
CLASSICAL AND NONCLASSICAL LOGICS

. CLASSICAL AND NONCLASSICAL LOGICS

Introduction

Classical logic

Multivalued logics

Relevant logics

Constructive logic

AXIOM SYSTEMS

1 / 35

an overview of my book and my course

by Eric Schechter
Vanderbilt University

If you have difficulty reading this
sentence, please move closer to the
screen before the talk begins.

Version of March 3, 2006. If you’ve
downloaded the PDF file, press the

[space key] to advance to the next display.



Introduction

CLASSICAL AND NONCLASSICAL LOGICS

. Introduction

Who should take a course in logic?

Logics considered in this talk

We all use many different logics every day

(A slide for teachers) Pedagogical advantages of pluralism

Classical logic

Multivalued logics

Relevant logics

Constructive logic

AXIOM SYSTEMS

2 / 35



Who should take a course in logic?

3 / 35

Logic is how we prove things.



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?

No, actually I wouldn’t recommend it for that. And not every mathematician
needs to take a course in logic. Don’t confuse theory with practice.



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?

No, actually I wouldn’t recommend it for that. And not every mathematician
needs to take a course in logic. Don’t confuse theory with practice.

analogy practice (how to do it) theory (why it works)



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?

No, actually I wouldn’t recommend it for that. And not every mathematician
needs to take a course in logic. Don’t confuse theory with practice.

analogy practice (how to do it) theory (why it works)

cars driving lessons auto mechanics



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?

No, actually I wouldn’t recommend it for that. And not every mathematician
needs to take a course in logic. Don’t confuse theory with practice.

analogy practice (how to do it) theory (why it works)

cars driving lessons auto mechanics

pastry cookbooks organic chemistry



Who should take a course in logic?

3 / 35

Logic is how we prove things. Some teachers ask me,

Is this the course our department should use for our bridge course,
our transition to higher math course, our how to do proofs course?

No, actually I wouldn’t recommend it for that. And not every mathematician
needs to take a course in logic. Don’t confuse theory with practice.

analogy practice (how to do it) theory (why it works)
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crystal
6 sets

basic

Different logics
have different
sets of truths,
computed using
different maths.

I’ll begin with evaluations (semantics),

and end with axiomatizations (syntactics). •
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Classical logic works well for mathematical proofs, but it does not
describe how we reason about most nonmathematical matters.

“I will wear a tie tomorrow” or “I will not wear a tie tomorrow.”

Classical logic says one of those is already true. So is my free will
just an illusion? We need a logic that can say maybe.

“There’s an 80% chance of rain this afternoon.”

That’s meaningful information; we plan activities around it. But
that requires a quantitative logic.

“If pigs have wings, then it’s raining right now in Pittsburgh”

— true for a classical logician, but nonsense for anyone else. Our
thoughts are closer to relevant logic. •
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� Everyday thought is a mixture of many logics. Classical, introduced by
itself, seems unnatural and arbitrary.

� Any abstract idea (e.g., completeness) needs several examples; one
example (e.g., classical) is hardly enough.

� Reasoning requires questioning, not just memorizing. We must teach
doubt. That’s easier if we have multiple possibilities. For instance, to see
the significance of (¬¬P ) → P , it helps to ask “what happens in logics
where (¬¬P ) → P isn’t always true?”

� In the classical-only course, true/false tables are too easy, reducing proofs
to mere ritual. An omitted step will hardly be noticed if the student
already knows that the conclusion is true. (Analogously, in Euclidean-only
geometry, pictures demonstrate isolated facts.) •
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inputs not or and implies
p q ¬ p p ∨ q p ∧ q p → q 0 = false

0 0 1 0 0 1 1 = true
0 1 1 1 0 1
1 0 0 1 0 0
1 1 0 1 1 1

1 − p max{p, q} min{p, q} min{1, 1 − p + q} •
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p q ¬ p p ∨ q p ∧ q p → q

0 0 1 0 0 1
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1/2 1/2 1/2 1/2 1/2 1

1/2 1 1/2 1 1/2 1
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1 1/2 0 1 1/2 1/2

1 1 0 1 1 1

or more simply

¬ p = 1−p,
p ∨ q = max{p, q},
p ∧ q = min{p, q},

p → q = min{1, 1 − p + q}.

