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Abstract. Spaces of polynomial splines defined on planar triangulations are
very useful tools for fitting scattered data in the plane. Recently, [4, 5], using
homogeneous polynomials, we have developed analogous spline spaces defined on
triangulations on the sphere and on sphere-like surfaces. Using these spaces, it
is possible to construct analogs of many of the classical interpolation and fitting
methods. Here we examine some of the more interesting ones in detail. For
interpolation, we discuss macro-element methods and minimal energy splines,
and for fitting, we consider discrete least squares and penalized least squares.

1. Introduction

Let & be the unit sphere or a sphere-like surface (see Sect. 2 below) in R®. In
addition, suppose that we are given a set of scattered points located on §, along with
real numbers associated with each of these points. The problem of interest in this
paper is to find a function defined on & which either interpolates or approzimates
these data.

This problem arises in a variety of settings. For example, in geodesy, geo-
physics, and metereology, S is chosen to be some model of the earth. But it also
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comes up in very different situations — e.g., § might be part of the surface of an
aircraft, see e.g. [14, 15, 55] and references therein.

It would take an extensive effort to compile a (even reasonably complete) list
of the various methods which have been proposed for fitting scattered data on
sphere-like surfaces. Some of these methods include

1) spherical harmonics, various types of singularity functions, and multipole ex-
pansions, see e.g. [22, 44]

2) local patches defined on a spherical triangulation of the data points [11, 47,
57, 68, 69]

3) spherical analogs of thin plate splines [32, 34, 79, 80, 81, 82]

4) tensor splines (after mapping the sphere to a rectangle) [19, 20, 37, 77, 78]

5) radial basis functions (spherical multiquadrics) [24, 27, 28, 45, 56, 61] and
distance functions [15].

In this paper we discuss a new approach to this problem based on spaces of
spherical splines which we introduced recently in [4, 5], see Sect. 2.4 for a precise def-
inition. In [4, 5] we have shown that these splines have many properties in common
with the classical polynomial splines on planar triangulations. These properties
include a Bernstein-Bézier representation which is very useful for computations.

Because of the structure of spherical spline spaces, virtually any spline inter-
polation or approximation method for the planar scattered data problem has a
spherical analog. The purpose of this paper is to develop several of the more useful
and interesting of these methods.

The paper is organized as follows. First, in Sect. 2 we present some preliminar-
ies, including sphere-like surfaces, the role of homogeneous functions, homogeneous
Bernstein-Bézier polynomials, and spherical splines. In Sect. 3 we discuss vari-
ous aspects of working with derivatives in the setting of homogeneous trivariate
functions. The computation of integrals of spherical splines is addressed in Sect. 4.
Sect. 5 is devoted to local interpolation methods, including quintic macro-elements,
Clough-Tocher cubic, and Powell-Sabin quadratic elements. Minimal energy inter-
polation using cubic splines is the subject of Sect. 6, while discrete least squares
and penalized least squares fitting are treated in Sect. 7. We report on numerical
results in Sect. 8, and conclude the paper with a set of remarks pointing to open
problems and new research directions.

2. Preliminaries
2.1. Sphere-like Surfaces

Suppose p i1s a continuous, positive, real-valued function defined on the unit sphere
S in IR® centered at the origin. Then the surface S in IR® of the form

S:={o(v):=p(v)v : veES}



is called a sphere-like surface. For some of the methods to be discussed below, we
need S to be smooth (for example for various methods involving derivatives). This
can be achieved by requiring p to be sufficiently smooth. When p = 1, § becomes
the sphere S.

Since every point on § is uniquely associated with its radial projection on the
sphere S, in solving our basic data fitting problem, in principle it suffices to consider
only the sphere. However, when derivatives are involved, there are some subtle
differences between working on the sphere and on a general sphere-like surface (see
Remark 1). Thus, in the remainder of this paper we deal with general sphere-like
surfaces S.

As shown in our earlier papers [4,5], the key to working with functions on
sphere-like surfaces is to consider them to be homogeneous trivariate functions. We
explore this connection in the next section.

2.2. Homogeneous Functions

A trivariate function F is said to be positively homogeneous of degree t € IR provided
that for every real number a > 0,

F(av) = a'F(v), v e R*\ {0}.

In the sequel we shall drop the adjective “positively”, and refer to such functions
simply as homogeneous. There is a close relationship between functions defined on
S and homogeneous functions.

Lemma 2.1. Suppose f is a function defined on §, and let t € IR. Then

o Il F o)
) = T

is the unique homogeneous extension of f of degreet to all of IR* \ {0}, i.e., Fy|s = f,
and Fy is homogeneous of degree t.

Proof: The assertion is an immediate consequence of the fact that by definition,

o(v/]|v||) = v and p(v/||v|]) = ||v]| forall ve S. W

This lemma shows that a given function f on § has infinitely many homoge-
neous extensions Fy, one for each real number . If we only need values of f on &,
then the choice of ¢ is obviously irrelevant. We will see later that this is true even
if we require derivative values in directions that are tangent to S. However, as we
point out in Sect. 3.3, the choice of ¢ is crucial when we need to work with values
of derivatives of order 2 or larger.
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2.3. Bernstein-Bézier Polynomials

In order to introduce the space of splines of interest, we first recall some definitions
from [4]. Given a set of linearly independent vectors vy, vq,v3 € IR®, any vector
v € IR? can be expressed uniquely as

v = bivy + bavy + b3vs.

The numbers by, by, b3, which are linear homogeneous functions of v, are called the
trihedral coordinates of v with respect to vy, ve, v3. The associated trihedron with
vertices vy,vg,v3 1s the set

T:={velR® : b(v) >0}, (2.1)

where b(v) := (b, b2, b3)T. Given a nonnegative integer d, the functions

ad o
B (v) = Wblbéb’;, i+J+k=d,

are called the homogeneous Bernstein basis polynomaials of degree d defined on T.
Clearly, each B;ijk is a homogeneous function of degree d. It was shown in [4]

that the Bldjk are linearly independent and span the (d";z)—dimensional space Hgy of
homogeneous polynomials of degree d.

A function of the form

pv) = Y cimBi(v), (2.2)

i+j+k=d

with ¢;;x € IR, is called a homogeneous Bernstein-Bézier (HBB)-polynomial of
degree d.

If T is a trihedron as in (2.1), then the set TN is a surface triangle. We refer
to it simply as a triangle on §. Throughout the remainder of the paper we use
the symbol T to stand for either a trihedron or a surface triangle depending on the
context. If § is the sphere, then 7' is a classical spherical triangle. The restriction
of a surface triangle T to the plane passing through the origin and through two of
the vertices of T will be called an edge of T'. If T is a spherical triangle, the edges
are arcs of great circles.

When § is the sphere S, the trihedral coordinates by, by, b3 of a point v € §
relative to the vertices vy, vy, vs of a triangle 7' lying on S are just the spherical
barycentric coordinates of v relative to T, see [4]. When T is a triangle on a general
sphere-like surface S, we will continue to refer to the b; as barycentric coordinates.

As shownin [4], trihedral coordinates (and thus barycentric coordinates relative
to triangles on general sphere-like surfaces) have almost all of the properties of the
usual planar barycentric coordinates, except that they do not add up to 1.



In [4], we defined the restriction of an HBB-polynomial to the sphere S to
be a spherical Bernstein-Bézier (SBB-) polynomial. Here we continue to use this
terminology even when & is a general sphere-like surface. In the sequel we will
write Py for Hy restricted to S. For a general S, the spaces Py are not nested, i.e.,
Pi ¢ Pat1. In fact, Py N Pay1 = {0}. Moreover, unless S is a special surface such
as S, the space Py does not contain constant functions for d > 0.

The restriction of an SBB-polynomial to an edge of a triangle 7" on a sphere-
like surface § is a univariate function which we call a circular Bernstein-Bézier
(CBB-) polynomial. CBB-polynomials were treated in detail in [3].

2.4. Spherical Splines

We say that a set of triangles A := {T;}V lying on a sphere-like surface S is a
triangulation of S provided that & = U7}, and any two triangles intersect only at a
common vertex or along an edge. As in the planar case, in general there are many
different triangulations associated with a given set of vertices {v;}\_,, see e.g. [T4].

A triangulation which covers all of § has been called a total triangulation [5].
It is well known that for a total triangulation, N =2V — 4 and E = 3V — 6, where
E is the number of edges of A.

Suppose r and d are nonnegative integers, and suppose S is sufficiently smooth.
Then we call

SjA):={seC"(S) : s

7. €Pa,t=1,....N}

the space of spherical splines of smoothness r and degree d. It is the direct analog
of the space of polynomial splines defined on a planar triangulation.

Spherical splines were introduced and studied in [4, 5], where almost all of the
fundamental Bernstein-Bézier theory for dealing with piecewise polynomial func-
tions on planar triangulations has been carried over to the spaces Sj(A). This
makes these spaces especially suitable for solving numerical problems associated
with functions defined on S, and in particular, for solving the basic interpolation
and data fitting problems of this paper.

3. Derivatives

Although our basic interpolation problem involves matching function values to pre-
scribed numbers, we will also discuss several methods which require the matching
of derivative information. In this section we show how to compute directional
derivatives of SBB- and HBB-polynomials, and of general functions on S.

First we have to agree on what we mean by the derivative of a function f
defined on a sphere-like surface §. Suppose ¢ is a given vector. Then we define the
directional derivative Dyf of f at a point v € S by

Dyf(v) :==DyF(v) = gTVF(v), (3.1)



where F' is some homogeneous extension of f, and VF is the gradient of the trivari-
ate function F. While a polynomial of degree d has a natural homogeneous exten-
sion to IR?, as we saw in Lemma 2.1, a general function f on S has infinitely many
different extensions. The value of its derivative may depend on which extension we
take. We return to this point in Sect. 3.3, see also Remark 3.

3.1. Derivatives of HBB-polynomials

In this section we give explicit formulae for directional derivatives of HBB-poly-
nomials defined on a trihedron 7. We begin by giving formulae for the directional
derivatives of the trihedral coordinate functions associated with 7.

