CLASSICAL AND NONCLASSICAL LOGICS

\triangleright CLASSICAL AND NONCLASSICAL LOGICS
Introduction
Classical logic
Multivalued logics
Relevant logics
Constructive logic
an overview of my book and my course
by Eric Schechter
Vanderbilt University

If you have difficulty reading this sentence, please move closer to the screen before the talk begins.

Version of March 3, 2006. If you've
downloaded the PDF file, press the
[space key] to advance to the next display.

CLASSICAL AND NONCLASSICAL LOGICS
D Introduction
Who should take a course in logic?
Logics considered in this talk
We all use many different logics every day
(A slide for teachers) Pedagogical advantages of pluralism
Classical logic
Multivalued logics
Relevant logics
Constructive logic
AXIOM SYSTEMS

Introduction

Who should take a course in logic?

Logic is how we prove things.

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

No, actually I wouldn't recommend it for that. And not every mathematician needs to take a course in logic. Don't confuse theory with practice.

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

No, actually I wouldn't recommend it for that. And not every mathematician needs to take a course in logic. Don't confuse theory with practice.

analogy	practice (how to do it)	theory (why it works)

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

No, actually I wouldn't recommend it for that. And not every mathematician needs to take a course in logic. Don't confuse theory with practice.

analogy	practice (how to do it)	theory (why it works)
cars	driving lessons	auto mechanics

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

No, actually I wouldn't recommend it for that. And not every mathematician needs to take a course in logic. Don't confuse theory with practice.

analogy	practice (how to do it)	theory (why it works)
cars	driving lessons	auto mechanics
pastry	cookbooks	organic chemistry

Who should take a course in logic?

Logic is how we prove things. Some teachers ask me,
Is this the course our department should use for our bridge course, our transition to higher math course, our how to do proofs course?

No, actually I wouldn't recommend it for that. And not every mathematician needs to take a course in logic. Don't confuse theory with practice.

analogy	practice (how to do it)	theory (why it works)
cars	driving lessons	auto mechanics
pastry	cookbooks	organic chemistry
proofs	other math courses	a course in logic

Logics considered in this talk

Most introductions to logic still cover only classical (early 20th century)

Logics considered in this talk
\(\left.$$
\begin{array}{cc} & \text { classical } \\
& \\
\text { crystal } & \\
& \text { fuzzy }\end{array}
$$ \begin{array}{l}still cover only classical

(early 20th century), but my

book and a few others look\end{array}\right\}\)| at some later logics too. |
| :--- |

constructive

Logics considered in this talk

Most introductions to logic still cover only classical (early 20th century), but my book and a few others look at some later logics too.

Different logics have different sets of truths

Logics considered in this talk

comparative
integers

Most introductions to logic still cover only classical (early 20th century), but my book and a few others look at some later logics too.

Different logics have different sets of truths, computed using different maths.

I'll begin with evaluations (semantics),

Logics considered in this talk

comparative

integers

Most introductions to logic still cover only classical (early 20th century), but my book and a few others look at some later logics too.

Different logics have different sets of truths, computed using different maths.

I'll begin with evaluations (semantics), and end with axiomatizations (syntactics).

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.
"I will wear a tie tomorrow" or "I will not wear a tie tomorrow."

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.
"I will wear a tie tomorrow" or "I will not wear a tie tomorrow."
Classical logic says one of those is already true. So is my free will just an illusion? We need a logic that can say maybe.

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.
"I will wear a tie tomorrow" or "I will not wear a tie tomorrow."
Classical logic says one of those is already true. So is my free will just an illusion? We need a logic that can say maybe.
"There's an 80% chance of rain this afternoon."
That's meaningful information; we plan activities around it. But that requires a quantitative logic.

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.
"I will wear a tie tomorrow" or "I will not wear a tie tomorrow."
Classical logic says one of those is already true. So is my free will just an illusion? We need a logic that can say maybe.
"There's an 80% chance of rain this afternoon."
That's meaningful information; we plan activities around it. But that requires a quantitative logic.
"If pigs have wings, then it's raining right now in Pittsburgh"

We all use many different logics every day

Classical logic works well for mathematical proofs, but it does not describe how we reason about most nonmathematical matters.
"I will wear a tie tomorrow" or "I will not wear a tie tomorrow."
Classical logic says one of those is already true. So is my free will just an illusion? We need a logic that can say maybe.
"There's an 80% chance of rain this afternoon."
That's meaningful information; we plan activities around it. But that requires a quantitative logic.
"If pigs have wings, then it's raining right now in Pittsburgh"

- true for a classical logician, but nonsense for anyone else. Our thoughts are closer to relevant logic.
(A slide for teachers) Pedagogical advantages of pluralism

(A slide for teachers) Pedagogical advantages of pluralism

Everyday thought is a mixture of many logics. Classical, introduced by itself, seems unnatural and arbitrary.

(A slide for teachers) Pedagogical advantages of pluralism

$\square \quad$ Everyday thought is a mixture of many logics. Classical, introduced by itself, seems unnatural and arbitrary.
\square Any abstract idea (e.g., completeness) needs several examples; one example (e.g., classical) is hardly enough.

(A slide for teachers) Pedagogical advantages of pluralism

\square Everyday thought is a mixture of many logics. Classical, introduced by itself, seems unnatural and arbitrary.
\square Any abstract idea (e.g., completeness) needs several examples; one example (e.g., classical) is hardly enough.
$\square \quad$ Reasoning requires questioning, not just memorizing. We must teach doubt. That's easier if we have multiple possibilities. For instance, to see the significance of $(\neg \neg P) \rightarrow P$, it helps to ask "what happens in logics where $(\neg \neg P) \rightarrow P$ isn't always true?"

