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Abstract. A variant of the classical C
1 Powell-Sabin-12 macro-element is

defined that has the same approximation power, but has fewer degrees of freedom
and only requires vertex data. The same idea is then applied to a related C

1

trivariate macro-element.

§1. Introduction

Suppose △ is a triangulation of a domain Ω ⊂ IR2 or a tetrahedral partition of
a domain in IR3, and that △R is a refinement of △ obtained by applying a given
splitting procedure to each triangle or tetrahedron in △. Suppose in addition that
S(△R) is a polynomial spline space defined on △R such that every spline s ∈ S(△R)
is uniquely determined by the values of s and its gradients at some collection of
points in Ω. Then (cf. [4]) S(△R) is called a macro-element space provided that for
each triangle (tetrahedron) in △, s|T is uniquely determined by the data at points
in T .

There are many examples of both bivariate and trivariate macro-element
spaces. For complete details, see [4]. Macro-element spaces are particularly im-
portant in applications since they generally have stable local bases and have full
approximation power. This means that they approximate sufficiently smooth func-
tions to O(|△|d+1), where d is the degree of the splines, and |△| is the mesh size
of △, i.e., the length of the longest edge in △.

In applications, and in particular for scattered data fitting and the solution
of boundary-value problems by the finite-element method, it is advantageous to
work with macro-element spaces that produce a given order of approximation while
involving the least number of degrees of freedom. Degrees of freedom can frequently
be removed from macro-elements by a process called condensation, but typically
at the cost of not preserving full approximation power. The purpose of this paper
is to show that for one well-known bivariate macro-element (the classical bivariate
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C1 Powell-Sabin-12 macro-element) and a related trivariate one described recently
in [8], it is possible to condense without losing any approximation power.

Our condensed macro-element spaces will be constructed by requiring that
certain cross boundary derivatives be polynomials instead of piecewise polynomials.
For the C1 Powell-Sabin-12 element this was suggested already in [6], although there
is no discussion of approximation power there. In the trivariate case, this approach
was used to condense the second element in [2].

After some preliminaries in Section 2, we describe in Section 3 how to condense
the bivariate Powell-Sabin 12 element. In Section 4 we apply the same technique
to the tetrahedral quadratic element described in [8]. This scheme is related to the
bivariate scheme since it makes use of the PS-12 split on each tetrahedral face. In
Section 5 we demonstrate numerically that the condensation has only a small effect
on the error in the interpolant. We close the paper with some remarks.

§2. Preliminaries

Throughout this paper we follow the notation of the book [4]. Let △ be a triangula-
tion or tetrahedral partition of a domain Ω in IR2 or IR3. Given integers 0 ≤ r < d,
we write

Sr
d(△) := {s ∈ Cr(Ω) : s|T ∈ Pd all T ∈ △},

where Pd is the space of polynomials of degree d. Since we will work with polyno-
mials in 1, 2, and 3 variables in the sequel, from now on we write Pµ

d for the space
of polynomials in µ variables.

Suppose N := {λi}n
i=1 is a set of linear functionals of the form εηi

Dαi
x Dβi

y ,
where εη denotes point evaluation at the point η. Let S(△) be a subspace of Sr

d(△).
Then N is called a nodal determining set for S(△) provided that if s ∈ S(△) and
λis = 0 for all i = 1, . . . , n, then s ≡ 0. A smallest set with this property is called a
nodal minimal determining set (NMDS). If N is a NMDS, then for every sufficiently
smooth function f , there exists a unique spline s ∈ S(△) satisfying the Hermite
interpolation conditions

λis = λif, i = 1, . . . , n,

and the cardinality of N equals the dimension of S(△).
A NMDS N is called local and stable provided there exists an integer ℓ and a

constant K depending on the smallest angle in the partition such that

|cξ| ≤ K

m̄∑

i=1

|T |i|s|i,ΩT
,

for all B-coefficients cξ associated with domain points ξ lying in T . Here |T | denotes
the area (volume in the trivariate case) of T , ΩT := starℓ(T ), and m̄ is the maximum
derivative needed to define N . As usual, |s|i,ΩT

denotes the standard Sobolev semi-
norm, and starℓ(T ) is the ℓ-th order star of T defined recursively by star0(T ) = T ,
and starℓ(T ) =

⋃
{t ∈ △ : t ∩ starℓ−1(T ) 6= ∅}. Given a stable local NMDS for a

spline space S(△), there is a simple way to construct a corresponding stable local
basis, see pp. 144 and 491 of [4].
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Fig. 1. Vertices of the PS-12 split.