Note that ¬ 1
2 = 1

2 . •
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¬ p = 1−p,
p ∨ q = max{p, q},
p ∧ q = min{p, q},

p → q = min{1, 1 − p + q}

Use those same formulas, but

instead of 0, 1
2 , 1, use

1 = the only true value,
[0, 1) = false values.

That’s fuzzy logic. For instance, [[it will rain today]] = 0.8.

Don’t confuse these:

� Fuzzy thinking means imprecise thinking. That’s bad.

� Fuzzy logic means precise thinking about imprecise data. That’s good. It
is used in designing thermostats, clothesdriers, car cruise controls, etc. •
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(*) “Consider two people who differ in height by 1/4 inch. If one of those
people is very tall, then the other person is also very tall.”

I’ll show that implication (*) is mostly true, but not completely true.

Suppose I have 101 students, numbered 0 through 100, and the ith student
has height 78 − i

4 inches. (These numbers are admittedly contrived.)
Let pi = “the ith student is very tall.” Then (*) says pi−1 → pi.

The 0th student is 61
2 feet tall, so p0 is absolutely true. Thus [[p0]] = 1.

The 100th student is 41
2 feet tall, so p100 is absolutely false, and [[p100]] = 0.

Interpolating, it seems reasonable to assign [[pi]] = 1 − i
100 .

(continued next slide) •
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Then our rule p → q = min{1, 1 − p + q} yields [[pi−1 → pi]] = 0.99, so
the implication pi−1 → pi is mostly true.

If pi−1 → pi were completely true, then using [[p0]] = 1 and induction we
could prove [[p100]] = 1. But that’s wrong. Thus, in fuzzy logic we don’t get
free repetitions of arguments, unlike in classical logic.

In classical logic, if assuming A twice yields B, then assuming A once also
yields B. That’s the idea of the contraction formula:

(A → (A → B)) → (A → B).

But contraction fails in fuzzy logic, e.g. when [[A]] = 1/2 and [[B]] = 0. More
about that later. •
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Suppose that “the coffee is hotter than the punch”
is more true than “the tea is hotter than the punch.”

Then the coffee is hotter than the tea.

That sounds reasonable. But it translates to
[
(p → t) → (p → c)

]
→ (t → c),

which can fail in classical logic — e.g., when [[t]] = 1 and [[c]] = [[p]] = 0.

Classical logic can’t make sense out of “more true.” In classical logic, either a
statement is true, or it isn’t.

For comparisons, we need a different logic. . . . •
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� Here “comparison”
[
(p → t) → (p → c)

]
→ (t → c) is always true.

� Some irrelevancies are ruled out. For instance, neither p → (q ∨ ¬q) nor
(p ∧ ¬p) → q is an always-true formula.

� On the other hand, this logic affirms some irrelevancies. For instance,
“unrelated extremes” (p ∧ ¬p) → (q ∨ ¬q) is always true in this logic.

Note: A few slides from now I’ll use the fact that, in this logic,

¬ 0 = 0 ∧ 0 = 0 ∨ 0 = 0 → 0 = 0. •
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� (p ∧ ¬p) → q (“explosion”)
� (p ∧ ¬p) → (q ∨ ¬q) (“unrelated extremes”)

— all classically true, but the hypothesis and conclusion are unrelated,
which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that

� they are permitted to make such tasteless statements, but
� they voluntarily refrain from doing so; they exercise good taste.

They’re practicing relevant logic without realizing it!

One logic with particularly strong relevance properties is crystal logic . . . •
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∅ is false; the other
five sets are true

the inclusions yield
a nonlinear order

∧ is ∩, ∨ is ∪

flip for negation
S Ω τ λ ρ β ∅

¬S ∅ β λ ρ τ Ω

“implies” is on next slide

Note that λ ∨ λ = λ ∧ λ = λ → λ = ¬λ = λ
and ρ ∨ ρ = ρ ∧ ρ = ρ → ρ = ¬ρ = ρ. •
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¬S if T = τ ,
S if (S, T ) is (λ, λ) or (ρ, ρ).

