Kelley’s specialization of Tychonoff’s Theorem
is equivalent to the Boolean Prime Ideal Theorem

by

Eric Schechter (Nashville, TN)

Abstract. The principle that “any product of cofinite topologies is compact” is equivalent (without appealing to the Axiom of Choice) to the Boolean Prime Ideal Theorem.

1. Introduction. The principle that is nowadays commonly known (1) as Tychonoff’s Theorem states that

(TT) any product of compact spaces is compact,

when the product space is equipped with the product topology. It was proved in 1930s by several methods, all using the Axiom of Choice (2) (AC). In 1950 John L. Kelley published a proof of the converse, $TT \Rightarrow AC$, thus demonstrating equivalence of the two principles. His proof contained a very minor error (3), which is easily corrected. This was mentioned by Łoś and Ryll-Nardzewski in 1951; a corrected proof was published by Plastria in 1972. Incidentally, Plastria’s proof also shows that TT and AC are equivalent to

2000 Mathematics Subject Classification: Primary 03E25.

Key words and phrases: Axiom of Choice, Boolean Prime Ideal Theorem, generalized sequence, Moore–Smith sequence, net, product topology, Tychonoff’s Theorem, ultrafilter, universal net.

(1) Actually, what Tychonoff himself proved is the more specialized result TTI, listed later in this section. The formulation that we are calling TT was given later by Čech.

(2) The Axiom of Choice, in its simplest form, says that any product of nonempty sets is nonempty; we may arbitrarily choose a member from each of those nonempty sets. For the benefit of any newcomers to this subject, we restate the axiom in other terms: AC is a nonconstructive assertion of existence, requiring a formalist philosophy of mathematics. When we accept AC, we are agreeing to the convention that, even if we are unable to exhibit a particular example of a member of a product of nonempty sets, we are still permitted to use a hypothetical member of that product in proofs, as though it exists in some sense.

(3) Fortunately, Kelley’s error was propagated in my book [9]. I am grateful to Michael Greinecker for bringing it to my attention.
the statement that any product of compact T₁ spaces is compact; see related remarks at the end of this section.

Kelley had argued TT → TT_{cf} → AC, using the intermediate principle

(TT_{cf}) any product of cofinite topologies is compact,

but his proof of → was faulty. Plastria’s corrected proof of TT → AC did not involve TT_{cf}, and left open this question: Is the implication → true but unproved, or is it actually false?

In this note we shall show that → is false. It turns out that TT_{cf} is equivalent to the Boolean Prime Ideal Theorem (BPI), a principle well known (⁴) to be strictly weaker than AC.

This note is not actually concerned with Boolean prime ideals. We have mentioned BPI only as an identifier; it is the most famous of a whole family of principles known to be equivalent to one another. Here are four members of that family:

(TT_{2}) 2^J is compact for any set J, if 2 = {0, 1} has the discrete topology.

(TT_{J}) [0, 1]^J is compact, for any set J.

(TT_{h}) Any product of compact Hausdorff spaces is compact.

(U) A topological space P is compact if and only if every universal net in P converges to at least one limit in P.

Obviously Kelley’s principle TT_{cf} implies Mycielski’s principle TT_{2}. To establish equivalence, we shall show that the universal net principle U implies TT_{cf}.

TT_{h} and TT_{2} have often been useful in the study of equivalents of BPI, because a number of compactness principles C are trivially seen to satisfy TT_{h} ⇒ C ⇒ TT_{2}. However, Kelley’s principle TT_{cf} does not yield to that analysis; the cofinite topology on any infinite set is T₁ but not Hausdorff.

2. Tutorial on nets. Some readers may be unfamiliar with nets and with universal nets; to make this paper self-contained, we now give a brief tutorial on that subject. A more detailed introduction can be found in [5] or [9].

Sequences (xₙ : n ∈ N) are useful tools in metric spaces and in some other topological spaces. For analogous tools in arbitrary topological spaces one may turn to nets (also known as generalized sequences or as Moore-Smith sequences). These may be written in the form (x_δ : δ ∈ D), where the subscripts δ are members of any directed set—i.e., a set D whose ordering ≤ is reflexive and transitive and has the further property that each finite subset of D has a ≤-upper bound in D.

