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In a recent issue of this MONTHLY, Fred Richman [8] discussed existence proofs.
Richman’s conclusion, as I understood it, was that once a mathematician sees the dis-
tinction between constructive and nonconstructive mathematics, he or she will choose
the former. That conclusion, if extrapolated further than Professor Richman intended,
suggests that any mathematician can learn constructivism easily if he or she so desires.

But in fact constructivism is unusually difficult to learn. Learning most mathemat-
ical subjects merely involves adding to one’s knowledge, but learning constructivism
involves modifying all aspects of one’s knowledge: theorems, methods of reasoning,
technical vocabulary, and even the use of everyday words that do not seem technical,
such as “or”. I discuss, in the language of mainstream mathematicians, some of those
modifications; perhaps newcomers to constructivism will not be so overwhelmed by it
if they know what kinds of difficulties to expect.

1. INTRODUCTION. A proof is nonconstructive if it asserts the existence of some
object without actually constructing or finding that object. Such proofs are used freely
in mainstream (“classical”) mathematics. Constructivism is the practice of avoiding
such proofs or at least pointing them out explicitly. Different philosophical views lead
to different kinds of constructivism:

• A mathematician who accepts nonconstructive proofs may nevertheless prefer con-
structive ones when available, because they are more informative. Indeed, most
mathematicians are part-time constructivists, at least in this respect: When we are
teaching, we try to illustrate abstract concepts with concrete examples.

• On the other hand, some mathematicians consider all nonconstructive proofs unac-
ceptable, for philosophical reasons. At issue are the meaning of “existence” of an
object and the meaning of “proof” of a statement.

There are actually several different schools of constructivism, and I do not attempt
to distinguish them here; some of them are surveyed in [2]. Constructibility differs
slightly from computability; algorithms can be studied in either the classical or con-
structive setting.

2. DIFFERENT THEOREMS. Constructive mathematics, with its stricter notion of
proof, proves fewer theorems than classical mathematics does. A mainstream mathe-
matician who wishes to learn constructivism must go through his or her entire catalog
of theorems, reevaluating each one by new criteria.

Perhaps the most blatant example of nonconstructive mathematics is the Axiom of
Choice (AC). Here is one of its forms:

Let {Sα : α ∈ A} be a nonempty collection of nonempty sets. Then there exists a function that
chooses one member from each of those sets, i.e., a function f satisfying f (α) ∈ Sα for each
α ∈ A.

To accept AC is to agree to the convention that we permit ourselves to use the choice
function f in proofs, as though f “exists” in some sense. That agrees with the intu-
ition of the classical mathematician: To “define” f (α), just “pick any member” of Sα.
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But that description of f is nonconstructive: It doesn’t produce a particular explicit
example of f . A particular example can be produced, by means other than the axiom,
in some cases but not others. For instance, we can take f (α) to be the smallest member
of Sα, if the Sα’s are the nonempty subsets of N. No analogous selection is available
from the nonempty subsets of R.

Besides choice functions, AC yields many other objects without examples. For in-
stance, every introductory functional analysis textbook uses AC to prove the Hahn-
Banach Theorem. That theorem is used in many textbooks to prove (�∞)∗ � �1, but
no examples of members of (�∞)∗ \ �1 are given. It turns out that the examples are
omitted because they must be omitted. By this we do not mean merely that no one
has found an example yet. Rather, it is impossible for an explicit example to be con-
structed; see [9] for outline of a proof. That fact may be surprising because �∞ and �1

seem fairly concrete, but it is less surprising when we note that the definition of (�∞)∗
is more abstract. Some textbooks do not point out the lack of examples, but I think we
should mention it to our students; the student who cannot visualize some object will
be reassured upon hearing that no one else can visualize it either.

The newcomer to constructivism should not simply discard all nonconstructive the-
orems. Many of those theorems can be replaced by constructive variants. For instance,
constructive variants of the Hahn-Banach Theorem are known for uniformly convex
spaces [5] and for separable spaces [1]. Adding a separability hypothesis increases
the theorem’s complexity but does not greatly reduce its applicability, because a real-
world application ultimately must rely on only finitely many measurements. Applied
mathematics is sometimes performed in a nonseparable space such as �∞ or L∞, but
that may be just for simplicity of notation. The relevant portion may be some separable
subspace, which we may be able to identify with sufficient effort.

Newcomers to constructivism must reconsider even the most elementary facts about
even the most familiar objects. For instance, the Trichotomy Law of classical analysis
states that for any real numbers r and s,

r < s or r = s or r > s.

But this law is not a part of constructive mathematics, because there is no algorithm
with the property that

if we are given constructive descriptions of two real numbers r and s, the algorithm determines
whether one number is larger than the other;

see [1] or [2]. However, for most applications the Trichotomy Law can be replaced by
the following principle, which can be proved constructively:

If r, u, v ∈ R with u < v, then r > u or r < v.

3. DIFFERENT LOGIC. We begin this section with an old example, but some of
our comments on it are new. We wish to prove:

Theorem A. There exist positive, irrational numbers a and b such that ab is rational.

Here is a quick, easy proof:

• If
√

2
√

2
is rational, use a = b = √

2.