Fig. 2. A triangulation and its Powell–Sabin-12 refinement.

§3. A Condensed Powell-Sabin-12 Macro-Element Space

Given a triangulation △ of Ω ⊂ IR2, let V, E be the sets of vertices and edges,
respectively. We write △PS12 for the refined triangulation obtained by splitting
each triangle T in △ into twelve subtriangles using the barycenters and midpoints
of edges as shown in Figs. 1 and 2 . The bivariate spline space S1

2 (△PS12) is called
the Powell-Sabin-12 (PS-12) macro-element space, first introduced in [6]. It is well
known (cf. Theorem 6.13 in [4]) that the dimension of S1

2 (△PS12) is 3nV + nE .
It is easy to describe a NMDS for S1

2 (△PS12). For each vertex v of △, let
Nv := {εv, εvDx, εvDy}, where, as before, εv denotes point-evaluation at v. For
each edge e of △, let em be the midpoint of e, and let Dne

be the derivative in a unit
direction ne perpendicular to e, and let Ne := {εem

Dne
}. Then (cf. Theorem 6.15

of [4]),

N =
⋃

v∈V

Nv ∪
⋃

e∈E

Ne,

is a stable local NMDS for S1
2 (△PS12). Moreover, the corresponding dual N -basis

for S1
2 (△PS12) is a stable local basis. It follows from Theorem 5.26 of [4] that

S1
2 (△PS12) approximates smooth functions to optimal order O(|△|3).

We now define a subspace of S1
2 (△PS12) which also is a macro-element space

with full approximation power, but which requires only nodal data at the vertices
of △. It is clear that for every s ∈ S1

2 (△PS12) and every edge e of △, Dne
s is a
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piecewise linear function on e. We define our condensed macro-element space by
requiring that these cross derivatives be linear rather than piecewise linear.

Definition 3.1. Given △PS12, we define the associated condensed C1 quadratic
PS-12 macro-element space to be

S̃1
2 (△PS12) := {s ∈ S1

2 (△PS12) : Dne
s|e ∈ P1

1 for each edge e of △}.

Theorem 3.2. The dimension of S̃1
2 (△PS12) is 3nV , and Ñ :=

⋃
v∈V

Nv is a stable

local NMDS.

Proof: By the definition of S̃1
2 (△PS12), if we set the values and gradients of

s ∈ S̃1
2 (△PS12) at the vertices of △, then the cross derivatives Dne

at the midpoints
of the edges are uniquely determined by requiring Dne

s|e to be linear, see also the
explicit formulae (3.2) provided at the end of this section. The result then follows
from the fact that N is a stable local NMDS for S1

2 (△PS12).

Corollary 3.3. For each f ∈ C1(Ω), there exists a unique s ∈ S̃1
2 (△PS12) such

that

s(v) = f(v) and ∇s(v) = ∇f(v), for all v ∈ V. (3.1)

Moreover if f ∈ P2
2 then s ≡ f .

Proof: The first statement is obvious due to the definition of Ñ . Now suppose
f ∈ P2

2 . Then for each edge e of △, Dne
s|e ∈ P1

1 . Now since P2
2 ⊂ S̃1

2 (△PS12) and

there is a unique s ∈ S̃1
2 (△PS12) satisfying (3.1), it follows that s ≡ f .

Since Ñ is stable and local, it follows from Theorem 5.26 of [4] that the Hermite
interpolating spline of Corollary 3.3 approximates smooth functions to optimal
order.