(A slide for teachers) Pedagogical advantages of pluralism

$\square \quad$ Everyday thought is a mixture of many logics. Classical, introduced by itself, seems unnatural and arbitrary.
\square Any abstract idea (e.g., completeness) needs several examples; one example (e.g., classical) is hardly enough.
$\square \quad$ Reasoning requires questioning, not just memorizing. We must teach doubt. That's easier if we have multiple possibilities. For instance, to see the significance of $(\neg \neg P) \rightarrow P$, it helps to ask "what happens in logics where $(\neg \neg P) \rightarrow P$ isn't always true?"
$\square \quad$ In the classical-only course, true/false tables are too easy, reducing proofs to mere ritual. An omitted step will hardly be noticed if the student already knows that the conclusion is true. (Analogously, in Euclidean-only geometry, pictures demonstrate isolated facts.)

CLASSICAL AND NONCLASSICAL LOGICS

Introduction

\triangleright Classical logic
Two-valued logic
Using math to study logic
Multivalued logics
Relevant logics
Constructive logic
AXIOM SYSTEMS

Classical logic

Two-valued logic

Two-valued logic

Two-valued logic

Two-valued logic

$\begin{aligned} & \text { inputs } \\ & p \quad q \end{aligned}$	$\\| \begin{aligned} & \text { not } \\ & \neg p \end{aligned}$	$\begin{gathered} \text { or } \\ p \vee q \end{gathered}$	$\left.\begin{array}{\|c\|} \text { and } \\ p \wedge q \end{array} \right\rvert\,$	exclu. middle $q \vee \neg q$	$\left\lvert\, \begin{aligned} & \text { contra- } \\ & \text { diction } \\ & p \wedge \neg p \end{aligned}\right.$			
F F	T	F	F	T	F			
	T	T	F	T	F			
	F	T	F	T	F			
	F	T	T	T	F			

Two-valued logic

$\begin{array}{cc} \text { inputs } \\ p & q \end{array}$	$\left\lvert\, \begin{aligned} & \text { not } \\ & \neg p \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { or } \\ p \vee q \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { and } \\ & p \wedge q \end{aligned}\right.$	$\begin{aligned} & \text { imply } \\ & p \rightarrow q \end{aligned}$				
F F	T	F	F	T				
F T	T	T	F	T				
T F	F	T	F	F				
T T	F	T	T	T				

Two-valued logic

Two-valued logic

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true.

Two-valued logic

inputs	not	or	and	imply					
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$				
\mathbf{F}	\mathbf{F}	T	F	F	\mathbf{T}				
F	\mathbf{T}	T	T	F	\mathbf{T}				
T	F	F	T	F	F				
T	T	F	T	T	T				

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true. If pigs have wings then it is now raining in Pittsburgh.

Two-valued logic

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true.
If pigs have wings then it is now raining in Pittsburgh.
$(p \wedge \neg p) \rightarrow q \quad$ (Releventists call this "explosion")

Two-valued logic

inputs	not	or	and	imply					
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$				
F	F	T	F	F	T				
F	\mathbf{T}	T	T	F	\mathbf{T}				
T	F	F	T	F	F				
T	\mathbf{T}	F	T	T	\mathbf{T}				

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true.
If pigs have wings then it is now raining in Pittsburgh.
$(p \wedge \neg p) \rightarrow q \quad$ (Releventists call this "explosion")
Anything implies a truth - i.e., if q is true then $p \rightarrow q$ is true.

Two-valued logic

inputs	not	or	and	imply						
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$					
F	F	T	F	F	T					
F	\mathbf{T}	T	T	F	\mathbf{T}					
T	F	F	T	F	F					
\mathbf{T}	\mathbf{T}	F	T	T	\mathbf{T}					

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true.
If pigs have wings then it is now raining in Pittsburgh.
$(p \wedge \neg p) \rightarrow q \quad$ (Releventists call this "explosion")
Anything implies a truth - i.e., if q is true then $p \rightarrow q$ is true.
If the Yankees win the pennant next year then $1+1=2$.

Two-valued logic

inputs $p \quad q$	$\begin{aligned} & \mathrm{not} \\ & \neg p \end{aligned}$	$\begin{gathered} \text { or } \\ p \vee q \end{gathered}$	$\begin{aligned} & \text { and } \\ & p \wedge q \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { imply } \\ & p \rightarrow q\end{aligned}\right.$	exclu. middle $q \vee \neg q$			superfluous hypothesis $p \rightarrow(q \vee \neg q)$	$\begin{gathered} \text { positive } \\ \text { paradox } \\ q \rightarrow(p \rightarrow q) \end{gathered}$
F F	T	F	F	T	T			T	T
F T	T	T	F	T	T			T	T
T F	F	T	F	F	T			T	T
	F	T	T	T	T			T	T

A falsehood implies anything - i.e., if p is false then $p \rightarrow q$ is true.
If pigs have wings then it is now raining in Pittsburgh.
$(p \wedge \neg p) \rightarrow q \quad$ (Releventists call this "explosion")
Anything implies a truth - i.e., if q is true then $p \rightarrow q$ is true.
If the Yankees win the pennant next year then $1+1=2$.
$\begin{array}{ll}p \rightarrow(q \vee \neg q) & \quad \text { ("superfluous hypothesis") } \\ q \rightarrow(p \rightarrow q) & \text { (Releventists call this "positive paradox") }\end{array}$

Two-valued logic

relabeling. . .