Admittedly, contrived and complicated. But crystal logic

• includes my “basic logic” (discussed later), so it’s not bizarre; and
• prevents irrelevant implications — for instance, (p ∧ ¬p) → (q ∨ ¬q) is

not always true. More generally . . . •
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(1) In classical logic, A → B is tautological if and only if
at least one of B or ¬A is tautological, as in
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(2) In comparative logic, A → B is a tautology if and only if
both B and ¬A are tautologies, as in “unrelated extremes”

(p ∧ ¬p)
︸ ︷︷ ︸

A

→ (q ∨ ¬q)
︸ ︷︷ ︸

B

.

(3) In crystal logic, A → B cannot be a tautology.

I’ll prove part of (2). (Its other parts and (1) and (3) are proved similarly.) •
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In comparative logic (i.e., with subtraction for implication), if A and B share
no variables and B is not a tautology, then A → B is not a tautology.

Proof.

� Since B is not a tautology, there is some assignment of values to the
variables appearing in B that makes B false — i.e., that makes [[B]] < 0.

� Since A and B share no variables, we are still free to choose values for all
the variables appearing in A. Give them all the value 0.

� Then [[A]] = 0, since 0 ∨ 0 = 0 ∧ 0 = 0 → 0 = ¬ 0 = 0.

� Then [[A→B]] = [[B]] − [[A]] < 0. So A→B isn’t always true. •
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If the earth is flat then today is Friday.

We see irrelevance here because we have background information: We know

something about the earth and something about the week, and we know
they’re unrelated.

But in math we have less background information. For instance:

Theorem. Let X be a Banach space. Then (i) every lower
semicontinuous seminorm on X is continuous if and only if
(ii) every weak-star bounded subset of the dual space X∗

is also norm-bounded.

Even to someone who speaks this language, and is familiar with conditions (i)
and (ii), it is not obvious that there is any relation between those conditions.
In fact, that relation is the whole point of the theorem. •
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There exist positive irrational numbers a and b such that ab is rational.

Jarden’s Proof. Consider the number j =
√

2
√

2
.

• If j is rational, use a = b =
√

2, and we’re done.

• If j is irrational, use a = j and b =
√

2. Then a and b are irrational, and a
brief computation shows ab = 2 = rational. 2

So a and b exist. But we still don’t know what they are! •

Prerequisites.

Definition. A number is rational if it can be written as the ratio of two
integers (like 37/5); otherwise it is irrational.

Lemma 1.
√

2 is irrational. Lemma 2. (pq)r = p(qr).
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Classical philosophy

� Math is a collection of statements, e.g., “there exist a and b such that. . . ”
� An existence proof does not need to be accompanied by a construction.
� Jarden’s proof is acceptable.

Constructive philosophy

� Math is a collection of procedures — “we can find a and b such that. . . ”
� A mathematical object is meaningless unless we have a method for

producing that object.
� Jarden’s proof is unacceptable.

But it’s just his proof that is nonconstructive. His theorem can be made constructive
via other proofs — for instance, use Gelfond-Schneider theorem to prove that j is
irrational, or more simply just take a =

√
2 and b = log2 9.

On the other hand, some mathematical results (such as the Axiom of Choice) are
inherently nonconstructive, and rejected altogether by constructivists. •
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� Jarden applied it with P = “
√

2
√

2
is rational.”

� It’s tautologous in two-valued logic, so it’s fine for true/false statements.

� But it cannot be relied upon as a recipe in constructions. Sometimes
there is a task P that we don’t know how to carry out, and we don’t
know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that

The Twin Prime Conjecture is true or it is false.

But we don’t know which, and perhaps we never will. Consequently, some
constructivists might say that it is neither “true” or “false” — like the
statement

Luke Skywalker’s favorite color is red. •
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� An open interval is any set of the form (a, b) = {x ∈ R : a < x < b}.
� An open set (in R) is any union of open intervals.
� The interior of any set S is the largest open set contained in S.

Equivalently, int(S) is the union of all the open intervals contained in S.

Semantics for constructive logic:

R is the only true value. All other open subsets of R are false values.

∧ is ∩, ∨ is ∪, ¬S = int
(

R \ S
)

, S→T = int
(

T ∪ (R \ S)
)

.

P ∨ ¬P is false (for instance) when [[P ]] = (0, 1) ∪ (1, 2). •
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Assumptions: {A, A → B} ` B “detachment”
` C → (D → C) “positive paradox”

` [E → (F → G)] → [(E → F ) → (E → G)] “self-distribution”

Theorem: ` X → X (“identity”).