For convenience in writing a program to compute the spline s satisfying (3.1),
we now give explicit formulae for all of its B-coefficients. There is one B-coefficient
associated with each vertex of △PS12, and one associated with the midpoint of
each edge. If v is a vertex of △, we write c(v) for the B-coefficient associated with
the domain point v, and if e := 〈u, v〉 is an edge of △, we write c(u, v) for the
B-coefficient associated with the domain point at the midpoint of e.

For ease in working with the trivariate case in the following section, following
the notation used in [8] we write T := 〈vi, vj, vk〉 for a typical macro-triangle, cf.,
Fig. 1. We write vij for the midpoint of the edge eij := 〈vi, vj〉, with similar
notation for the other edges of T . Let ul := (vi +vj +vk)/3 be the barycenter of T ,
and let di

l := (2vi + vj + vk)/4 be the midpoint of the edge 〈vij , vik〉, with similar

definitions for dj
l and dk

l . Here the sub- and super-script l is extraneous, but it is
useful when we deal with the trivariate case in Sect. 4. Then by standard Bernstein
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Bézier arguments, we get the following formulae for the B-coefficients of s:

c(vi) = f(vi),

c(vi, vij) = c(vi) + ∇f(vi) ◦ (vij − vi)/2,

c(vij) = [c(vi, vij) + c(vj , vij)]/2,

c(vi, d
i
l) = [c(vi, vij) + c(vi, vik)]/2,

c(vij , d
i
l) = [3c(ul, vij) + c(vi, vij)]/4,

c(di
l) = [c(di

l, vij) + c(di
l, vik)]/2,

c(ul, d
i
l) = [c(ul, vij) + c(ul, vik)]/2,

c(ul) = [c(ul, vij) + c(ul, vik) + c(ul, vjk)]/3,

c(di
l, ul) = [c(vij , ul) + c(vik, ul)]/2,

(3.2)

where it remains to give a formula for c(ul, vij) in terms of coefficients in the first
three equations of (3.2). Note that each of the formulae in (3.2) is to be applied
with permutations of i, j, k to get the other coefficients of s.

Suppose e := 〈vi, vj〉, and let ne be the unit vector perpendicular to e and
pointing into T . To give a formula for c(ul, vij), we make use of our requirement
that Dne

s should be linear along the edge e. First, we write

ne = αi(vij − vi) + βi(vik − vi),

= αj(vij − vj) + βj(vjk − vj),

= αij(vj − vij) + βij(ul − vij).

(3.3)

For details on how to get the α’s and β’s, see Remark 1. We now use these equations
to get formulae for Dne

s at certain points on T . First we note that for any two
vertices u, v of a triangulation △, the directional derivative associated with the
vector u − v of a quadratic spline defined on △ is

Du−vs(v) = 2δ(u, v) := c(u, v) − c(v), (3.4)

see [4], p. 28. This leads to

Dne
s(vi) = 2 [αiδ(vij , vi) + βiδ(vik, vi)] ,

Dne
s(vj) = 2 [αjδ(vij , vj) + βjδ(vjk, vj)] ,

Dne
s(vij) = 2 [αijδ(vj , vij) + βijδ(ul, vij)] .

(3.5)

The requirement that Dne
s be linear on e can be written as

Dne
s(vij) = [Dne

s(vi) + Dne
s(vj)] /2.

Now substituting the equations (3.5) and solving for c(ul, vij), we get

c(ul, vij) = c(vij) + [−2αijδ(vj , vij) + αiδ(vij , vi) + βiδ(vik, vi)

+αjδ(vij , vj) + βjδ(vjk, vj)]/(2βij).
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§4. A Condensed C1 Quadratic Tetrahedral Macro-Element

In this section we apply the method of the previous section to construct a condensed
version of the trivariate C1 quadratic macro-element space described in [8]. Suppose
△ is a tetrahedral partition of a set Ω ⊂ IR3, and let V, E ,F be the sets of vertices,
edges, and faces, respectively. Let △M be the associated partition obtained by
applying the splitting process described in Algorithm 3.1 of [8] to each tetrahedron
T in △. This refinement splits each T into 504 subtetrahedra.