Using math to study logic

inputs		not	or	and	implies	
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	$0=$ false
0	0	1	0	0	1	$1=$ true
0	1	1	1	0	1	
1	0	0	1	0	0	
1	1	0	1	1	1	

Using math to study logic

inputs		not	or	and	implies	$0=$ false
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	0

Using math to study logic

inputs		not	or	and	implies	$0=$ false
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	
0	0	1	0	0	1	$1=$ true
0	1	1	1	0	1	
1	0	0	1	0	0	
1	1	0	1	1	1	
		$1-p \max \{p, q\}$				

Using math to study logic

inputs	not	or	and	implies	$0=$ false	
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	
0	0	1	0	0	1	$1=$ true
0	1	1	1	0	1	
1	0	0	1	0	0	
1	1	0	1	1	1	
		$1-p \max \{p, q\}$	$\min \{p, q\}$			

Using math to study logic

inputs			not	or	and	implies
p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	$0=$ false
0	0	1	0	0	1	$1=$ true
0	1	1	1	0	1	
1	0	0	1	0	0	
1	1	0	1	1	1	
		$1-p$	$\max \{p, q\}$	$\min \{p, q\}$	$\min \{1,1-p+q\}$	

CLASSICAL AND NONCLASSICAL LOGICS

Introduction

Classical logic

D Multivalued logics
Łukasiewicz's 3-valued logic
Fuzzy logic: infinitely many values
Example of $p \rightarrow q=\min \{1,1-p+q\}$
Tall people continued
Relevant logics

Multivalued logics

Constructive logic

```
AXIOM SYSTEMS
```


Łukasiewicz's 3-valued logic

$$
0=\text { false }, \quad 1 / 2=\text { maybe }, \quad 1=\text { true. } \quad(\text { Maybe I'll wear a tie tomorrow. })
$$

Łukasiewicz's 3-valued logic

$0=$ false,$\quad 1 / 2=$ maybe, $\quad 1=$ true. (Maybe I'll wear a tie tomorrow.)

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$
0	0	1	0	0	1
0	$1 / 2$	1	$1 / 2$	0	1
0	1	1	1	0	1
$1 / 2$	0	$1 / 2$	$1 / 2$	0	$1 / 2$
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1
$1 / 2$	1	$1 / 2$	1	$1 / 2$	1
1	0	0	1	0	0
1	$1 / 2$	0	1	$1 / 2$	$1 / 2$
1	1	0	1	1	1

Łukasiewicz's 3-valued logic

$0=$ false,$\quad 1 / 2=$ maybe, $\quad 1=$ true. (Maybe I'll wear a tie tomorrow.)

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	
0	0	1	0	0	1	or more simply
0	$1 / 2$	1	$1 / 2$	0	1	
0	1	1	1	0	1	$\neg p=1-p$,
$1 / 2$	0	$1 / 2$	$1 / 2$	0	$1 / 2$	$p \vee q=\max \{p, q\}$,
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$p \wedge q=\min \{p, q\}$,
$1 / 2$	1	$1 / 2$	1	$1 / 2$	1	
1	0	0	1	0	0	
1	$1 / 2$	0	1	$1 / 2$	$1 / 2$	
1	1	0	1	1	1	

Łukasiewicz's 3-valued logic

$0=$ false,$\quad 1 / 2=$ maybe, $\quad 1=$ true. (Maybe I'll wear a tie tomorrow.)

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	
0	0	1	0	0	1	or more simply
0	$1 / 2$	1	$1 / 2$	0	1	
0	1	1	1	0	1	$\neg p=1-p$,
$1 / 2$	0	$1 / 2$	$1 / 2$	0	$1 / 2$	$p \vee q=\max \{p, q\}$,
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$p \wedge q=\min \{p, q\}$,
$1 / 2$	1	$1 / 2$	1	$1 / 2$	1	
1	0	0	1	0	0	Note that $\neg \frac{1}{2}=\frac{1}{2}$.
1	$1 / 2$	0	1	$1 / 2$	$1 / 2$	
1	1	0	1	1	1	

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$,

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$, use
$1=$ the only true value,
$[0,1)=$ false values.

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$, use

1 = the only true value,
$[0,1)=$ false values.

That's fuzzy logic.

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$, use
$1=$ the only true value,
$[0,1)=$ false values.

That's fuzzy logic. For instance, $\llbracket i t$ will rain today $\rrbracket=0.8$.

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$, use
$1=$ the only true value,
$[0,1)=$ false values.

That's fuzzy logic. For instance, $\llbracket i t$ will rain today $=0.8$.

Don't confuse these:
\square Fuzzy thinking means imprecise thinking. That's bad.
\square Fuzzy logic means precise thinking about imprecise data. That's good.

Fuzzy logic: infinitely many values

$$
\begin{aligned}
\neg p & =1-p, \\
p \vee q & =\max \{p, q\}, \\
p \wedge q & =\min \{p, q\}, \\
p \rightarrow q & =\min \{1,1-p+q\}
\end{aligned}
$$

Use those same formulas, but instead of $0, \frac{1}{2}, 1$, use
$1=$ the only true value,
$[0,1)=$ false values.

That's fuzzy logic. For instance, $\llbracket i t$ will rain today $=0.8$.

Don't confuse these:
\square Fuzzy thinking means imprecise thinking. That's bad.
\square Fuzzy logic means precise thinking about imprecise data. That's good. It is used in designing thermostats, clothesdriers, car cruise controls, etc.

Example of $p \rightarrow q=\min \{1,1-p+q\}$

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches.

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches. (These numbers are admittedly contrived.)

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches. (These numbers are admittedly contrived.) Let $p_{i}=$ "the i th student is very tall." Then (*) says $p_{i-1} \rightarrow p_{i}$.

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches. (These numbers are admittedly contrived.) Let $p_{i}=$ "the i th student is very tall." Then (*) says $p_{i-1} \rightarrow p_{i}$.

The 0th student is $6 \frac{1}{2}$ feet tall, so p_{0} is absolutely true. Thus $\llbracket p_{0} \rrbracket=1$.

Example of $p \rightarrow q=\min \{1,1-p+q\}$

(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches. (These numbers are admittedly contrived.) Let $p_{i}=$ "the i th student is very tall." Then (*) says $p_{i-1} \rightarrow p_{i}$.