• If
√

2
√

2
is irrational, use a = √

2
√

2
and b = √

2; then ab = 2.
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This argument would convince most mathematicians that suitable numbers a and b
“exist”, but we haven’t found a, so this proof is nonconstructive. (We have found b,
but some constructivists would say that we still haven’t constructed b, because we
don’t know which of the two cases holds. The words “find” and “construct” are often,
but not always, used interchangeably.)

On the other hand, the same computations yield this constructive result:

Theorem B. If we can constructively establish either of the statements “
√

2
√

2
is ra-

tional” or “
√

2
√

2
is irrational”, then we can construct positive irrational numbers a

and b such that ab is rational.

Some theorems are inherently nonconstructive; for instance, (�∞)∗ � �1 cannot be
given a constructive proof. For other theorems, however, a nonconstructive proof can
be replaced by a constructive proof. For instance, here are two constructive proofs of
our Theorem A:

• It is easy to show that a = √
2 and b = log2 9 are both irrational, and ab = 3.

• A long and complicated proof yields the Gel’fond-Schneider Theorem [10]: if q and
r are algebraic numbers, q /∈ {0, 1}, and r is irrational, then qr is transcendental. In

particular,
√

2
√

2
is irrational.

Our first, nonconstructive proof of Theorem A was based on the Law of the Ex-
cluded Middle (LEM), which states “P or not-P” for every proposition P . That prin-
ciple is a tautology of classical logic, but not of the logic of constructivism. But how
can there be different logics? Isn’t logic just common sense? A formalist answer is that
we’ve simply decided to use a different set of axioms for our logic. A more intuitive
answer is that in classical logic, variables such as P represent statements that are true
or false in some formal sense. In the logic of constructivism, the variables represent
procedures (e.g., constructions or proofs) that we can carry out. The computational
rules for combining procedures are similar to, but not identical to, the computational
rules for combining statements.

Symbolic logic is of interest to logicians, but it is seldom of interest to other, “ordi-
nary” mathematicians, e.g., analysts or topologists. Their prose reasoning is adequate
and even preferable for their needs. This is just as true in constructive mathematics;
for instance, formal logic is barely mentioned in Bishop’s book on constructive anal-
ysis [1]. However, a mainstream mathematician who wishes to learn constructivism
may find it helpful to study the underlying formal logic, in order to become more
consciously aware of the occurrences of LEM and other nonconstructive forms of rea-
soning.

The symbolic logic of constructivism was codified by Heyting and Kolmogorov,
who named it intuitionistic logic because of its origins in Brouwer’s intuitionist phi-
losophy. (My explanation would be simpler if the logic of constructivism were known
as “constructive logic”, but that name has been given to a somewhat different, and
more complicated, kind of logic; see [6].) An introduction to intuitionistic logic can
be found in [3] and [4]. Its theorems are a proper subset of the theorems of classical
logic. For instance, the formulas

P ∨ ¬P, (¬¬P) → P,
(¬∀x Q(x)

) ↔ (∃x ¬Q(x)
)

are theorems of classical logic but not of intuitionistic logic.
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4. DIFFERENT VOCABULARY. The newcomer to constructivism must learn new
words, because the constructivist sees distinctions overlooked by the classicist. Anal-
ogously, eskimos and skiers have distinct words for several different kinds of snow;
to the rest of us, snow is just snow. For instance, for two real numbers a and b, some
constructivists distinguish between

• inequality (a �= b)—we would obtain a contradiction by assuming a = b; and
• apartness (a # b)—we can construct a positive integer k such that |a − b| > 1/k.

Old words must be relearned, because the constructivist viewpoint adds new re-
quirements to many notions. For instance, suppose S is a set of real numbers, and r
is a real number. To show constructively that r = inf(S), we must prove that r ≤ s
for every s ∈ S, and we must also construct numbers s1, s2, s3, . . . ∈ S satisfying
r > sk − 1/k. It is not enough merely to show the classical “existence” of some sk’s
with that property.

Perhaps the most difficult adjustment for the new constructivist is in the use of the
word “or”. Its usage changes because the context is changed. What a constructivist
means by “P or Q” usually is very close to what a classicist would mean by the longer
statement

I can prove at least one of the two statements P, Q, and I know which one.

But if you already know which one, why do you bother to mention the other one at all?
Well, in many applications the phrase “P or Q” is a hypothesis in some longer state-
ment, so we don’t really “know which one” yet. The following Theorem B ′ illustrates
this situation.

In a book or paper written by constructivists for constructivists, certain abbrevia-
tions become appropriate. In that context, the phrases “we can establish” and “we are
able to construct” are always understood and need not be mentioned. Hence Theorem
B, stated earlier in this paper, can be stated more briefly as:

Theorem B′. If
√

2
√

2
is rational or

√
2

√
2

is irrational, then there are positive irra-
tional numbers a and b such that ab is rational.

Theorem B′ may bewilder mathematicians who are unfamiliar with constructivism,
because they see its hypothesis as trivially true (by LEM), and therefore superfluous.
See [7] for further use of “or” in this fashion.

5. CONCLUSION. Learning constructivism involves not only learning new con-
cepts, but also unlearning old habits and preconceptions. Thus, constructivism may be
absorbed more easily by younger mathematicians. We should introduce our students
to it.
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