By the results of [8], the space S1
2 (△M ) is a trivariate macro-element space

whose dimension is 4nV + 2nE + 4nF . For each vertex v of △, let

Nv := {εv, εvDx, εvDy, εvDz},

where εv denotes point-evaluation at v. For each face F := 〈vi, vj, vk〉 of △, let DF

be the derivative in a direction perpendicular to F , and let

NF := {εul
DF , εdi

l
DF , εd

j

l

DF , εdk
l
DF },

where ul, d
i
l, d

j
l , d

k
l are four of the vertices of the PS-12 split of F as shown in Fig. 1.

For each edge e of △, let em be its midpoint, and let Ne := {εem
De,1, εem

De,2},
where De,1 and De,2 are the derivatives corresponding to two directions ne,1 and
ne,2 perpendicular to e. Then the results of [8] show that

N =
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

NF

is a stable local NMDS for S1
2 (△M). Moreover, the corresponding dual N -basis for

S1
2 (△M ) is a stable local basis. It follows from Theorem 17.22 of [4] that S1

2 (△M )
approximates smooth functions to optimal order O(|△|3).

We now define a subspace of S1
2 (△M ) which also is a macro-element space with

full approximation power, but which requires nodal data only at the vertices of △.
It is clear that for every s ∈ S1

2 (△M ) and every edge e of △, De,1 and De,2 are
piecewise linear univariate functions on e. Similarly, for every face F of △, DF s is
piecewise linear bivariate function on F . We define our condensed macro-element
space by requiring these derivatives to be linear.

Definition 4.1. Given △M , we define the associated condensed C1 quadratic
trivariate macro-element space to be

S̃1
2 (△M ) := {s ∈ S1

2 (△M ) : De,1s|e, De,2s|e ∈ P1
1 for each edge e of △, and

DF s|F ∈ P2
1 for each face F of △}.

Theorem 4.2. The dimension of S1
2 (△M ) is 4nV , and Ñ :=

⋃
v∈V

Nv is a stable

local NMDS.

Proof: By the definition of S̃1
2 (△M ), if we set the values and gradients of s ∈

S̃1
2 (△PS12) at the vertices of △, then the cross derivatives De,1 and De,2 at the

6



midpoints of the edges are uniquely determined by requiring Des|e to be linear.
But then the values of DF at the points {ul, d

i
l, d

j
l , d

k
l } associated with each face

F := 〈vi, vj, vk〉 are also uniquely determined by requiring DF s|F to be linear, see
the explicit formulae provided at the end of this section. The result then follows
from the fact that N is a stable local NMDS for S1

2 (△M).

Corollary 4.3. For each f ∈ C1(Ω), there exists a unique s ∈ S̃1
2 (△M ) such that

s(vi) = f(vi) and ∇s(vi) = ∇f(vi), i = 1, . . . , n. (4.1)

Moreover if f ∈ P3
2 , then s = f .

Proof: The first statement is obvious due to the definition of Ñ . Now suppose
f ∈ P3

2 . Then for each edge e of △, De,1s|e and De,2s|e are in P1
1 , while for each

face F of △, DF s|F ∈ P2
1 . Since P3

2 ⊂ S̃1
2 (△M ) and there is a unique s ∈ S̃1

2 (△M )
satisfying (4.1), it follows that s ≡ f .

Since Ñ is stable and local, it follows from Theorem 17.22 of [4] that the
Hermite interpolating spline defined in (4.1) approximates smooth functions to

optimal order, and so the space S̃1
2 (△M ) has full approximation power.

As in the bivariate case we now provide explicit formula for computing the
coefficients of a spline s ∈ S̃1

2 (△M ) satisfying (4.1). Let T := 〈vi, vj , vk, vl〉 be
a typical macro tetrahedron in △. Then we can compute the coefficients of s
corresponding to domain points on the faces of T from the nodal data in (4.1) by
using the formulae at the end of Sect. 3. Let w := (vi + vj + vk + vl)/4 be the
barycenter of T , and let pi := (2vij +vik +vil)/3 with similar definitions for pj and
pk obtained by permuting the indices. We now give formulae for coefficients of the
form c(ul, w) and c(di

l, pi). Once we have these, all remaining coefficients of s can
be computed from the explicit formulae in [8].