Lemma 3.1. Let g be a given vector in IR*. Then
Dgb; = bi(g), 1 =1,2,3.

Proof: We establish the result for : = 1. Let vy, vg, v3 be the vertices of T', and let
v € R®. Then by Cramer’s rule, by = D(v,vz,v3)/D(v1,vs,v3), where D denotes
the determinant of the associated 3 x 3 matrix. Now a simple calculation shows

that g7V, = D(g,vq,v3)/D(v1,ve,v3) = by(g), which is the desired result. W
Proposition 3.2. Suppose p is an HBB-polynomial. Then

Dyp(v) = b"(9)Vsp,

where

o 9 9\
Vy 1= (aﬁ’a@’%) . (3.2)

Proof: This follows immediately from the chain rule and Lemma 3.1. B

We now turn to the problem of computing higher order derivatives of HBB-
polynomials written in the form (2.2). Let c?jk = ¢;;x be the Bézier coefficients of
the polynomial p of degree d, and let ¢1,...,¢m, 1 < m < d, be a set of direction

vectors. For each 1 < ¢ < m, let cfjk,i + 74+ k =d—{, be the intermediate values
obtained in carrying out the de Casteljau algorithm [4] using b(g¢). That is, cfjk is

obtained from the recursion

ik = bl(gf)cf:,j,k + bZ(uqf)cf,;—ll—l,k + bS(EIf)Cf,;,lker t=1,....m.

It follows from this recursion that the ¢t

i;1 depend on the vectors gy, ..., g¢, but not

on their ordering.



Theorem 3.3. For any 0 <m < d,
d' m —m
Dy, .....gmp(v) 1= Dy, -+ Dy, p(v) = m Z cijkB;ijk (v). (3.3)

Proof: By Lemma 3.1, for : 4+ 57 + k = d,
Dng;ijk(‘U) = i'j'k’[lbl 1b%b§Dglbl +.]blb% 1b§Dg1bZ+kblb%b§ nglb3]

= d[B{7} ;1 (v)bi(g1) + B, p(v)ba(g1) + BT (v)bs(g1)].

Substituting this in

Dyp(v)= > cijrDy Bij(v)
i+ith=d

and rearranging terms yields (3.3) for m = 1. The general result follows by induc-
tion. W

3.2. Derivatives of SBB-polynomials at Vertices and Along Edges

It is clear from the properties of trihedral coordinates that the values of an SBB-
polynomial p at the vertices of its domain triangle are given by p(vi) = cqoo,
p(v2) = coqo, and p(vs) = cooq. The derivatives of p at the vertices of T also have
a simple form. For example, at v = v; we have

Corollary 3.4. Forall0 <m <d,
d!

d—m

Dgla"'agmp(vl) = ( )’C:in—m;oao' (34)

If g is a vector in the plane spanned by the vertices vy and vq, then b3(g) =0,
and (3.4) only involves the coefficients cq,0,0,.-.,C4—m,m,0. For later use, we write
out the formulae for the first and second derivatives at vy:

Dyp(v1) = d[bi(g)ca,0,0 + b2(g)ca—1,1,0], (3.5)

while

D?p(v1) := Dy gp(v1) = d(d — 1)[b3(g)ca0,0 + 2b1(9)b2(g)ca—1,1.0 + b3(9)ca—2.2,0]-

(3.6)
For the second order mixed derivatives, let ¢ be as above and let i be a vector in
the plane spanned by vy and vs, so that b2(h) = 0. In this case the formula (3.4)
simplifies to

Dy np(v1) = d(d — 1)[b1(g)b1(h)ca,0,0 + b2(g)bi(h)ca—1,1,0

(3.7)
+b1(9)bs(h)ca—1,0,1 + b2(g)bs(h)ca—2.1.1].



We also make a few remarks about cross derivatives. Consider the derivative
Dy, in the direction h, which does not lie in the plane e spanned by vy and vs.
Along e we have b3 = 0, and so by Theorem 3.3, for each 0 < m < d, the m-fold
cross-boundary derivative D}"p reduces to an HBB-polynomial of degree d —m on
e. For example, if p is cubic (d = 3) and m = 1, then Dpp(v) is the quadratic
polynomial

th(v) = 3[050061(0)2 + 20%1061(0)52('0) + 0(1)2062(“)2]7 v E €. (38)

3.3. Derivatives and Degree of Homogeneity

It is clear from the definition (3.1) that in general the derivative of a function f
defined on § depends on how f is homogeneously extended. The following result
identifies an important case where it does not matter which extension we take. We
will assume that S is smooth in the sense that it possesses a tangent plane at every
point on S.

Lemma 3.5. Suppose f is a function on § and g is a tangent vector to S at a point
v. Then the value of Dy f(v) can be computed from (3.1) using any homogeneous
extension of f.

Proof: Let F be a homogeneous extension of f, and let C be a C'' smooth curve on
S passing through the point v, parameterized by a parameter 6 such that C(6) = v
and C'(6) = ¢, for 8 = 0. By the chain rule we obtain

df(c(0))|  _ dF(C(9))

e\ _ T N — ’
B lomo = a8 lpmo =9 VI = DeF(0). (3.9)

This shows that DyF(v) does not depend on the degree of homogeneity of F' since
the left-hand side of (3.9) clearly depends only on f = Fl|s. B

The following example shows that the situation is different for a derivative
with respect to a vector ¢ which is not tangent to S.

Example 3.6. Consider the two functions Fy(v) = 1 and Fy(v) = ||v||* which are
both homogeneous extensions of the same function f = 1 defined on § = S, and let

g =(1,1,1). Then it is easy to check that D,F;(1,0,0) = 0 while D,F>(1,0,0) = 2.

Lemma 3.5 also fails for higher derivatives, even if they are derivatives with
respect to a single direction vector g which is tangent to S.

Example 3.7. Consider the two functions in Example 3.6, and let ¢ = (0,0,1).
Then using (3.7), it is easy to check that DgFo(l, 0,0) = 0 while D§F2(1707 0) =2.



3.4. Estimating Derivatives from Scattered Data

The basic problem of interest in this paper is to find an unknown function f defined
on § given only values of f at scattered data sites. However, several of the methods
to be discussed below for constructing an interpolant to f require values for certain
derivatives of f at the data sites. Sometimes these derivative values are given as
part of the problem. In this case we can use them directly (but see the discussion
in Sect. 3.3 above).

If the required derivative values are not prescribed, they have to be estimated
from the given data. The problem of estimating derivatives numerically is non-
trivial, and has been discussed extensively in the numerical analysis literature. In
the usual bivariate case, one of the typical methods for estimating a derivative at
a point v is to construct a low degree polynomial which fits a subset of the data
which are associated with points lying near v, and then compute its derivative at
v. A similar method can be used on a sphere-like surface, but the details of how
to choose basis functions and how to choose the points to be included in the fit are
not completely straightforward. For a more detailed discussion, see [51].

As we saw in Sect. 3.3, the values of higher order derivatives of a function f
defined on S depend on how we extend f to IR®. This means, for example, that if
we take the derivative values from an HBB-polynomial p of degree m but we are
using splines of degree d # m, we will not be using the same derivative values as we
would if we converted p to a homogeneous function of degree d. Using the wrong
derivative values can lead to a drastic loss of accuracy (see the example in Sect. 8.3
using the quintic macro-element method).

4. Integration of Spherical Polynomials

In many applications, e.g. in the finite element method or in minimal energy in-
terpolation, it is necessary to compute integrals of piecewise polynomial functions.
Evaluating integrals of spherical polynomials is considerably more difficult than in
the planar case. Recall that for planar triangles, the integral of a Bernstein basis
polynomial of degree d is equal to the area of the corresponding triangle divided
by d + 1. Thus, the value of the integral does not depend on the particular basis
polynomial or on the precise shape of the triangle. Unfortunately, this attractive
property does not carry over to an arbitrary sphere-like surface. In general, for two
different surface triangles, the values of the integrals are different. This is true even
if § is the sphere, unless the two triangles are similar. Moreover, the integrals of
the Bernstein basis polynomials of degree d associated with a single triangle are
also different in general.

There does not seem to be a simple explicit formula for integrals of SBB-
polynomials. In fact, this difficulty arises already in the case of CBB-polynomials.
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As shown in [3], on the circle these polynomials are essentially trigonometric poly-
nomials. Although recurrence relations exist for computing integrals of products of
trigonometric functions over an arbitrary interval (see e.g. [41], p. 130), a conve-
nient closed-form formula does not seem to be available.

Throughout the remainder of this section we restrict our attention to the special
case where § = S is the sphere. To compute integrals in this case, we propose a
mapping of a surface triangle 7' to a planar triangle, namely the planar triangle
whose vertices are the same as the vertices of 7. This will enable us to use a
standard technique of numerical integration for planar triangles.

Let A denote the matrix whose columns are the vertices vy,vq,vs of T, and
let b be the vector of barycentric coordinates with respect to T. Moreover, let
u be the vector of planar barycentric coordinates with respect to 7' such that
w e U :={u=(u,uz,us) : ug +uz +uz =1uy,uz,uz >0}, so that every point
v € T can be expressed uniquely as v = Ab = o(Au/||Au|).

Now, the surface integral over a triangle T" of a function f defined on 7' can be
written as

/T f(v)ds = /U £ (o (Au/ || Aul) [N () | du = / / (o (Au/)| Au])) dusdu,,

where ds is a surface area element on &, and where N(u) is the normal vector of S
at the point v = Ab = o(Au/||Au||), in the parametrization of § induced by u, i.e.,

v = (Gu = aa) 7 () * (5 ~0r) 7 (751)

Since we have restricted our attention to the sphere, the length of N(u) has a

simple form, namely
|det A]
IVl = T

which can be obtained by a straightforward calculation. Hence, for a spherical
polynomial of degree d, viewed as a homogeneous polynomial of the same degree,
we obtain

Proposition 4.1. Let p € P;. Then

p(u)
pds = |det A / ————du. 4.1
R A v .