The 0th student is $6 \frac{1}{2}$ feet tall, so p_{0} is absolutely true. Thus $\llbracket p_{0} \rrbracket=1$.
The 100 th student is $4 \frac{1}{2}$ feet tall, so p_{100} is absolutely false, and $\llbracket p_{100} \rrbracket=0$.

Example of $p \rightarrow q=\min \{1,1-p+q\}$
(*) "Consider two people who differ in height by $1 / 4$ inch. If one of those people is very tall, then the other person is also very tall."

I'll show that implication $\left(^{*}\right)$ is mostly true, but not completely true.
Suppose I have 101 students, numbered 0 through 100, and the i th student has height $78-\frac{i}{4}$ inches. (These numbers are admittedly contrived.) Let $p_{i}=$ "the i th student is very tall." Then $\left(^{*}\right)$ says $p_{i-1} \rightarrow p_{i}$.

The 0th student is $6 \frac{1}{2}$ feet tall, so p_{0} is absolutely true. Thus $\llbracket p_{0} \rrbracket=1$.
The 100 th student is $4 \frac{1}{2}$ feet tall, so p_{100} is absolutely false, and $\llbracket p_{100} \rrbracket=0$.
Interpolating, it seems reasonable to assign $\llbracket p_{i} \rrbracket=1-\frac{i}{100}$.
(continued next slide)

Tall people continued
Then our rule $p \rightarrow q=\min \{1,1-p+q\}$

Tall people continued

Then our rule $p \rightarrow q=\min \{1,1-p+q\}$ yields $\llbracket p_{i-1} \rightarrow p_{i} \rrbracket=0.99$, so the implication $p_{i-1} \rightarrow p_{i}$ is mostly true.

Tall people continued

Then our rule $p \rightarrow q=\min \{1,1-p+q\}$ yields $\llbracket p_{i-1} \rightarrow p_{i} \rrbracket=0.99$, so the implication $p_{i-1} \rightarrow p_{i}$ is mostly true.

If $p_{i-1} \rightarrow p_{i}$ were completely true, then using $\llbracket p_{0} \rrbracket=1$ and induction we could prove $\llbracket p_{100} \rrbracket=1$. But that's wrong. Thus, in fuzzy logic we don't get free repetitions of arguments, unlike in classical logic.

Tall people continued

Then our rule $p \rightarrow q=\min \{1,1-p+q\}$ yields $\llbracket p_{i-1} \rightarrow p_{i} \rrbracket=0.99$, so the implication $p_{i-1} \rightarrow p_{i}$ is mostly true.

If $p_{i-1} \rightarrow p_{i}$ were completely true, then using $\llbracket p_{0} \rrbracket=1$ and induction we could prove $\llbracket p_{100} \rrbracket=1$. But that's wrong. Thus, in fuzzy logic we don't get free repetitions of arguments, unlike in classical logic.

In classical logic, if assuming A twice yields B, then assuming A once also yields B. That's the idea of the contraction formula:

$$
(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B) .
$$

Tall people continued

Then our rule $p \rightarrow q=\min \{1,1-p+q\}$ yields $\llbracket p_{i-1} \rightarrow p_{i} \rrbracket=0.99$, so the implication $p_{i-1} \rightarrow p_{i}$ is mostly true.

If $p_{i-1} \rightarrow p_{i}$ were completely true, then using $\llbracket p_{0} \rrbracket=1$ and induction we could prove $\llbracket p_{100} \rrbracket=1$. But that's wrong. Thus, in fuzzy logic we don't get free repetitions of arguments, unlike in classical logic.

In classical logic, if assuming A twice yields B, then assuming A once also yields B. That's the idea of the contraction formula:

$$
(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B) .
$$

But contraction fails in fuzzy logic, e.g. when $\llbracket A \rrbracket=1 / 2$ and $\llbracket B \rrbracket=0$. More about that later.

CLASSICAL AND NONCLASSICAL LOGICS
Introduction
Classical logic
Multivalued logics
Relevant logics
Aristotle's comparisons
Comparative logic
Irrelevance: Bad taste in reasoning
Crystal logic: sets for values
Crystal implication — admittedly complicated (skip this
slide?)
Relevance Principles
A relevance proof
WHY classical logic allows irrelevance
Constructive logic
AXIOM SYSTEMS

Relevant logics

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...
$(*) \quad\left\{\begin{array}{l}\text { Suppose that "the coffee is hotter than the punch" }\end{array}\right.$

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...
$(*) \quad\left\{\begin{aligned} \text { Suppose that } \\ \text { is more true than }\end{aligned} \quad\right.$ "the coffee is hotter than the punch"

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...
$(*) \quad\left\{\begin{array}{r}\text { Suppose that } \\ \text { is more true than } \\ \text { Then }\end{array} \quad\right.$ "the coffee is hotter than the punch"

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...
$(*) \quad\left\{\begin{array}{r}\text { Suppose that } \\ \text { is more true than } \\ \text { Then } \quad \text { "the tea is hotter than the punch." } \\ \text { the coffee is hotter than the tea. }\end{array}\right.$

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...

That sounds reasonable. But it translates to $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$,

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...

That sounds reasonable. But it translates to $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$, which can fail in classical logic - e.g., when $\llbracket t \rrbracket=1$ and $\llbracket c \rrbracket=\llbracket p \rrbracket=0$.

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...

That sounds reasonable. But it translates to $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$, which can fail in classical logic - e.g., when $\llbracket t \rrbracket=1$ and $\llbracket c \rrbracket=\llbracket p \rrbracket=0$.

Classical logic can't make sense out of "more true." In classical logic, either a statement is true, or it isn't.

Aristotle's comparisons

If there are two things both more desirable than something, the one which is more desirable to a greater degree is more desirable than the one more desirable to a less degree.

Here's a more modern and digestible version of the same idea ...

That sounds reasonable. But it translates to $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$, which can fail in classical logic - e.g., when $\llbracket t \rrbracket=1$ and $\llbracket c \rrbracket=\llbracket p \rrbracket=0$.