Let F := 〈vi, vj , vk〉 be a face of T . Then with the notation of Fig. 1, we can
write

nF = αi(vij − vi) + βi(vik − vi) + γi(vil − vi),

= αj(vij − vj) + βj(vjk − vj) + γj(vjl − vj),

= αk(vik − vk) + βk(vjk − vk) + γk(vkl − vk),

= αl(vij − ul) + βl(vik − ul) + γl(w − ul),

= αil(vi − di
l) + βil(vij − di

l) + γil(pi − di
l).

(4.2)

For details on how to compute the α, β, γ’s, see Remark 2. Then using (3.4), we
get the following formulae for the value of DF s := DnF

s at various points on F :

DF s(vi) = 2[αiδ(vij , vi) + βiδ(vik, vi) + γiδ(vil, vi)],

DF s(vj) = 2[αjδ(vij , vj) + βjδ(vjk, vj) + γjδ(vjl, vj)],

DF s(vk) = 2[αkδ(vik, vk) + βkδ(vjk, vk) + γkδ(vkl, vk)],

DF s(ul) = 2[αlδ(vij , ul) + βlδ(vik, ul) + γlδ(w, ul)],

DF s(di
l) = 2[αilδ(vi, d

i
l) + βilδ(vij , d

i
l) + γilδ(pi, d

i
l)],

(4.3)
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where δ(u, v) is defined in (3.4). The requirement that DF s be linear on F gives

DF s(ul) = [DF s(vi) + DF s(vj) + DF s(vk)] /3.

Now substituting the equations (4.3) and solving for c(ul, w), we get

c(ul, w) = c(ul) + [αiδ(vij , vi) + βiδ(vik, vi) + γiδ(vil, vi) + αjδ(vij , vj)

+ βjδ(vjk, vj) + γjδ(vjl, vj) + αkδ(vik, vk) + βkδ(vjk, vk)

+ γkδ(vkl, vk) − 3αlδ(vij , ul) − 3βlδ(vik, ul)]/(3γl).

Similarly, the requirement that DF s be linear on F gives

DF s(di
l) = [2DF s(vi) + DF s(vj) + DF s(vk)] /4.

Substituting the equations (4.3) and solving for c(di
l, pi) gives

c(di
l, pi) = c(di

l)+[2αiδ(vij , vi) + 2βiδ(vik, vi) + 2γiδ(vil, vi) + αjδ(vij , vj)

+ βjδ(vjk, vj) + γjδ(vjl, vj) + αkδ(vik, vk) + βkδ(vjk, vk)

+ γkδ(vkl, vk) − 4αilδ(vi, d
i
l) − 4βilδ(vij , d

i
l)]/(4γil).

§5. The Effect of Condensation

In this section we give examples in both the bivariate and trivariate cases to show
that our condensed elements have the correct orders of approximation, and that on
some test examples, the errors for our methods are not much worse than those for
the uncondensed elements.

To test our condensed PS-12 element, we use the well-known Franke function f
(cf., [3]) on the unit square Ω. To conduct the test we constructed a nested sequence
of type-I triangulations with 25, 49, 81, 289, and 1089 vertices. Table 1 shows the
results of interpolating f from the spaces S1

2 (△PS12) and S̃1
2 (△PS12). The columns

labeled e∞ and ẽ∞ give the maximum errors on a grid of 25,000 points in Ω, while
those labeled e2 and ẽ2 give the RMS errors on the same grid.

There seems to be no generally recognized standard test function for trivariate
problems. To test our condensed trivariate element, we work with the cubic test
function f(x, y, z) = x3 + y3 + z3 on the unit cube. The error expressions for the
tetrahedral scheme involve third order derivatives of the test functions. These are
constant for a cubic function, and higher order derivatives are zero. Thus, the error
behavior should be close to the theoretic expectations. To conduct the test we
constructed a nested sequence of Delaunay (cf., [5]) tetrahedral partitions with 8,
27, 125, 729, and 2197 vertices on an equally-spaced grid. Table 2 shows the results
of interpolating f from the spaces S1

2 (△M ) and S̃1
2 (△M ). The columns labeled e∞
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n e∞ e2 ẽ∞ ẽ2