Having expressed surface integrals in terms of ordinary planar integrals, it is
now possible to apply a numerical integration method designed for planar triangles
in order to integrate arbitrary spherical polynomials. In our experiments we used
a bivariate version of the trapezoidal rule. It is beyond the scope of this paper to
present a more sophisticated numerical integration method. Instead, we refer the
reader to [52] for a survey of various techniques.
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5. Local Interpolation

A common approach to solving the scattered data interpolation problem in the
planar case is the following:

1) construct a triangulation A with vertices at the given data points,
2) choose r and d,

3) for each triangle T in A, use the data at the vertices (along with additional
derivative information at other points in T') to define a polynomial of degree d
on T which interpolates the data in such a way that the resulting polynomial
pieces join together to form a spline s in Sj(A).

One advantage of this approach is that an interpolant s is constructed one
triangle at a time, and the resulting method is completely local in the sense that the
restriction of s to a triangle T' depends only on the data in that triangle. Methods of
this type are called macro-element methods. They have been successfully applied in
many bivariate data fitting problems and in the conforming finite element method
[46, 49, 72, 84].

This idea can be carried over to a sphere-like surface, and indeed, every macro-
element which is known in the planar case has a spherical analog. We confine our
discussion to just three examples (see Remark 13 for other possible choices):

1) quintic C! macro-elements
2) cubic C! elements on the Clough-Tocher split
3) quadratic C'! elements on the 6-triangle Powell-Sabin split.

To define these macro-elements we need to use derivative information. If we are

given the needed derivatives, we can use them. If not, we must estimate them (see

Sect. 3.4).

5.1. A Quintic ¢! Element

In this section a C'! smooth interpolating spline will be constructed which associates
with each triangle 7' of the given triangulation a single quintic spherical polynomial.
Let vy, ve, and vs be the vertices of T', and for convenience, let vy = vy and vs = vs.
For each : = 1,2, 3, let v; denote the center point of the edge from v; to v;41. This
point can be computed by projecting v; and v;4; radially back to the sphere, finding
the center of the corresponding circular arc, and then projecting back up to S.

To define some useful derivatives associated with T, let g;; be a vector con-
tained in the plane passing through v;,v;, and the origin, not parallel with v;,
1,7 = 1,2,3,¢2 # j. In addition, let h; be a vector tangent to S at v; which is
not contained in the plane passing through v;, v;4+; and the origin. We denote the
derivative operators corresponding to ¢;; and h; by D;; and D;, respectively.
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Cs00 Ca10 C320 Co30 Ciso  Coso

Fig. 1. The quintic macro-element.

Lemma 5.1. The following 21 data uniquely determine an SBB-polynomial p of
degree 5 on T':

1) p(vi),

2) Diis1p(vi), Dijivap(vi),
3) D}, 1p(vi), Diiv1Diivap(vi), D} ;yop(vi),
4) Dip(d:),

for: =1,2,3.

Proof: Suppose p is written in SBB-form, and that its Bézier coefficients are
numbered as in Fig. 1. (For simplicity, in our illustration of Bernstein-Bézier nets for
spherical macro-elements in Fig. 1 and also in the figures below, we have flattened
out the spherical triangles and depicted the domain points as if they were equally
spaced (they are not).) We now show that the 6 coeflicients closest to vertex vy are
completely determined by the data in items 1)-3) for ¢ = 1. Indeed, ¢500 = p(v1),
and by (3.5),
ca10 = [Di2p(v1)/5 — ar2¢500]/ Br2,

where (a2, $12,0) = b(g12) are the barycentric coordinates of g¢15 relative to 7.
Note that 15 is nonzero by the assumption that g2 is not parallel to vy. Similarly,

ca01 = [D13p(v1)/5 — ausesool /713,

where (a13,0,713) = b(g13), and where 733 # 0. For the second derivatives at vy
we have, using (3.6) and (3.7),

D3,p(v1)/20 = adycs00 + 2a12B12¢410 + BiyCa20,
D13Dq3p(v1)/20 = aqza13¢500 + Br2a13ca10 + @12713¢401 + Sr27136311,
(

D%?,P v1)/20 = 06%30500 + 20013713¢401 + 71236302-
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Then ¢320, c311, and c3p2 can be immediately computed. The situation at vy and
v3 1s analogous.
Once the above coefficients have been computed, the coefficient c25; 1s uniquely

determined by D;p(01). Namely, by (3.3),

Dip(1) =5 Z cijnBi(01), (5.1)
i+j+k=4
where
Clljk = 1Cit1,5,k + BiCij+i e FV1Cjk+1, 1)+ k=4,

and (a1, f1,71) = b(h1). At this point the only unknown quantity on the right-hand
side of (5.1) is the coefficient cgo1. Since it is multiplied by 3 Bj,q(91), which is
nonzero by our assumption on hj, we can solve (5.1) for it.

The coefficients ¢j22 and cz12 are determined in the same way from D p(0s)
and Dyp(03), respectively, and the proof is complete. W

Lemma 5.1 shows how to construct a quintic polynomial on a surface triangle
using only values and derivatives at the vertices and at the centers of the edges.

Using this macro-element we can now construct an interpolating quintic spline.

Theorem 5.2. Let A be a triangulation corresponding to a set of vertices {v;}1_;.
Suppose we are given function, first, and second derivative information as in 1) —
3) of Lemma 5.1 at each of the vertices. In addition, suppose we are given a value
for a cross-boundary derivative at the center of each edge of A. Then there exists
a unique spline s € S3(A) which interpolates these data.

Proof: By Lemma 5.1, the given data uniquely define a quintic SBB-polynomial
on each triangle of A. It remains to show that these polynomials join together with
C! continuity across the edges of A to form a spline in S3(A). The argument is
virtually the same as in the planar case. Suppose p and p are two such polynomials
defined on triangles T and T which share an edge e joining the vertices v and v,.
Then along e they reduce to quintic CBB-polynomials satisfying

szp(vl) = szﬁ(vl)a D;Clp(v?) = Dglﬁ(vZ)v k=0,1,2.
These six conditions imply that p = p on e. Now, in view of the discussion in
Sect. 3.2, the cross-boundary derivatives ¢ := Dyp and ¢ := D;p reduce to quartic
CBB-polynomials on e satisfying
Dfyq(v1) = Diq(v1),  D3ya(v2) = D3,4(v2), k=01
Since we also have ¢(0) = ¢(0) at the center point ¢ of e, we conclude that ¢ = ¢ on

e. This establishes the C'! continuity between p and p across e. The same argument
works for every edge, and the proof is complete. W

By construction, this quintic macro-element actually exhibits C'? continuity at
each of the vertices. In this sense it is a superspline, see [5].
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Fig. 2. The Clough-Tocher macro-element.
5.2. A Clough-Tocher Element

The macro-element in the previous subsection is piecewise quintic. In order to

work with lower degree polynomials while maintaining C'! continuity, we have to
subdivide each triangle in A into subtriangles. It is well known in the planar case
that cubics can be used if each triangle T' is split into three subtriangles. In this
section we discuss this method in the setting of a sphere-like surface.

Given a triangle T with vertices vy, vq, vs, let

_ ( vi vz + 3 )
vi=o0
[v1 + v2 + w3
be its center. If we connect v to each of the vertices of T', we get three subtriangles.

This is called the Clough-Tocher split of the triangle, see Fig. 2.
We now show how to construct a cubic C'! spline on the split triangle 7' using

function and derivative values at the vertices along with cross derivatives at the
centers of the edges of T. Let D;; and D; be the directional derivatives introduced
at the beginning of Sect. 5.1.

Lemma 5.3. The following 12 pieces of data uniquely determine a C* cubic spline
s on the Clough-Tocher split of T':

1) s(vi),
2) Diiy15(vi), Diitas(vi),
3) D;s(v;),
forv=1,2,3.
Proof: Suppose we number the 19 Bézier coefficients of s as in Fig. 2. Then

¢1 = s(vy ). Moreover,

Cq4 = [D128(’Ul)/3 - a123(’01 )]//3127
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where (a2, f12,0) are the barycentric coordinates of g1, relative to the triangle
T = (v1,v2,v3). Similarly, ce is determined by Dy3s(v1). The coeflicient ¢5 can now
be determined from the C! continuity condition across the edge (vy,v). Similarly,
the coefficients ¢z, ¢7, cg, ¢ are determined by the data at vy, while ¢3, ¢, €11,
c19 are determined by the data at vs.

We now show that c;3 is determined by the value of the cross-boundary deriva-
tive D1 p(01). Suppose (a1, #1,71) are the barycentric coordinates relative to the tri-
angle (v, vy, v2) of the vector hy, and let (0, ag, az) be the barycentric coordinates of
the center point vy relative to the same triangle. Then by (3.8) the cross-boundary
derivative at 0y is given by

Dip(1)/3 = a3(arcs + Bier +vica)
+ 2asas(aiciz + frea +vico) + a§(a1c8 + Bicg + v1c2).

Since ¥; is at the center of the edge (vy,v2), az and a3 are not zero. Moreover, v
cannot be zero for this direction, and we can now solve for ¢;3 in terms of the other
(known) quantities. The coefficients ¢4 and ¢y5 are similarly computed from the
cross-boundary derivatives at 0o and v3.

We now show that the remaining coefficients of s are uniquely determined by
C' continuity. Let (a,3,7) be the barycentric coordinates of the center point v
relative to 7. Then by the C'! conditions across the edges inside of T', we have

Ci6
acyz + Beg + Ye14)/3,

acys + 3014 + y¢11)/3,
c1o = (acye + Beyr + Yeis)/3.

acs + Beys + Yers)/3,

C18 =

(
617:(
(
(

This completes the proof that s is uniquely determined by the given data. W

As in the planar case, it is easy to show that the macro-element constructed
in Lemma 5.3 is actually C? at the center of the triangle 7. We now show how to
use the macro-element described in Lemma 5.3 to solve the interpolation problem
using C'! cubic splines.