Classical logic can't make sense out of "more true." In classical logic, either a statement is true, or it isn't.

For comparisons, we need a different logic. ...

Comparative logic

false values $=\{\ldots,-3,-2,-1\}, \quad$ true values $=\{0,1,2,3, \ldots\}$,

$$
\neg p=-p, \quad p \vee q=\max \{p, q\}, \quad p \wedge q=\min \{p, q\}, \quad p \rightarrow q=q-p .
$$

Comparative logic

false values $=\{\ldots,-3,-2,-1\}, \quad$ true values $=\{0,1,2,3, \ldots\}$,
$\neg p=-p, \quad p \vee q=\max \{p, q\}, \quad p \wedge q=\min \{p, q\}, \quad p \rightarrow q=q-p$.
\square Here "comparison" $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$ is always true.

Comparative logic

false values $=\{\ldots,-3,-2,-1\}, \quad$ true values $=\{0,1,2,3, \ldots\}$,
$\neg p=-p, \quad p \vee q=\max \{p, q\}, \quad p \wedge q=\min \{p, q\}, \quad p \rightarrow q=q-p$.
\square Here "comparison" $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$ is always true.
\square Some irrelevancies are ruled out. For instance, neither $p \rightarrow(q \vee \neg q)$ nor $(p \wedge \neg p) \rightarrow q$ is an always-true formula.

Comparative logic

false values $=\{\ldots,-3,-2,-1\}, \quad$ true values $=\{0,1,2,3, \ldots\}$,
$\neg p=-p, \quad p \vee q=\max \{p, q\}, \quad p \wedge q=\min \{p, q\}, \quad p \rightarrow q=q-p$.
\square Here "comparison" $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$ is always true.
\square Some irrelevancies are ruled out. For instance, neither $p \rightarrow(q \vee \neg q)$ nor $(p \wedge \neg p) \rightarrow q$ is an always-true formula.
\square On the other hand, this logic affirms some irrelevancies. For instance, "unrelated extremes" $(p \wedge \neg p) \rightarrow(q \vee \neg q)$ is always true in this logic.

Comparative logic

false values $=\{\ldots,-3,-2,-1\}, \quad$ true values $=\{0,1,2,3, \ldots\}$,
$\neg p=-p, \quad p \vee q=\max \{p, q\}, \quad p \wedge q=\min \{p, q\}, \quad p \rightarrow q=q-p$.
\square Here "comparison" $[(p \rightarrow t) \rightarrow(p \rightarrow c)] \rightarrow(t \rightarrow c)$ is always true.
\square Some irrelevancies are ruled out. For instance, neither $p \rightarrow(q \vee \neg q)$ nor $(p \wedge \neg p) \rightarrow q$ is an always-true formula.
\square On the other hand, this logic affirms some irrelevancies. For instance, "unrelated extremes" $(p \wedge \neg p) \rightarrow(q \vee \neg q)$ is always true in this logic.

Note: A few slides from now l'll use the fact that, in this logic,

$$
\neg 0=0 \wedge 0=0 \vee 0=0 \rightarrow 0=0
$$

Irrelevance: Bad taste in reasoning

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad$ ("unrelated extremes")

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes")

- all classically true,

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes" $)$

- all classically true, but the hypothesis and conclusion are unrelated,

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes" $)$

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes")

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Irrelevance: Bad taste in reasoning

$\square \quad$ If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes")

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that
\square they are permitted to make such tasteless statements, but

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes")

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that
\square they are permitted to make such tasteless statements, butthey voluntarily refrain from doing so;

Irrelevance: Bad taste in reasoning

$\square \quad$ If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes" $)$

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that
\square they are permitted to make such tasteless statements, butthey voluntarily refrain from doing so; they exercise good taste.

Irrelevance: Bad taste in reasoning

$\square \quad$ If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes" $)$

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that
\square they are permitted to make such tasteless statements, but
\square they voluntarily refrain from doing so; they exercise good taste.
They're practicing relevant logic without realizing it!

Irrelevance: Bad taste in reasoning

\square If today is Friday then $1+1=2$.
\square If the earth is flat then today is Friday.
$\square \quad(p \wedge \neg p) \rightarrow q \quad$ ("explosion")
$\square \quad(p \wedge \neg p) \rightarrow(q \vee \neg q) \quad($ "unrelated extremes" $)$

- all classically true, but the hypothesis and conclusion are unrelated, which makes the implication confusing, misleading, or just plain ugly.

Most mathematicians know only classical logic, and would say that
\square they are permitted to make such tasteless statements, but
\square they voluntarily refrain from doing so; they exercise good taste.
They're practicing relevant logic without realizing it!
One logic with particularly strong relevance properties is crystal logic

Crystal logic: sets for values

$$
\{-1,+2\}
$$

$$
\begin{aligned}
& \{-2,-1,+1,+2\} \\
& \{-1,+1,+2\} \\
& \{+1,+2\} \\
& \{+2\} \\
& \varnothing
\end{aligned}
$$

Crystal logic: sets for values

$$
\begin{aligned}
& \{-2,-1,+1,+2\} \\
& \{-1,+1,+2\} \\
& \{+1,+2\} \\
& \{+2\} \\
& \varnothing
\end{aligned}
$$

6 semantic values

\varnothing is false; the other five sets are true

$$
\{-1,+2\}
$$

Crystal logic: sets for values

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order

Crystal logic: sets for values

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order
\wedge is $\cap, \quad \vee$ is \cup

Crystal logic: sets for values

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order
\wedge is $\cap, \quad \vee$ is \cup
flip for negation

Crystal logic: sets for values

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order
\wedge is $\cap, \quad \vee$ is \cup
flip for negation

S	Ω	τ	λ	ρ	β	\varnothing
$\neg S$	\varnothing	β	λ	ρ	τ	Ω

Crystal logic: sets for values

$$
\{-1,+2\}
$$

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order
\wedge is $\cap, \quad \vee$ is \cup
flip for negation