Proof of theorem:

But wait! Why do we need to prove X → X? Isn’t it obviously true?

Only if we assume that the symbol “→ ” has some meaning close
to the usual meaning of “implies.” But we don’t want to assume
that. In axiomatic logic, we start with no meaning at all for
symbols such as “→ ”; they’re just symbols. They obtain only the
meanings given to them by our axioms.
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Assumptions: {A, A → B} ` B “detachment”
` C → (D → C) “positive paradox”

` [E → (F → G)] → [(E → F ) → (E → G)] “self-distribution”

Theorem: ` X → X (“identity”).

But wait2! Why do we assume the complicated formula “self-distribution”
and prove the simple formula “identity”? Wouldn’t it make more sense to go
the other way?

Many choices of axioms are possible; we’ll discuss those soon. But
some choices work better than others. For instance, we find that

{detachment, positive paradox, self-dist.} ⇒ identity, but
{detachment, positive paradox, identity} 6⇒ self-dist.
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Assumptions: {A, A → B} ` B “detachment”
` C → (D → C) “positive paradox”

` [E → (F → G)] → [(E → F ) → (E → G)] “self-distribution”

Theorem: ` X → X (“identity”).

Proof of theorem:

# formula justification

(1) X → (X → X) positive paradox with C = D = X

(2) X → [(X → X) → X] pos.pdx. with C = X, D = X→X

(3) {X → [(X → X) → X]} → self-distribution with
{[X→(X→X)]→(X→X)} E = G = X, F = X → X

(4) [X→(X→X)]→(X→X) detach. with A = (2), A→B = (3)

(5) X → X detach. with A = (1), A→B = (4) •
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“Basic” logic. This is the
uncontroversial, “vanilla”
part. Most logics satisfy
these axioms. They are nu-
merous, but each is fairly
simple by itself.

A → (B → A) positive paradox
[A→(A→B)]→(A→B) contraction

(¬¬A) → A double negation







Non-basic axioms. Add
just some of these spices to
get nonclassical logics.

A book on just classical logic uses a shorter list of stronger axioms. •
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Evaluations (semantics) Axioms (syntactics)

The concrete approach. Formulas
are evaluated independently of one
another. They take values (or
“meanings”) in {0, 1}, [0, 1], Z, or
some other set. An always-true

formula is called a tautology.

The abstract approach. We study
which formulas generate which
other formulas, without regard to
what they might “mean.” A
formula that can be proved from

the axioms is called a theorem.

A completeness pairing is a matching of some evaluation system with some
axiom system, such that

{tautologies} = {theorems}, hence

every statement has an abstract proof or a concrete counterexample.

But such pairings are hard to find, and harder to prove. •
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name values: axioms: basic, plus . . .

classical {0, 1} positive paradox, double negation, contraction

 Lukasiewicz {0, 1
2 , 1}

positive paradox, double negation,
((A→B)→B)→(A∨B), and
(A→(A→¬A))→(A→¬A),

fuzzy [0, 1]
positive paradox, double negation, and
((A → B) → B) → (A ∨ B)

comparative integers
((A→B)→B)→A,
(A→A) ↔ ¬(A→A)

crystal 6 sets
contraction, double negation, A ∨ (A → B),
and ((¬A)∧B) → (((¬A) → A)∨ (A → B))

constructive open sets positive paradox, contraction, and explosion
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name values: axioms: basic, plus . . .

classical {0, 1} positive paradox, double negation, contraction
√

 Lukasiewicz {0, 1
2 , 1}

positive paradox, double negation,
((A→B)→B)→(A∨B), and
(A→(A→¬A))→(A→¬A),

√

fuzzy [0, 1]
positive paradox, double negation, and
((A → B) → B) → (A ∨ B)

h

comparative integers
((A→B)→B)→A,
(A→A) ↔ ¬(A→A)

h

crystal 6 sets
contraction, double negation, A ∨ (A → B),
and ((¬A)∧B) → (((¬A) → A)∨ (A → B))

h

constructive open sets positive paradox, contraction, and explosion
√

√
= proved in my book; h = too hard to prove in my book. �
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