Theorem 5.4. Let A be a triangulation corresponding to a set of vertices {v;}\_,,
and let Aot be the triangulation obtained by splitting each triangle in A about
its center to create three subtriangles. Suppose we are given function and first
derivative values at each of the points {v;}\_,, along with a value for a cross-
boundary derivative at the center of each edge of A. Then there exists a unique

spherical spline s € S}(Acr) which interpolates these data.

Proof: The prescribed data uniquely determine a C! cubic spline on each of the
triangles of A. We now show that these splines join together smoothly across the
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edges of A to form a spline s € Sj(Acr). Let e = (v1,v2) be one of the edges of
A, and let p and p be the cubic CBB-polynomials obtained by restricting the cubic
polynomial pieces of s on either side of e to e. By construction,

szp(vl) = ngﬁ(‘m), Dglp('l)?) = Dglﬁ('UZ)a k=0,1.

These four pieces of data uniquely determine a cubic CBB-polynomial, and it follows
that p = p.

Now consider the cross-boundary derivatives Dip and D, p of the two adjoining
cubics. By (3.8), these two functions are quadratic CBB-polynomials which have
common values at the three points vy, 01, and vy. We conclude that Dyp = Dyp,
and the proof is complete. W

5.3. A Powell-Sabin Element

The macro-element in the previous subsection is piecewise cubic. If we want to
work with even lower degree polynomials while maintaining C'! continuity, we have
to subdivide each domain triangle into more subtriangles. It is well known in
the planar case that quadratics can be used if each triangle T is split into six
subtriangles as indicated in Fig. 3.

If vy, v9, v3 are the vertices of T', we define its incenter as the point on § which
is obtained by radially projecting the incenter of the planar triangle with vertices
vi/llvill,2 = 1,2,3, onto S. Given a triangulation A, we denote the incenter of the
J-th triangle by v; for j = 1,..., N. As in the planar case, if the incenters of two
neighboring triangles sharing an edge e are connected with an arc (i.e., the curve
segment connecting these two incenters obtained as the intersection of & with a
plane passing through the two points and the origin), then that arc intersects e at
some point v in the interior of e.

Starting with the triangulation A, we now construct a refined triangulation
Aps where each of the original triangles of A has been split into six subtrian-
gles. For each triangle we simply connect its incenter to its three vertices and the
three points on its edges singled out above. The result is called the Powell-Sabin
refinement of A. Fig. 3 shows the split of one triangle.

We now restrict our attention to one of the original triangles 7' € A. Suppose
its vertices are vy, vg, vs, its incenter is v, and the intersection points on the
edges are 0y, O, and 3. On T a typical element s € SI(Aps) consists of 6
SBB-polynomials, and the corresponding Bézier net has 19 coefficients which we
number as in Fig. 3. Let D;; and D; be the directional derivatives introduced at
the beginning of Sect. 5.1.



17

Fig. 3. The Powell-Sabin macro-element.

Lemma 5.5. The following 9 pieces of data uniquely determine a C' quadratic
spline s on the Powell-Sabin split of T':

1) s(vi),

2) D iy15(vi), Diit2s(vi),
forv=1,2,3.

Proof: Suppose we number the Bézier coeflicients of s asin Fig. 3. Then ¢; = s(vy).
Moreover,

Cqp = [D128(’Ul)/2 — 04128(’01 )]//312, (52)

where (@12, 412,0) are the barycentric coordinates of the vector gi3 relative to T
Similarly, ¢g is determined by Djss(vy) and s(vq). The coefficient ¢ can now be
computed from the C'! continuity condition across the edge (vy,v). Similarly, the
coefficients ¢o, ¢7, cg, ¢g are determined by the data at ve, while ¢3, ¢10, €11, €12
are determined by the data at vs.

We now show that the remaining coefficients are uniquely determined by C'
continuity. Let (ay, 8i,7:) be the barycentric coordinates of ¢; relative to the tri-
angle T, and let &, 3, 7 be the barycentric coordinates of v relative to the same
triangle. Then the C! continuity conditions across the interior edges of the split
triangle hold if and only if

c13 = aicq + Picy,
c16 = aics + Pics,
c1a = Bacr + Y2012,
c17 = Bacg + y2€11,

€15 = Qi3Ce + Y3C10,
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Fig. 4. Adjoining Powell-Sabin macro-elements.

18 = Q3C5 + Y3C11,

c19 = acs + Bes + yern.
This completes the proof of the lemma. W

We now show how to use the macro-element constructed in Lemma 5.5 to solve
the scattered data interpolation problem using C'! quadratic splines.

Theorem 5.6. Let A be a triangulation corresponding to a set of vertices {v;}\_,,
and let Apg be the Powell-Sabin triangulation obtained by splitting each triangle
into six subtriangles using the incenters as above. Suppose we are given function
and first derivative values at each of the points {v;}\_,. Then there exists a unique

spline s € S3(Aps) which interpolates these data.

Proof: It was shown in Lemma 5.5 that the data uniquely determine C'! quadratic
splines on each of the triangles of A. It remains to check that these splines join
together smoothly to form a spline s € S;(Aps). To show this, it suffices to
consider two such splines s and § which share a common edge e of A. Let v; and
vy be the endpoints of e, and let © be the intersection point of the edge connecting
the incenters v and ¢ of the corresponding adjoining triangles (cf. Fig. 4). We have
to show that s and 3 join with C! continuity across e = (v1, v2).

Let ¢ and ¢ be the quadratic CBB-splines obtained by restricting s and § to e.
Both ¢ and ¢ are C'! quadratic CBB-splines along e with one knot at the point .
By construction,

D¥q(vi) = D¥g(vy), k=0,1, i=1,2,

where D; is a cross-boundary derivative for the edge e. It is easy to see that
these four pieces of data uniquely determine such a quadratic CBB-spline, and
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we conclude that ¢ = ¢ on e, establishing that the pieces join continuously along
e. Now consider the restrictions ¢, and ¢, to e of the derivatives Dys and D;3s.
These are C° linear CBB-splines with one knot at the point ©. By the construction
g, (vi) = ¢, (vi), ¢ = 1,2. We now show that ¢, (0) = ¢, (0).

Suppose © = ayvy + B1vg, and let (&,0,%) be the barycentric coordinates of
U relative to the triangle (v,v1,0). Note that (&,0,%) are also the barycentric
coordinates of ¢ relative to the triangle (v,v2,0). Then by construction,

c16 = a1¢5 + Bics,
€16 = a1C5 + B Cs,
c13 = ajcq + By,
65 = 6(65 —|— "’5/64,
68 = 6(68 + ’?Cg.
Combining these equations, we see that

516 = O(l(évéC5 + ”5/64) + ﬁl(&CS + ;5/69)
= a(ajcs + Bics) + F(arca + Preg)
= acys + YC13-

This implies that the cross derivatives ¢, and ¢, also match at ¢, and we conclude
that ¢, = ¢, on all of e, which completes the proof. W

5.4. Dependence on Extensions

In Sect. 3.3 we showed that first order directional derivatives taken with respect
to vectors which are tangent to § do not depend on the degree of homogeneity of
the function, while higher order derivatives do. As a consequence we immediately
conclude

1) The Powell-Sabin and Clough-Tocher methods do not depend on how we com-
pute derivatives. Thus, if we are interpolating a known function f, its degree
of homogeneity is irrelevant, and if we are estimating the needed first deriva-
tives by SBB-polynomials, it does not matter how we extend these (see the
discussion in Sect. 3.3).

2) The quintic macro-element method does depend on how we compute deriva-
tives. Thus, if we compute these from a known function f, the result will
depend on how we extend it to IR? (however, see Remark 7). Moreover, if we
estimate derivatives by a low degree SBB-polynomial, the result will depend
on how we view it as a trivariate function (i.e., what degree of homogeneity
we assign to it in computing the derivative estimates). We illustrate this effect
for quintics in Sect. 8.



20

6. A Global Interpolation Method

In this section we discuss a method for constructing a spherical spline which satisfies
s(vi) = fi, 1=1,...,V, (6.1)

for prescribed data {(v;, f;)})_, associated with a sphere-like surface S. The method
involves minimizing an appropriate energy functional, and is global in the sense
that the coefficients of the spline depend on all of the data, and are determined
simultaneously (by solving a linear system of equations). We restrict our discussion
to C'! splines, although the approach also works for smoother splines.

6.1. SI(A) as a Subspace of S(A)

As pointed out in [5], every spline s € SY(A) is uniquely associated with a vector
¢=(c1,...,cp), where

M :=dim SYA) =V +(d-1)E + <d; 1)]\7. (6.2)
We can think of ¢ as consisting of an ordered list of the Bernstein-Bézier coefficients
of the SBB-polynomial pieces of s, using the convention that when two such pieces
join along an edge, then the corresponding Bernstein-Bézier coefficients associated
with that edge are identified with each other and included in the list just once.
It was shown in [5] that a spline s € SY(A) is C" continuous (r > 1) across an
edge of the triangulation, if and only if a corresponding set of

npi=d+(d=1)+--+(d—r+1)=r(2d—r+1)/2

linear homogeneous conditions on ¢ are satisfied. As in the planar case, these
conditions involve coefficients closest to the edge under consideration. Thus a spline

s € SY(A) belongs to S;(A) if and only if
Ge =0, (6.3)

where G is the an n,E x M matrix expressing the smoothness conditions (see [5]
for the explicit formulae).

In general, the full set (6.3) of smoothness conditions contain some redundant
equations. The problem of determining which — or even just how many — of these
equations are redundant is by no means simple, and in fact, is tantamount to
computing the dimension of S§(A). This problem remains unsolved for d < 3r + 2,
see [5]. For more on redundancy, see Sect. 6.3.
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6.2. Minimal Energy Interpolation

Suppose {v;}}_, are given data sites on a sphere-like surface S and let A be a
triangulation on § with vertices at the data sites. In this section we show how to
compute the coefficients of a spline s € SJ(A) so that (6.1) is satisfied.

