise conic domains. in Ap-
proximation theory XV: San Antonio 2016, Springer PROMS 201, 21 - 37.

[6] Feng, L., Alliez, P., Busé, L., Delingette, H.,Desbrun, M.: Curved Optimal Delaunay Triangu-
lation, ACM Trans. Graph.37, 4, Article 61 (2018), 16pp.

[7] Lai, M. J., Schumaker, L. L.: Spline Functions on Triangulations, Cambridge University Press
(Cambridge), 2007.

[8] Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving
curved boundaries. SIAM J. Numer. Anal. 23 (1986), 562 – 580.

[9] Rathoda1, H.T., Hariprasadb, H. S.,Vijayakumarb, K. V., Ratho, B. , Nagabhushanac, C. S.:
Numerical integration over curved domains using convex quadrangulations and Gauss Legendre
quadrature rules, Int. J. Engr. and Comp. Sci. 2, (2013), 3290-3332

[10] Ruas, Vitoriano: Optimal Lagrange and Hermite finite elements for Dirichlet problems in
curved domains with straight-edged triangles. Z. Angew. Math. Mech. 100 (2020), 28pp.

[11] Schumaker, L. L.: Spline Functions: Computational Methods, SIAM (Philadelphia), 2015.

[12] Schumaker, L. L.: Use of polynomial splines on curved triangulations to solve boundary-value
problems on curved domains. In preparation.

[13] Scott, R.: Finite element techniques for curved boundaries. Ph.D. thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 1973.