25 7.55 (-2) 1.50 (-2) 8.03 (-2) 1.58 (-2)
49 5.36 (-2) 5.72 (-3) 5.94 (-2) 6.39 (-3)
81 1.91 (-2) 1.91 (-3) 2.02 (-2) 2.17 (-3)
289 2.13 (-3) 1.66 (-4) 2.27 (-3) 1.98 (-4)
1089 1.85 (-4) 1.57 (-5) 1.88 (-4) 1.94 (-5)

Tab. 1. Errors for S
1
2 (△PS12) and S̃

1
2 (△PS12).

n e∞ e2 ẽ∞ ẽ2

8 5.01 (-2) 1.60 (-2) 9.29 (-2) 3.65 (-2)
27 6.21 (-3) 1.83 (-3) 1.72 (-2) 6.75 (-3)
125 7.77 (-4) 2.26 (-4) 2.13 (-3) 8.56 (-4)
729 9.48 (-5) 2.80 (-5) 2.63 (-4) 1.06 (-4)
2197 2.71 (-5) 8.20 (-6) 7.50 (-5) 3.07 (-5)

Tab. 2. Errors for S
1
2 (△M ) and S̃

1
2 (△M ).

and ẽ∞ give the maximum errors on a grid of one million points in Ω, while those
labeled e2 and ẽ2 give the RMS errors on the same grid.

Since condensation of parameters does not change the approximation power of
the macro-element schemes, it should only affect the constants in the error expan-
sion. The errors in the condensed and uncondensed schemes should therefore be
roughly proportional. This is borne out by the numerical results, with the constant
of proportionality being approximately 1 in the bivariate case and approximately 3
in the trivariate case.

The expected rate of convergence for our schemes is n−1.5 for the bivariate
scheme, and n−1 for the trivariate scheme. This is roughly consistent with the
numerical results. We also verified numerically that both of our schemes reproduce
quadratic polynomials exactly.

§6. Remarks

Remark 1. To find αi and βi in the first equation of (3.3), we first compute a so
that [a(vij − vi) + (vik − vi)] ◦ (vij − vi) = 0. This is one equation for the unknown
a. Then we normalize a(vij − vi) + (vik − vi) to get ne.

Remark 2. To find αi, βi, γi in the first equation of (4.2), we first compute a, b so
that a(vij − vi) + b(vik − vi) + (vil − vi) is orthogonal to vij − vi and vik − vi. This
gives two equations in the two unknowns a and b. Then we normalize a(vij − vi) +
b(vik − vi) + (vil − vi) to get nF .

Remark 3. In defining our condensed version of the PS-12 macro-element, we
have made perpendicular cross-boundary derivatives be linear instead of piecewise
linear. This does not imply that cross derivatives in other directions are linear.

9



They are linear combinations of the linear perpendicular cross boundary derivatives
and certain other derivatives that are only piecewise linear.

Remark 4. In defining our condensed trivariate scheme, for each edge e we have
made the derivatives corresponding to two particular directions perpendicular to e
be linear. Since all directions perpendicular to an edge are combinations of these
two, it follows that the derivative of s in any direction perpendicular to e is linear on
e. Thus, our scheme is independent of the specific choice of perpendicular directions
to be made linear.

Remark 5. The approach to condensation of parameters described in this paper
depends heavily on the fact that the derivatives of the macro-elements restricted
to edges (and/or faces in the trivariate case) are piecewise polynomials rather than
single polynomials. Many of the classical macro-elements do not have this property,
and thus are not amenable to the approach described here.

Remark 6. Another approach to condensation, as described for example in [1], is
to make cross derivatives along edges or faces of a partition have lower degree than
they normally would have. This approach applies to most macro-element spaces,
but has the disadvantage that the resulting condensed spaces no longer have full
approximation power.

Remark 7. As shown in [7], the macro-element space S1
2 (△PS12) is just one

member of a family of Cr macro-element spaces defined on PS-12 refinements of
triangulations △. We believe that these spaces can be condensed using the methods
of this paper, but not with the NMDS’s given in [7]. We will treat this problem in
a separate paper.
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