We begin by showing how to calculate those Bernstein-Bézier coefficients of s
associated with domain points falling at the vertices of A. Suppose we order the
vector ¢ so that the i-th coefficient is associated with the vertex v;, fore =1,...,V.
Since the value of an SBB-polynomial at each of the vertices of its domain triangle
is equal to the value of the Bernstein-Bézier coeflicient associated with that vertex,
to make a spline s € SY(A) satisfy (6.1), we simply have to set

ci=f, i=1,...V (6.4)

The remaining M —V = (d — 1)E + (dgl)N coefficients of s are free, and can be
used to make s have some additional desirable property.

A typical way to use these extra degrees of freedom is to minimize a functional
E(c) measuring the smoothness of s. The problem becomes particularly simple if
we choose £(c¢) to be a quadratic functional, i.e.,

E(e) = T Qe,
with some M x M symmetric positive definite matrix (). Thus our problem becomes
mininimize £(¢), subject to (6.4).

By introducing a Lagrange multiplier vector A of length V', it is easy to see (cf. [26,
p. 236]) that ¢ solves this problem if and only if

(0)(5)=()

where I is the V' x V identity matrix and ¢ := (fi,..., fv)L.

Since we have not enforced any smoothness conditions, the minimal energy
spline constructed above is only continuous. In many applications we would like
our interpolant to be at least C''. As observed in Sect. 6.1, a spline in S}(A) will
belong to S7(A) if and only if the linear homogeneous conditions (6.3) are satisfied.
Thus, to construct an interpolating spline in SJ(A), we seek ¢ solving the problem

minimize &£(¢), subject to (6.4) and (6.3).
To find the solution of this problem, we solve the linear system

Q I" GT c 0
I 0 0 Al=1g¢g], (6.5)
G 0 0 v 0
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where « is an n, E vector of additional Lagrange multipliers.

There are two problems with this approach. First it may happen that there
is no spline in S(A) satisfying both the interpolation conditions (6.4) and the
smoothness conditions (6.3). This is not a problem if d is large, since as shown in
[5],if d > 3r+42, then each coefficient associated with a vertex can be independently
set, and so an interpolant in Sj(A) always exists. Thus, we can always interpolate
with S}(A) for d > 5. Moreover, following the arguments in [6], it can be shown
that interpolation is also possible in S (A). As in the planar case, we conjecture
that interpolation is also possible with cubic C'! splines. On the other hand, it can
easily be seen that S3(A) is not large enough to solve the interpolation problem in
general.

The other problem arises when there are redundancies in the side conditions
(6.3). In this case the system (6.5) becomes singular. Of course, what we really
have in this case is an underdetermined but consistent system, which can still be
solved by standard techniques. Ideally redundancies should be removed if possible,
however, as doing so also reduces the size of the system.

Although the minimal energy approach discussed in this section leads to rather
large systems of equations, we should point out that for the kind of energy functional
we intend to use (see Sect. 6.4) the matrix @ is rather sparse. Moreover, for C'!
continuity, each of the smoothness conditions involves only 4 coefficients, and so
the rows of G corresponding to smoothness conditions have only 4 entries in them.
Finally, the rows corresponding to interpolation conditions have only one entry in
them.

6.3. Redundancies for Si(A)

Since we intend to present some numerical examples of minimal energy interpo-
lation based on C! cubic splines, in this section we discuss what is known about
redundancies in this case.

There are two types of known redundancies for S3(A). They occur in the C*
continuity conditions in the first ring around each vertex, and also in the second
ring around each vertex. Here we are using standard Bernstein-Bézier terminology,
see e.g. [4]: the coefficients in the ¢-th ring around the vertex v; have the form
Cd—¢,5,k with 7+ k = (.

The first type of redundancy is easy to deal with. Indeed, as in the planar
case, it is easy to see that if ey,..., e, are the edges attached to a vertex v, then
the two C'! conditions associated with the two edges e,,_; and e, are redundant,
and can simply be dropped.

The second type of redundancy occurs only in connection with singular vertices.
A vertex v is singular provided it is connected to four vertices vy, ..., vy where the

pair vy, vz lies in one plane passing through v and the origin, and the pair v,
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vy lies in another. In this case one of the four ring-2 C'! continuity conditions is
redundant, and can be dropped.

In the planar case, singular vertices are isolated, and it is no problem to remove
the redundant second ring conditions. However, on the sphere it is possible that
two adjoining vertices are both singular, see Sect. 7 of [5]. Thus, there can be
additional redundancies due to the interaction between singular vertices. It is
possible to construct an algorithm to eliminate such redundancies by examining all
closed paths connecting triangles in A.

6.4. Choice of the Quadratic Functional

It remains to discuss appropriate choices of the quadratic functional £(¢). For a
general sphere-like surface, it is not clear what a good choice of an energy functional
may be. Therefore, in this subsection we restrict our discussion to the special case
S = 5. In this case, there are two types of natural choices of energy functionals,
which are both analogs of the well-known thin-plate functional for functions on the
plane. They are of the form

()= [ (0fas (6.6)
where O is a differential operator. Wahba [79] defined the family of operators
0 := (A")™/?, (6.7)

where m is an even integer and where A* is the Laplace-Beltrami operator on S.
This operator is a natural analog of the familiar Laplace operator. In fact it is a
restriction of the Laplace operator to S. The definition for the case where m is odd
is more complicated and can be found in [79].

A different set of operators has been suggested by Freeden [34], who considered
operators which are defined by

O := (A" = (A" + 1)1 - (A" + X)T™, (6.8)
where ¢ := (qo, . .., ¢m) is a vector of positive integers, m is an arbitrary nonnegative
integer, and \; :=i(¢+ 1), =0,...,m. In some sense the second type of operators

are more natural since they annihilate all spherical polynomials up to degree m,
while (6.7) only annihilates constants. We note that in both cases (6.6) is invariant
under rotations of the coordinate system. If we set m = 2in (6.7) and m =0,¢9 =1
in (6.8), the corresponding functionals are identical and are equal to

eih = [anpras (6.9)
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which is a functional annihilating constants.

In order to compute the entries of the energy matrix () for a spline s, we need to
calculate the energy contributions £7;(s) from each single triangle 7;, ¢ = 1,..., N,
of the given triangulation A. If we denote by ¢; the vector of the Bézier coefficients
of the polynomial p; = s|r;, then

Eri(s) = En(pi) = ¢} Qici,

where (); 1s a symmetric D x D Gram matrix corresponding to the collection of
Bernstein basis polynomials defined on 7}, where D := dim Py = (d";z). In particu-
lar, if B; and Bj, are the Bernstein basis polynomials associated with the coefficients
corresponding to the j-th and k-th entry of vector ¢;, the jk-th entry of ); is given
by

(Qi)jk =/ OB;OByds, j,k=1,...,D.
T

The above integrals can be computed based on the considerations in Sect. 4.

In order to calculate the functions OB; for operators O of types (6.7) and
(6.8), one needs to evaluate expressions involving the Laplace-Beltrami operator.
We recall a useful formula for A* applied to a homogeneous function of degree d
restricted to S and hence, in particular, to an SBB-polynomial p of degree d [53]:

A*p=Ap—d(d+ 1)p. (6.10)

In (6.10) we abused the notation slightly: on the right-hand side, Ap should be
viewed as the Laplace operator applied to a trivariate function, homogeneous of
degree d, which is then restricted to S. The formula reduces the problem of finding
A*p to the problem of computing Ap. We will now give an expression for Ap
which involves partial derivatives with respect to barycentric coordinates rather
than Cartesian coordinates. Let z;, ¢ = 1,2, 3, denote the Cartesian coordinates in
IR? and let e;, i = 1,2,3, be the unit coordinate vectors. Then, if we view p as a
trivariate homogeneous function expressed in terms of the barycentric coordinates
with respect to 7', the chain rule gives

Op Ob;
Z P b7 (e:)Vip, i=1,2,3,

61:1 0b; 8”51

where Vj is the gradient taken relative to the variables by, by, and b3 as defined in
(3.2). As a consequence, we have

oog =0 (e)H(p)b(ei), i=1,2,3,
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and hence ,
Ap =" b(ei) Hy(p)bles).
=1

Here Hy(p) is the 3 x 3 Hessian matrix

&*p ’
Hy(p) = ( ” abk>j,k:1’

computed relative to the variables by, bs, b3.

7. Approximation Methods

As in the planar case, there are two situations where it may not be appropriate to
interpolate a set of scattered data:

1) if the data are noisy

2) if there is an extremely large number of data.

Both situations occur frequently in practice. Indeed, measured data are almost
always subject to some noise, and it simply does not make sense to interpolate the
measured values exactly. What we should be doing is smoothing out the noise by
some approximation technique. As for the second case, it is not at all uncommon
to have hundreds of thousands of data, or even many more, in which case it is
generally not appropriate to try to construct an interpolating spline with hundreds
of thousands of coefficients.

In this section we discuss analogs of two common methods for dealing with
noisy data — discrete least squares, and penalized least squares. Both of these
methods are global in nature, and involve solving large sparse systems of linear
equations.

7.1. Discrete Least Squares

Suppose that we are given noisy measurements f; = f(v;) + ¢; at n points on a
sphere-like surface for an unknown function f. Here ¢; represent unknown errors.
The method proceeds as follows:

1) choose a triangulation A with V' vertices (V < n),
2) choose a spline space Sj(A),
3) find the spline s € Sj(A) which minimizes

L(s) 1= 3 [s(oi) = £

We discuss each of the steps separately.
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The choice of the vertices to be triangulated has to be done by the user — there
is no simple automatic way to do it. Certainly we will not use all of the data points
as vertices (since then we can interpolate with a zero error), and in fact, it is not
necessary to choose any of the data points as vertices. Ideally, the user will have
some idea of the complexity of the function being fit, in which case more vertices
would be inserted where the data change more rapidly.

The choice of spline space is also up to the user. Generally it is advisable
to work with low degree spaces (d < 5), depending on the amount of smoothness
required. Often C! is adequate.