S	Ω	τ	λ	ρ	β	\varnothing
$\neg S$	\varnothing	β	λ	ρ	τ	Ω

"implies" is on next slide

Crystal logic: sets for values

6 semantic values
\varnothing is false; the other five sets are true
the inclusions yield
a nonlinear order
\wedge is $\cap, \quad \vee$ is \cup
flip for negation

S	Ω	τ	λ	ρ	β	\varnothing
$\neg S$	\varnothing	β	λ	ρ	τ	Ω

"implies" is on next slide

Note that $\lambda \vee \lambda=\lambda \wedge \lambda=\lambda \rightarrow \lambda=\neg \lambda=\lambda$ and $\rho \vee \rho=\rho \wedge \rho=\rho \rightarrow \rho=\neg \rho=\rho$.

Crystal implication - admittedly complicated (skip this slide?)

Crystal implication - admittedly complicated (skip this slide?)

Crystal implication - admittedly complicated (skip this slide?)

or equivalently

$$
S \rightarrow T=
$$

$$
\left\{\begin{aligned}
\Omega & \text { if } S=\varnothing \text { or } T=\Omega, \\
\varnothing & \text { if } S \text { is not a subset of } T, \\
T & \text { if } S=\beta, \\
\neg S & \text { if } T=\tau, \\
S & \text { if }(S, T) \text { is }(\lambda, \lambda) \text { or }(\rho, \rho) .
\end{aligned}\right.
$$

Crystal implication - admittedly complicated (skip this slide?)

$S \rightarrow T$		$T=$						
		\varnothing	β		λ	ρ	τ	Ω
$\stackrel{S}{=}$	\varnothing	Ω	Ω	Ω		Ω	Ω	Ω
	β	\varnothing	β			ρ	τ	Ω
	λ	\varnothing	\varnothing	λ		\varnothing	λ	Ω
	ρ	\varnothing	\varnothing	\varnothing	-	ρ	ρ	Ω
	τ	\varnothing	\varnothing	\varnothing		\varnothing	β	
	Ω	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing	Ω

or equivalently
$S \rightarrow T=$

$$
\left\{\begin{aligned}
\Omega & \text { if } S=\varnothing \text { or } T=\Omega, \\
\varnothing & \text { if } S \text { is not a subset of } T, \\
T & \text { if } S=\beta, \\
\neg S & \text { if } T=\tau, \\
S & \text { if }(S, T) \text { is }(\lambda, \lambda) \text { or }(\rho, \rho) .
\end{aligned}\right.
$$

Admittedly, contrived and complicated. But

Crystal implication - admittedly complicated (skip this slide?)

$S \rightarrow T$		$T=$						
		\varnothing	β	λ	λ	ρ	τ	Ω
S	\varnothing	Ω	Ω	Ω	Ω	Ω	Ω	
	β	\varnothing	β			ρ	τ	
	λ	\varnothing	\varnothing	λ	λ	\varnothing	λ	
	ρ	\varnothing	\varnothing	\varnothing		ρ	ρ	
	τ	\varnothing	\varnothing	\varnothing	γ	\varnothing	β	
	Ω	\varnothing	\varnothing	\varnothing		\varnothing	\varnothing	

or equivalently

$$
\begin{aligned}
& S \rightarrow T= \\
& \left\{\begin{aligned}
\Omega & \text { if } S=\varnothing \text { or } T=\Omega, \\
\varnothing & \text { if } S \text { is not a subset of } T, \\
T & \text { if } S=\beta, \\
\neg S & \text { if } T=\tau, \\
S & \text { if }(S, T) \text { is }(\lambda, \lambda) \text { or }(\rho, \rho) .
\end{aligned}\right.
\end{aligned}
$$

Admittedly, contrived and complicated. But crystal logic

- includes my "basic logic" (discussed later), so it's not bizarre; and

Crystal implication - admittedly complicated (skip this slide?)

or equivalently

$$
\begin{aligned}
& S \rightarrow T= \\
& \left\{\begin{aligned}
\Omega & \text { if } S=\varnothing \text { or } T=\Omega, \\
\varnothing & \text { if } S \text { is not a subset of } T, \\
T & \text { if } S=\beta, \\
\neg S & \text { if } T=\tau, \\
S & \text { if }(S, T) \text { is }(\lambda, \lambda) \text { or }(\rho, \rho) .
\end{aligned}\right.
\end{aligned}
$$

Admittedly, contrived and complicated. But crystal logic

- includes my "basic logic" (discussed later), so it's not bizarre; and
- prevents irrelevant implications - for instance, $(p \wedge \neg p) \rightarrow(q \vee \neg q)$ is not always true. More generally ...

Relevance Principles

Suppose that formulas A and B are irrelevant to each other, i.e., they have no variables in common. Can $A \rightarrow B$ still be tautological (i.e., always true)?

Relevance Principles

Suppose that formulas A and B are irrelevant to each other, i.e., they have no variables in common. Can $A \rightarrow B$ still be tautological (i.e., always true)?
(1) In classical logic, $A \rightarrow B$ is tautological if and only if at least one of B or $\neg A$ is tautological, as in

$$
\begin{equation*}
\underbrace{p}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} \tag{or}
\end{equation*}
$$

Relevance Principles

Suppose that formulas A and B are irrelevant to each other, i.e., they have no variables in common. Can $A \rightarrow B$ still be tautological (i.e., always true)?
(1) In classical logic, $A \rightarrow B$ is tautological if and only if at least one of B or $\neg A$ is tautological, as in

$$
\underbrace{p}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} \quad \text { or } \quad \underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{q}_{B} .
$$

(2) In comparative logic, $A \rightarrow B$ is a tautology if and only if both B and $\neg A$ are tautologies, as in "unrelated extremes"

$$
\underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} .
$$

Relevance Principles

Suppose that formulas A and B are irrelevant to each other, i.e., they have no variables in common. Can $A \rightarrow B$ still be tautological (i.e., always true)?
(1) In classical logic, $A \rightarrow B$ is tautological if and only if at least one of B or $\neg A$ is tautological, as in

$$
\underbrace{p}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} \quad \text { or } \quad \underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{q}_{B} .
$$

(2) In comparative logic, $A \rightarrow B$ is a tautology if and only if both B and $\neg A$ are tautologies, as in "unrelated extremes"

$$
\underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} .
$$

(3) In crystal logic, $A \rightarrow B$ cannot be a tautology.