(⁴) Proved by Halpern [2]. See [3], [9], and sources cited therein for further discussion of AC, BPI, and their relatives.
A net \((x_\delta)\) is said to satisfy some condition *eventually* if the condition is satisfied by \(x_\delta\) for all \(\delta\) later than some \(\delta_0\). A net \((x_\delta)\) is *universal* if for each set \(S\) we have either eventually \(x_\delta \in S\) or eventually \(x_\delta \notin S\). For example, if a net is eventually constant, then it is universal \((\dagger)\). Conversely, if a universal net takes values in a finite set, then the net must be eventually constant.

In a topological space, we say that a net \((x_\delta)\) is *convergent* to a limit \(z\) (written \(x_\delta \to z\)) if \(x_\delta\) is eventually in each neighborhood of \(z\). In particular, any eventually constant net is convergent. A net converges in a product topology if and only if it converges coordinatewise; that is, \(x_\delta \to z\) in \(\prod_j Y_j\) if and only if \(x_{\delta j} \to z_j\) in each \(Y_j\).

3. Main results

Muranov’s Lemma \((\ddagger)\). Suppose that \((x_\delta)\) is a universal net in a set equipped with the cofinite topology. Then either \((x_\delta)\) converges to every point in the space, or \((x_\delta)\) is eventually constant.

Proof (without using AC or BPI). Suppose there is at least one point \(z\) to which the net does not converge. Then \(z\) has at least one open neighborhood \(G\) for which we do not eventually have \(x_\delta \in G\). Since the net is universal, eventually \(x_\delta \in \overline{G}\), where \(\overline{G}\) denotes complement.

Now \(G\) is nonempty (since it contains \(z\)), and it is an open set in a cofinite topology. Thus \(\overline{G}\) is finite. Therefore \((x_\delta)\) is eventually constant. \(\blacksquare\)

Proof of \(U \Rightarrow \text{TT}_{cf}\). Let \(\{Y_j : j \in J\}\) be a collection of topological spaces, each equipped with the cofinite topology. We are to show that the product topology on \(P = \prod_{j \in J} Y_j\) is compact. Since the only topology on the empty set is a compact topology, we may assume that \(P\) is nonempty. Thus we may assume that we are given some particular point \(u \in P\); its \(j\)th coordinate is some particular \(u_j \in Y_j\).

Let \((x_\delta : \delta \in \mathbb{D})\) be a universal net taking values in \(P\). In view of principle \(U\), it suffices to show that \((x_\delta)\) has at least one limit in \(P\). Since convergence of nets in product topologies is coordinatewise, it suffices to show that

\[\prod_{j \in J} \{\text{limits of } (x_{\delta j})\} \text{ is nonempty.} \]

\(\dagger\) Strangely, although there are other universal nets besides the eventually constant ones, there are no other *examples* of universal nets; the existence arguments are all inherently nonconstructive. This makes universal nets difficult to visualize, which may be why many mathematicians are reluctant to use them. Nontrivial universal nets are a triumph of formalism: One might say that in this paper we are not really working with the universal nets themselves, but rather with *sentences* about hypothetical universal nets.

\(\ddagger\) I am grateful to Alexey Muranov, who extracted this lemma from an earlier version of my paper and thereby simplified things greatly.
i.e., that we can choose a member of this product. But we may not use
the Axiom of Choice, since we are trying to prove the equivalence of U and
TT_{cf} as weakenings of AC. Thus, what we actually must show is how to
nonarbitrarily choose a particular limit z_j of the projected net $(x_{\delta j})$ in each
factor space Y_j.

We easily verify that $(x_{\delta j})$ is universal in Y_j. Thus Muranov’s Lemma is
applicable. Now choose z_j nonarbitrarily, by this rule:

- If $(x_{\delta j})$ converges to every member of Y_j, then take $z_j = u_j$.
- Otherwise, $(x_{\delta j})$ is eventually constant; let z_j be the constant value
 that the net eventually assumes.

In either case, we have selected a particular z_j for which $x_{\delta j} \to z_j$. ■

References

Math. 37 (1950), 75–76.
York, 1975.
380–385.
1996.
(1930), 544–561.

Department of Mathematics
Vanderbilt University
1326 Stevenson Center
Nashville, TN 37240, U.S.A.
E-mail: eric.schechter@vanderbilt.edu

Received 23 October 2005;
in revised form 3 December 2005