To carry out step 3), we would like to express L(s) as a quadratic form involving
some coefficient vector, and thus we need a set of basis functions for our spline
space. Appropriate locally supported basis functions have been described in [5] for
d > 3r + 2, although they can be quite complicated to describe and compute. In
practice it may be more desirable to work with spline spaces SJ(A) with d < 3r+2.
However, for these values of r and d, we do not even know the dimension of the
spline space, let alone a basis for it. We now describe a way around this difficulty.

Recall that the spline space S7(A) is just the subspace of SY(A) satisfying
the set of homogeneous smoothness conditions (6.3). Our approach is to look for a
minimum of L(s) in SY(A) subject to (6.3). As a basis for SY(A) we can use the
splines {B;}M,, where M is the dimension of SY(A) as given in (6.2), and where B;
is the unique spline whose coeflicient vector (see Sect. 6.1) is (0,...,0,1,0,...,0),
where the 1 appears in the :-th position. These basis functions are locally supported
(with support at most the star of a vertex).

Given data sites {v;}7_, on the sphere, let

B:=(By)_"_,
be the n x M observation matriz where B;; = B;(v;). Then it is easy to see that
L(s) = L(¢) = ¢"BT"Bec — 2¢"' BT g + ¢7'g, (7.1)
where ¢ = (fi,..., fn)T is the column n-vector containing the values to be fit, and

¢ is the vector of coefficients describing s in terms of the basis {B;}.

It is now clear that the problem of minimizing L(s) over s € SJ(A) is equivalent
to minimizing L(c) over SJ(A) subject to the linear side conditions (6.3). This
problem can be solved numerically by introducing Lagrange multipliers v. We are
led to the linear system

T T T
B'B G ¢\ _ Bty ’ (7.2)
G 0 v 0
where G is the matrix in (6.3).
As was the case for minimal energy splines, it is important to remove redundan-

cies in the side conditions describing smoothness. Since the B; have local support,
both BT B and the block matrix in (7.2) are sparse.
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7.2. Penalized Least Squares

In some fitting problems, particularly when the data are especially noisy, it may be
useful to replace the standard discrete least squares problem by a penalized least

squares problem. The idea is to minimize a combination
K(c):= L(c) + X&(¢),

where &(c¢) is a measure of energy as used in Sect. 6.4, and L(c) is the sum of
squares of the errors as in (7.1). The parameter A controls the trade-off between
these two quantities, and is typically chosen in the interval [0, o), see [39].

The penalized least squares problem can be solved in exactly the same way as
the discrete least squares problem. Indeed, assuming that the energy is given by
the quadratic form &£(c) = ¢TQc, the only change in (7.2) is that the matrix BT B
in the upper left-hand corner has to be replaced by BT B + \Q.

In performing penalized least squares in practice, we still have to choose the
parameter A. If A is 0, we get the least squares spline. If A is very large, we are
essentially solving a minimal energy problem over the space

{s € S;(A) : Os =0},

where O is the operator describing the energy term &£(c). In general, good re-
sults can be expected with very small values of A\. For more on how to select the
smoothing parameter A, see [39].

8. Examples

In this section we report on our computational experience with the methods pre-

sented above. We discuss the following issues:

1) implementation, storage requirements, and speed,

2) convergence behavior, approximation orders,
3) the effect of long and thin triangles in the triangulation,
4) the effect of singular or near-singular vertices,
5) conditioning of linear systems for global methods,
)

(=]

accuracy and numerical stability of algorithms.

8.1. The Testing Environment

We use the following abbreviations for our methods: QT (quintic), CT (Clough-
Tocher cubic), PS (Powell-Sabin quadratic), ME (minimal energy cubic), LS (least
squares cubic), PL (penalized least squares cubic).

All six of these schemes have been implemented in FORTRAN 77 and tested

on an SGI Indigo 2. Except for the construction of the triangulations (which were
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Fig. 5. Graph of f*.

done with a package of Renka [69, 70]) all calculations were carried out in double
precision.

All of our tests were conducted on the sphere. The local interpolation methods
were tested with data sets of up to 16,386 vertices and up to 32,768 triangles.
The global methods were tested on data sets of up to 258 vertices and up to 512
triangles. We ran LS and PL with up to 100,000 data points. We discuss space and
time limitations in Sect. 8.2.

We have done testing on a number of functions, but most of the results reported

here are based on the test function
fz,y,2) =1+2%+ 29 4 27 4 10zyz. (8.1)

For those methods requiring gradient or Hessian information, the needed derivatives
were hand coded (with the assistance of Mathematica).

To assist in understanding the behavior of the methods, we visually examined
the surfaces

{f(v)v : veS} (8.2)

corresponding to our test function and its various interpolants and approximants.
In addition to permitting a comparison of shapes, this provided a way to visualize
errors, smoothness of derivatives, and curvature by color coding these quantities
on the surfaces. These kinds of maps are best appreciated as color images, which
unfortunately, we were not able to include in this paper. To give an idea of what
our basic test function looks like, we present two views of it in Fig. 5. These figures
were obtained with Geomview 1.5 which is available from the Software Development

Group, Geometry Center, 1300 South 2nd St, Suite 500, Minneapolis, MN 55454,
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QT CcT PS
Storage 25V — 48 27V — 52 24V — 46
Exactness Ps Ps Ps
Order h® h? B3
Time < 1 sec. < 1 sec. < 1 sec.

Table 1. Comparison of local methods.

ME LS
Storage 9V — 16 9V — 16
Exactness {0} Ps
System Size 17V 16V
Time 200 sec. 125 sec.

Table 2. Comparison of global methods.

U.S.A, register@geom.umn.edu. We also used Explorer 2.2.2 available from IRIS
Explorer Center, PO Box 50, Oxford OX2 8JU, UK, infodesk@nag.co.uk.

While (8.2) is the most natural way to visualize a surface defined on the sphere,
it is certainly not the only way. For some other approaches, see e.g. [12, 29, 62, 63],
and references therein.

8.2. A Basic Comparison of the Methods

Tables 1 and 2 summarize some of the basic properties of the first five methods (PL
is virtually the same as LS). The entries labeled Storage give the amount of space
required to store the set of coefficients of the spline associated with a triangulation
with V' vertices. The table shows that the ME and LS methods require the least
storage (which is to be expected, since they are based on cubics, and do not involve
split triangles). For the range of problems considered, this is not an important
factor.

The entries labeled Ezactness describe the sets of SBB-polynomials for which
the methods give exact results. Thus, for example, if we use the QT method to
interpolate data coming from an SBB-polynomial in the space P5, we get an exact
fit. The LS method reproduces cubics (since it is based on cubics). However, even
though ME and PL are also based on cubics, they do not reproduce them since
Na«NSI(A) = {0}, where Na~ is the null space of the Laplace-Beltrami operator.

The entries labeled Time give the time in seconds required to compute the
corresponding interpolant (or approximant) based on a triangulation with 258 ver-
tices. The times for LS were computed for a problem involving 100,000 data sites.
As the table shows, the local methods are all very fast, and exhibit comparable
running times. The global methods required considerably more time, but most
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of their running time was devoted to solving the associated linear systems. For
this purpose we have tested several public domain sparse matrix solvers (the times
reported here are based on a package called Y12M).

In Table 1 the entries labeled Order give the order of approximation to be
expected in using the method as a power of a parameter h measuring the diameter
of the largest triangle in the triangulation. Theoretical results on approximation
order of spherical splines will be presented elsewhere. In Sect. 8.3 we give numerical
results which support the expected orders of convergence.

In Table 2 the entries labeled System Size give the sizes of the linear systems
of equations that have to be solved in terms of the number V of vertices of the
underlying spherical triangulation. For the global methods, the sizes of the linear
systems are the main determinators of the amount of space and time needed to run
the program. Because of the space requirements of our sparse system solver, we
were not able to run substantially larger problems.

8.3. Numerical Results

To illustrate the performance of our methods, we created a sequence Ay, Ao, ..., A7
of regular triangulations, where the number of vertices of Ay is 22¢ + 2 and the
number of triangles is 2%*!. This sequence was created as follows. A, is the
Delaunay triangulation associated with the 6 vertices of a regular octahedron, i.e.,
with the points +e;, ¢ = 1,2,3, where e; are the Cartesian coordinate vectors.
This triangulation consists of the 8 quadrantal spherical triangles. Then for each
{=2,...,7, we computed the vertices of Ay from those of Ay_; by adding the
midpoints of each edge of Ay_; to the vertices of Ay_;. This amounts to splitting
each triangle of Ay_; into four subtriangles in a standard way, and in fact each of
these triangulations is a Delaunay triangulation of its vertex set. The triangulation
A7 involves 16,386 vertices and 32, 768 triangles. For later use, we note that the
mesh sizes h¢ of the triangulations Ay behave essentially like 27¢ since in refining
A¢_q to get Ay, we are approximately halving the size of each triangle. (It is not
exactly 1/2 since we are measuring distances on the surface of S along great circles).

Tables 3 and 5 list the errors for all five methods applied to the test function
f*. The corresponding estimated rates of convergence are shown in Tables 4 and
6, respectively. All reported errors are relative errors, defined by

maxyev, |s(v) — f*(v)]
maxyev, | f*(v)]

?

where f* is the test function and s is its interpolant or approximant. The sets V
vary with the triangulation Ay, and are made up of points of the form

wy + jug + kv
[iv1 + joz + kvs ||’

it j 4+ k=211
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QT QT* CT PS
A 8.1554 (-2) 2.9288 (-1) 1.0647 (-1) 5.5912 (-1)
A, 7.3667 (-3) 1.1328 (-1) 4.4236 (-2) 7.8296 (-2)
As 6.0130 (-4) 3.0328 (-2) 1.0490 (-2) 2.1020 (-2)
A, 2.0279 (-5) 7.8996 (-3) 1.0721 (-3) 2.0461 (-3)
A; 3.8139 (-7) 1.9925 (-3) 7.6170 (-5) 2.2841 (-4)
Ag 6.1964 (-9) 5.0004 (-4) 4.8942 (-6) 2.8834 (-5)
A 9.5359 (-11) 1.2607 (-4) 3.0294 (-7) 3.5994 (-6)

Table 3. Approximation errors for local methods.