Relevance Principles

Suppose that formulas A and B are irrelevant to each other, i.e., they have no variables in common. Can $A \rightarrow B$ still be tautological (i.e., always true)?
(1) In classical logic, $A \rightarrow B$ is tautological if and only if at least one of B or $\neg A$ is tautological, as in

$$
\underbrace{p}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} \quad \text { or } \quad \underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{q}_{B} .
$$

(2) In comparative logic, $A \rightarrow B$ is a tautology if and only if both B and $\neg A$ are tautologies, as in "unrelated extremes"

$$
\underbrace{(p \wedge \neg p)}_{A} \rightarrow \underbrace{(q \vee \neg q)}_{B} .
$$

(3) In crystal logic, $A \rightarrow B$ cannot be a tautology.

I'll prove part of (2). (Its other parts and (1) and (3) are proved similarly.)

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
\square Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false -

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
\square Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
$\square \quad$ Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.
$\square \quad$ Since A and B share no variables,

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
\square Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.
$\square \quad$ Since A and B share no variables, we are still free to choose values for all the variables appearing in A.

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
\square Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.
$\square \quad$ Since A and B share no variables, we are still free to choose values for all the variables appearing in A. Give them all the value 0 .

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
\square Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.
$\square \quad$ Since A and B share no variables, we are still free to choose values for all the variables appearing in A. Give them all the value 0 .
$\square \quad$ Then $\llbracket A \rrbracket=0$, since $0 \vee 0=0 \wedge 0=0 \rightarrow 0=\neg 0=0$.

A relevance proof

In comparative logic (i.e., with subtraction for implication), if A and B share no variables and B is not a tautology, then $A \rightarrow B$ is not a tautology.

Proof.
$\square \quad$ Since B is not a tautology, there is some assignment of values to the variables appearing in B that makes B false - i.e., that makes $\llbracket B \rrbracket<0$.
$\square \quad$ Since A and B share no variables, we are still free to choose values for all the variables appearing in A. Give them all the value 0 .
$\square \quad$ Then $\llbracket A \rrbracket=0$, since $0 \vee 0=0 \wedge 0=0 \rightarrow 0=\neg 0=0$.
$\square \quad$ Then $\llbracket A \rightarrow B \rrbracket=\llbracket B \rrbracket-\llbracket A \rrbracket<0$. So $A \rightarrow B$ isn't always true.

WHY classical logic allows irrelevance

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information:

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:
Theorem. Let X be a Banach space. Then

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:
Theorem. Let X be a Banach space. Then (i) every lower semicontinuous seminorm on X is continuous

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:
Theorem. Let X be a Banach space. Then (i) every lower semicontinuous seminorm on X is continuous if and only if

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:
Theorem. Let X be a Banach space. Then (i) every lower semicontinuous seminorm on X is continuous if and only if (ii) every weak-star bounded subset of the dual space X^{*} is also norm-bounded.

WHY classical logic allows irrelevance

If the earth is flat then today is Friday.
We see irrelevance here because we have background information: We know something about the earth and something about the week, and we know they're unrelated.

But in math we have less background information. For instance:
Theorem. Let X be a Banach space. Then (i) every lower semicontinuous seminorm on X is continuous if and only if (ii) every weak-star bounded subset of the dual space X^{*} is also norm-bounded.

Even to someone who speaks this language, and is familiar with conditions (i) and (ii), it is not obvious that there is any relation between those conditions. In fact, that relation is the whole point of the theorem.

```
CLASSICAL AND NONCLASSICAL LOGICS
Introduction
Classical logic
Multivalued logics
Relevant logics
D Constructive logic
Jarden's Theorem
Two philosophies of mathematics
Jarden's logic: P}\vee\negP ("Excluded Middle")
```


Constructive logic

Constructive evaluations (complicated; skip this?)
AXIOM SYSTEMS

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Prerequisites.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.

Jarden's Proof.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational,

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational, use $a=b=\sqrt{2}$, and we're done.

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational, use $a=b=\sqrt{2}$, and we're done.
- If j is irrational,

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational, use $a=b=\sqrt{2}$, and we're done.
- If j is irrational, use $a=j$ and $b=\sqrt{2}$. Then

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational, use $a=b=\sqrt{2}$, and we're done.
- If j is irrational, use $a=j$ and $b=\sqrt{2}$. Then a and b are irrational, and a brief computation shows $a^{b}=2=$ rational. $\quad \square$

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Jarden's Theorem

There exist positive irrational numbers a and b such that a^{b} is rational.
Jarden's Proof. Consider the number $j=\sqrt{2}^{\sqrt{2}}$.

- If j is rational, use $a=b=\sqrt{2}$, and we're done.
- If j is irrational, use $a=j$ and $b=\sqrt{2}$. Then a and b are irrational, and a brief computation shows $a^{b}=2=$ rational. $\quad \square$

So a and b exist. But we still don't know what they are!

Prerequisites.
Definition. A number is rational if it can be written as the ratio of two integers (like $37 / 5$); otherwise it is irrational.
Lemma 1. $\sqrt{2}$ is irrational. Lemma 2. $\left(p^{q}\right)^{r}=p^{(q r)}$.