QT QT* CT PS

AL /A, 11.07 2.59 2.41 7.14
Ny 12.25 3.74 4.22 3.72
Ny 29.65 3.84 9.78 10.27
A, JAs 53.17 3.96 14.08 8.96
As /A 61.55 3.99 15.56 7.92
Ao /A 64.98 3.07 16.16 8.01

Table 4. Approximation rates for local methods.

ME LS
A 4.0333 (-1) 8.21625 (-2)
A, 2.8149 (-1) 7.81121 (-2)
As 2.8027 (-2) 1.62540 (-2)
A, 1.6184 (-3) 1.97802 (-3)

Table 5. Approximation errors for global methods.

ME LS
ALJA, 1.43 1.05
YN 10.04 430
Y2V 17.32 8.20

Table 6. Approximation rates for global methods.

where vy, vy, and vz are vertices of a typical triangle in Ay. These sets are all of
the same size, approximately 1,050,000 points, but do not always contain the same
points.
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Table 4 clearly confirms our expectations for the convergence orders for the
local macro-element methods (recall that each refinement of the triangulation re-
duces the diameter of the largest triangle by a factor of approximately 1/2, so we
expect the ratios of the errors to behave like 2F, where k is the order). In particular,
QT gave order 5, CT order 3, and PS order 2.

The columuns labeled QT* in Tables 3 and 4 are included to show what happens
when the second derivative information required for QT is not computed properly.
In the form given in (8.1), the function f* is not homogeneous of order 5, and so
by the discussion in Sect. 5.4, we cannot expect order 5 convergence if we compute
second derivatives directly from (8.1). Indeed as the tables show, if we do compute
second derivatives in this way, we seem to be getting order 2 convergence. The
order 5 convergence shown in the columns labeled QT corresponds to computing the
second derivatives from the order 5 homogeneous extension of f* (cf. Lemma 2.1).

The situation is less clear-cut for the global methods. The approximation order
of §3(A) is unknown in general, even for the planar case. It has been shown [17] that
in that case the approximation order of §;(A) on a uniform type-1 triangulation is
three. This has also been confirmed experimentally in the tests presented in [36].
Since our sequence of spherical triangulations Ay is an analog of uniform type-1
planar triangulations, we expect that for such triangulations, the approximation
order of the homogeneous spline space S3(A) is also 3.

In Sect. 7.1 we have chosen to work with a basis for the entire space SJ(A).
As in the planar case [1] and [36], it is also possible to work with bases for certain
smaller subspaces of SY(A). We should also note that although we have used
Lagrange multipliers to convert the problem of minimizing a quadratic function
subject to linear side constraints into an equivalent linear system of equations,
these types of constrained minimization problems can also be solved directly using
any one of a variety of available algorithms, see [26, 35].

8.4. Effect of Thin Triangles

It is common practice in finite element computations to avoid the use of thin tri-
angles. In this section we explore the performance of each of our methods in the
presence of thin triangles. The tests were performed on a sequence of triangulations
7. obtained by adding one additional vertex to the regular triangulation A; with
6 vertices discussed in Sect. 8.3 above. For given ¢, the new vertex was placed at
the point with spherical coordinates (¢,0) in degrees. We then created the corre-
sponding Delaunay triangulation 7.. Since one of the vertices of Ay is at the point
(1,0,0) with spherical coordinates (0,0), when ¢ is small the triangulation 7. has
two thin triangles, one attached to each pole. We examined the sequence &; = 107!
fore=1,....,9.

Our first tests were conducted on the local macro-element methods QT and
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Table 7. Consequences of thin triangles for PS.

CT. In order to be able to observe the effect of the thin triangles more clearly, we
generated the data from the function f = @ + y + z rather than f*, since (with
no roundoff error) both methods give exact results for this function. We do not
bother to give a table of results, since for both QT and CT, we got virtually the
same accuracy (approximately 1071%) for all &;. This suggests that these methods
are not sensitive to the presence of thin triangles in the triangulation.

Next we tested PS with the same sequence of triangulations. For this method
we generated the data from the function f = 1, since (with no roundoff error) the
PS method produces an exact fit for this function. The results are presented in
Table 7, which shows that thin triangles have a clear effect on the accuracy of this
method. We lose essentially one digit of decimal accuracy each time ¢; is reduced
by a factor of 10.

There may be several causes for the dropoff in accuracy in the presence of
increasingly small triangles. We believe that the main reason is that for a very long
and thin triangle, the incenter will be very close to two vertices at one end. This
leads to intersection points on the long edges which are very nearly at the ends
of the edges. In that case the computation of Bézier coefficients in the first ring
around those vertices loses accuracy because of the small size of the barycentric
coordinate appearing in the denominator of (5.2). This does not happen for the
QT method since the original triangles are not split. Neither does it happen for
the CT method since there the split point is chosen to be the center of the triangle,
which is not close to any of the vertices.

The effect of thin triangles is much more pronounced for the minimal energy
method ME and for the least squares LS and penalized least squares PL methods.
In fact, the condition numbers became so bad that our sparse system solver failed

for ME already for ¢ = .01, while for PL it failed for ¢ = .001.



34

8.5. Condition Numbers

The global methods LS and ME require solving linear systems of equations which
are generally large and sparse. In practice we recommend solving them with sparse
matrix methods.

For both methods, the matrices of interest have a block structure (cf. (6.5)
and (7.2)) where the sizes of the entries in the matrix G describing smoothness
conditions is of order 1. However, the sizes of the entries in the matrices () and
BT B appearing in these systems can often be much larger or much smaller than
those in G. In particular, the entries of () are obtained by computing integrals of
second derivatives of the SBB-polynomial basis functions B, and these become
large for triangles with one or more short edges. The entries of BT B in the LS
method are sums of products of values of these basis functions, and can be either
very large or very small (in absolute value), depending on how many data points
fall in a given triangle.

Our numerical experience suggests that while the condition numbers of the
matrices Q and BT B are quite good, the condition numbers of the block matrices
in (6.5) and (7.2) are often very large, indicating the need for some kind of scal-
ing. While there are a variety of general-purpose scaling strategies which can be
applied to a linear system, we have experimented with a simple scaling strategy
which appears to be considerably more effective than standard techniques like row
equilibration. To scale the system (6.5) which arises in the ME method, we multi-
ply the entries in () by a positive constant «. By the block structure of the system,
the vector (¢, \,7)T is a solution of the original system if and only if (¢, @\, ay)T
is a solution of the new system. Similarly, to scale the system (7.2) which arises
in the LS method, we multiply the entries in BT B and the right-hand side vector
BT g by a positive constant . Again the solution of the new system gives the same
coefficient vector ¢, but a changed Lagrange multiplier vector ~.

To see how effective this scaling strategy is, we conducted some tests using
LINPACK to compute condition numbers of the systems. We used the same trian-
gulations Ay, Ay, and Ag, as in Section 8.3. For each triangulation, we determined
a (near) optimal scaling by examining a series of a values, and performing a golden
section search.

Tables 8 and 9 show the results for ME and LS (applied to a set of 10,000 ran-
dom points), respectively. In both tables the column labeled Cy lists the condition
numbers of the associated systems without scaling. The second column labeled Cy
gives the improved condition numbers obtained by using the associated value of «
in column 3. In Table 8 the fourth and fifth columns list the smallest (nonzero)
and largest entries in the matrix (), while the the last column gives the number of
equations in the system. In Table 9 the fourth and fifth columns list the smallest
(nonzero) and largest entries in the matrix BT B, while the last column gives the
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4 C. o min max size
Aq 2.1 (3) 10 .01389862 6.33 20.47 63
A, 1.1 (5) 2 100876393 8.21 26.21 266
As 8.8 (6) 61 00151364 38.72 84.64 1082

Table 8. Optimal scaling parameters and condition numbers for ME.

Cy Ca o min max Nomin
Al 1.6 (6) 18 0017 120 (1) 806.00 1,247
Ay 1.5 (4) 29 .0392 1.49 (0) 60.09 307
Az 1.6 (3) 54 .1316 4.13 (—2) 25.76 40

Table 9. Optimal scaling parameters and condition numbers for LS.

minimum number n,,;, of data points per triangle.

Clearly, scaling has a highly significant impact on condition number for both
methods. Indeed, although the original condition numbers range from order 10% to
10%, in all cases we are able to reduce them to very satisfactory values. Note that
as the number of triangles in the triangulation increases, for the ME method the
values of (] increase while the optimal values of @ decrease. The reverse happens
for the LS method.

There is, of course, a vast literature on the subject of preconditioning linear
systems, and we make no claim of having developed an optimal way to scale the
systems arising in LS and ME methods. However, the above tests indicate that the
simple method suggested above is quite effective. Its obvious drawback is that it
requires a parameter « that depends on the data and at present can be determined
only empirically. Moreover, our computations suggest that the size of the condition
numbers obtained are quite sensitive to the choice of scaling parameters.

8.6. The Effect of Near-singular Vertices

The global methods ME, LS, and PL involve minimizing a quadratic functional
over the space S§(A) of continuous spherical cubic splines, subject to side conditions
enforcing interpolation and C! continuity. As discussed in Sect. 6.3, certain of
the smoothness conditions are redundant when a vertex is singular. This means
that the dimension of the spline space changes as a vertex approaches singularity
(usually, the dimension jumps by one when a vertex becomes singular). The change
in dimension corresponds to a change in the rank of the linear system defining the
solution. It might be expected that such changes in the dimension would have a
significant impact on the results when comparing a triangulation with a singular
vertex to one which is obtained by perturbing the vertex slightly.
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€ Condition Number
22 6.3 (5)
21 9.2 (6)
20 1.4 (8)
21 2.2(9)
272 3.6 (10)
273 5.7 (11)
274 9.1 (13)
277 1.5 (14)
276 2.3 (15)
27 3.4 (16)
28 8.3 (17)
279 4.4 (17)
210 1.9 (17)
0 10.3

Table 10. Consequences of near-singular vertices for ME.

€ Condition Number Error
22 9.1 (5) 6.5 (-15)
21 1.2 (7) 9.4 (-15)
20 1.8 (8) 8.4 (-14)
2-1 2.8 (9) 4.5 (-14)
272 4.4 (10) 3.4 (-14)
273 7.1 (11) 1.6 (-13)
274 1.1 (13) 6.0 (-14)
277 1.8 (14) 2.5 (-13)
276 2.9 (15) 1.0 (-12)
277 4.6 (16) 3.2 (-12)
28 7.3 (18) 3.1 (-12)
279 1.2 (20) 6.6 (-12)
2-10 1.9 (20) 2.4 (-11)
0 17.8 5.0 (-15)

Table 11. Consequences of near-singular vertices for LS.

To test the effect of near-singularity, we start with the regular triangulation A,
of Sect. 8.3 which has 18 vertices, six of which are singular. Foreach: =0,...,12 we
perturb the spherical coordinates (6, ¢) of each of the singular vertices by random
multiples of 27%c, where ¢ is 4 degrees. Thus in stepping down one line in Tables 10
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and 11, the perturbations are exactly halved, except that the last line corresponds to
Aj itself. In this case the known redundant equations are removed, which accounts
for the much smaller condition number. In both tables we present the corresponding
values of the condition numbers corresponding to the optimal scaling for A, given
in Tables 8 and 9. The corresponding condition numbers without scaling would be
significantly larger.

For both ME and LS we choose the function f(z,y,z) = ¢ + y + z. Without
roundoff error it is fit exactly by the LS method, and so the errors listed in the third
column of Table 11 are due to the effects of the numerical computation. The LS test
was done with a set of 10,000 random data points on the sphere. Unfortunately,
we do not have a function that is reproduced exactly by the ME method, and so
we cannot exhibit the subtle effects of near singularity on the error.

As we move down the rows of the tables, we observe a significant increase in the
condition number of the associated linear system (to the point that the estimated
condition number equals the reciprocal of the round-off unit). In particular, the
condition numbers increase by approximately a factor of 10 each time the angular
perturbation of the singular vertices is reduced by a factor of 2.

8.7. Guidelines

We have not done an extensive numerical comparison of spherical spline meth-
ods against various alternative methods, and thus are not in a position to make
any recommendations here. However, we can offer the following general guidelines
concerning the choice among the various spline methods treated here:

1) If the number of data is very large, or if the values to be fit are noisy, the user

should strongly consider using least squares or penalized least squares.

2) There are many advantages to using a local method rather than a global one.
In particular, our PS, CT, and QT methods are extremely fast, can be used
on large data sets, and are both stable and accurate. However, all three meth-
ods depend on having good values for derivatives. In particular, if second
derivatives are available, it is hard to beat QT in terms of speed and accuracy.
However, these methods may not perform as well in cases where the derivatives
have to be estimated, particularly if the number of data points available to do

the derivative estimation is small.

3) The advantage of the ME interpolation method is that it does not require any
derivative information. The main disadvantage is that it requires solving a
large system of equations which seems to become less well-conditioned with
size. In addition, in general we can expect an ME interpolant to be somewhat
smoother than the macro-element methods PS, CT, and QT discussed above
(although all methods are C''). The reason is that ME minimizes energy, which
in a certain sense corresponds to minimizing curvature of the surface.
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4) For highly noisy data, we have found that the penalized least squares method
performs significantly better than simple least squares. The main difficulty in
using it is to choose an appropriate smoothing parameter.

9. Remarks

Remark 1. In principle any interpolation or approximation problem on a sphere-
like surface can be converted into a similar problem on the sphere by the simple
expedient of replacing the data sites v; by their projections v;/||vi|| onto the sphere.
However, this is not always desirable for a number of reasons. The data may
contain directional information (for example velocities) which cannot be transferred
to the unit sphere without a redefinition and recomputation involving o. The
projection may contain a geometric distortion which changes a simple function
defined on points in IR?® to a more complicated function on the sphere. Finally,
and perhaps most importantly, in the special case that § is the surface of earth
or an equipotential surface of gravity, o is very complicated, only partially known,
and even controversial in some places on earth, see [22]. Throughout this paper we
therefore employed the more general setting provided by a sphere-like surface.

Remark 2. If a triangulation covers only a part of a a sphere-like surface &, we
call it a partial triangulation. In this paper we have discussed only total triangula-
tions. However, all of the methods discussed here can easily be extended to partial
triangulations.

Remark 3. Suppose g is a tangent vector to a sphere-like surface § at a point
v € §. The first derivative of f in the direction ¢g can also be defined equivalently
as

df(C(8))

Dy f(v) := T"QZO’

where C(6) is defined as in the proof of Lemma 3.5. Higher order pure derivatives
can also be defined in this parametric way. However, this approach does not work
for mixed derivatives of the form Dy, 4,, since in general a tangent vector ¢ to & at
v 1s no longer tangent to S if we move away from the point v.

Remark 4. An identity similar to (4.1) also holds for integrals of CBB-polyno-
mials along edges of spherical triangles except that in this case the exponent d 4 3

in (4.1) should be replaced by d + 2.

Remark 5. In view of (6.10) it may be useful to express a spherical polynomial in
terms of spherical harmonics as

p=satsi—2t o+ Sa-(-no)/2;
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where s; is a spherical harmonic of degree k. This simplifies the calculation of A*
since for all k, Asy vanishes and hence

A*p = —(d(d —|— 1)3d —}— (d — 2)(d — 1)Sd_2 + e —|— (1 — (—1)d)8(1_(_1)d)/2.

However, it is not clear to us how to do the above factorization efficiently (for a
discussion of this problem, see [33]). Also, if f is a spherical harmonic and if b(v)
are the barycentric coordinates of v with respect to a triangle T, then f(b(v)) may
not be a spherical harmonic. Hence if the factorization is expressed as a function f
of b, this function will generally depend on T'. For example, if T" is the quadrantal
triangle, 2b? — b2 — b2 is a spherical harmonic of degree 2, but this is not true for a
general triangle 7. This is in contrast to spherical polynomials, since we know that
if f(b) is a spherical polynomial, then it is so independently of the given triangle.

Remark 6. It is well known in the planar case that for d > 3r + 2, the spline
spaces S7(A) have approximation power h*T! where h is the mesh size of the
triangulation, i.e., the diameter of the largest triangle in A. We will report on
analogous results for the sphere elsewhere.

Remark 7. As discussed in Sect. 5, the quintic macro-element method depends on
how the required derivatives are computed (i.e., on the degree of the homogeneous
extension used). However, in a weaker sense, the quintic method is invariant under
homogeneous extensions. Suppose s is a quintic spherical spline obtained by the
method of Sect. 5.1, interpolating the prescribed values and derivatives of a given
function f, which is also viewed as a homogeneous function of degree five. Next,
let ¢ € IR and let s; be the quintic spherical spline obtained similarly as s with
the exception that now all needed derivative values are computed based on viewing
both functions s; and f as homogeneous functions of degree ¢ rather than five. It
can be shown that then s; is identical with s, for all £. This fact may be useful in
situations where the underlying function f is unknown and where only the degree
of homogeneity of f used in calculating second order derivatives is given. In this
case, in order to maintain good approximation properties of the quintic method,
one would have to view s as a function of exactly the same degree of homogeneity.

Remark 8. Spherical Bernstein-Bézier polynomials are a special case of certain
spherical spline functions which are analogs of simplex splines in the plane. These
spherical simplex splines are locally supported smooth functions whose pieces are
spherical polynomials, see [54, 59| for a discussion.

Remark 9. If the data to be fitted are reasonably uniformly distributed, it would
make sense to use one of the “regular” triangulations introduced in Sect. 8.3, or
similar triangulations which can be obtained by starting with the set of 12 vertices
corresponding to a regular icosahedron (which have the advantage that they do not
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contain singular vertices). The problem of computing sets of points on the sphere
which are well spread-out is of considerable importance in several other fields, and
has an extensive literature, see e.g., [67].

Remark 10. As shown in [23, 64, 66, 71] for the planar case, in constructing
a spline interpolant or approximant, in some cases it is very useful to make the
triangulation depend on the data. This can be accomplished by choosing some ap-
propriate criterion (such as smoothness of the resulting surface), and then adjusting
the triangulation by swapping edges. This approach carries over immediately to the
spherical setting. For some algorithms for finding best triangulations using edge
swapping, see [74, 75]. In case there are many vertices in the triangulation, one
may also want to consider removing vertices whose presence has little or no effect
on the quality of the approximant [50].

Remark 11. In the planar case, it is possible to use C! cubic splines without

splitting the triangles by working with rational functions rather than polynomials
— see [30, 40]. This method has been extended to the sphere in [51].

Remark 12. It is straightforward to construct a parametric surface defined on
a sphere-like surface S simply by defining three coordinate functions s;(v) defined
for v € §. As in the planar case [25], one advantage of this approach to modeling
complicated functions is that the resulting surface has true C'" smoothness, and not
just geometric continuity. We present parametric results elsewhere.

Remark 13. We do not attempt to list all possible planar scattered data methods
— for more comprehensive lists, see the survey papers [16, 31, 76]. For more
on the planar analogs of our PS, CT, and QT methods, see [20, 21, 10]. Global
interpolation methods using 83 (A) were investigated by [36, 37, 42]. For alternative
macro-element methods, some with higher-order smoothness, see [2, 18, 49, 72, 83],
and references therein. There are a large number of interpolation methods based
on blending; here we mention just one [43].

Remark 14. Our approach to constructing splines on sphere-like surfaces is to use
restrictions of homogeneous functions. For some other methods based on restric-
tions of trivariate functions, see [7, 8, 9, 13].

Remark 15. In Sect. 8 we have reported on the performance of a minimal energy
method based on C'! cubic splines and using the energy measure (6.9) based on the
Laplace-Beltrami operator. This functional annihilates constants, but constants
are not in the space Sj(A), so as indicated in Table 2, the method is exact only
for the zero function. This suggests that this measure of energy and this space are
probably not well-matched. The main impetus for discussing this method is that
it is the most natural analog of planar methods studied by several authors.
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