Two philosophies of mathematics

Classical philosophy

\square
\square
Constructive philosophy
\square
\square

Two philosophies of mathematics

Classical philosophy

Math is a collection of statements, e.g., "there exist a and b such that. . ."Constructive philosophy

Two philosophies of mathematics

Classical philosophy

Math is a collection of statements, e.g., "there exist a and b such that..."\square An existence proof does not need to be accompanied by a construction.

Constructive philosophy

Two philosophies of mathematics

Classical philosophy

Math is a collection of statements, e.g., "there exist a and b such that. .."\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.
Constructive philosophy

Two philosophies of mathematics

Classical philosophy

\square Math is a collection of statements, e.g., "there exist a and b such that. .."
\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.
Constructive philosophy
\square Math is a collection of procedures - "we can find a and b such that..."

Two philosophies of mathematics

Classical philosophy

\square Math is a collection of statements, e.g., "there exist a and b such that. .."
\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.

Constructive philosophy

\square Math is a collection of procedures - "we can find a and b such that. .."A mathematical object is meaningless unless we have a method for producing that object.

Two philosophies of mathematics

Classical philosophy

\square Math is a collection of statements, e.g., "there exist a and b such that. .."
\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.

Constructive philosophy

\square Math is a collection of procedures - "we can find a and b such that. .."
\square A mathematical object is meaningless unless we have a method for producing that object.
\square Jarden's proof is unacceptable.

Two philosophies of mathematics

Classical philosophy

\square Math is a collection of statements, e.g., "there exist a and b such that. .."
\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.

Constructive philosophy

\square Math is a collection of procedures - "we can find a and b such that. . ."
\square A mathematical object is meaningless unless we have a method for producing that object.
$\square \quad$ Jarden's proof is unacceptable.
But it's just his proof that is nonconstructive. His theorem can be made constructive via other proofs - for instance, use Gelfond-Schneider theorem to prove that j is irrational, or more simply just take $a=\sqrt{2}$ and $b=\log _{2} 9$.

Two philosophies of mathematics

Classical philosophy

\square Math is a collection of statements, e.g., "there exist a and b such that. .."
\square An existence proof does not need to be accompanied by a construction.
\square Jarden's proof is acceptable.

Constructive philosophy

\square Math is a collection of procedures - "we can find a and b such that..."
\square A mathematical object is meaningless unless we have a method for producing that object.
\square Jarden's proof is unacceptable.
But it's just his proof that is nonconstructive. His theorem can be made constructive via other proofs - for instance, use Gelfond-Schneider theorem to prove that j is irrational, or more simply just take $a=\sqrt{2}$ and $b=\log _{2} 9$.

On the other hand, some mathematical results (such as the Axiom of Choice) are inherently nonconstructive, and rejected altogether by constructivists.

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")
\square Jarden applied it with $P=" \sqrt{2}^{\sqrt{2}}$ is rational."

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")
\square Jarden applied it with $P=" \sqrt{2}^{\sqrt{2}}$ is rational."
\square It's tautologous in two-valued logic, so it's fine for true/false statements.

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")
\square Jarden applied it with $P=" \sqrt{2}{ }^{\sqrt{2}}$ is rational."
\square It's tautologous in two-valued logic, so it's fine for true/false statements.But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")
\square Jarden applied it with $P=" \sqrt{2}{ }^{\sqrt{2}}$ is rational."
\square It's tautologous in two-valued logic, so it's fine for true/false statements.
\square But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")

\square Jarden applied it with $P=" \sqrt{2}{ }^{\sqrt{2}}$ is rational."
$\square \quad$ It's tautologous in two-valued logic, so it's fine for true/false statements.
$\square \quad$ But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that
The Twin Prime Conjecture is true or it is false.

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")

\square Jarden applied it with $P=" \sqrt{2} \sqrt{2}$ is rational."
$\square \quad$ It's tautologous in two-valued logic, so it's fine for true/false statements.
\square But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that
The Twin Prime Conjecture is true or it is false.
But we don't know which, and perhaps we never will.

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")

\square Jarden applied it with $P=" \sqrt{2}{ }^{\sqrt{2}}$ is rational."
$\square \quad$ It's tautologous in two-valued logic, so it's fine for true/false statements.
$\square \quad$ But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that
The Twin Prime Conjecture is true or it is false.
But we don't know which, and perhaps we never will. Consequently, some constructivists might say that it is neither "true" or "false" -

Jarden's logic: $\quad P \vee \neg P$ ("Excluded Middle")

\square Jarden applied it with $P=" \sqrt{2}{ }^{\sqrt{2}}$ is rational."
$\square \quad$ It's tautologous in two-valued logic, so it's fine for true/false statements.
\square But it cannot be relied upon as a recipe in constructions. Sometimes there is a task P that we don't know how to carry out, and we don't know how to carry out the opposite task either.

Another example of this idea: Most mathematicians would agree that
The Twin Prime Conjecture is true or it is false.
But we don't know which, and perhaps we never will. Consequently, some constructivists might say that it is neither "true" or "false" - like the statement

Luke Skywalker's favorite color is red.

Constructive evaluations (complicated; skip this?)

Constructive evaluations (complicated; skip this?)

\square An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.

Constructive evaluations (complicated; skip this?)

\square An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
\square An open set (in \mathbb{R}) is any union of open intervals.

Constructive evaluations (complicated; skip this?)

$\square \quad$ An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
$\square \quad$ An open set (in \mathbb{R}) is any union of open intervals.The interior of any set S is the largest open set contained in S. Equivalently, $\operatorname{int}(S)$ is the union of all the open intervals contained in S.

Constructive evaluations (complicated; skip this?)

$\square \quad$ An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
$\square \quad$ An open set (in \mathbb{R}) is any union of open intervals.
$\square \quad$ The interior of any set S is the largest open set contained in S. Equivalently, $\operatorname{int}(S)$ is the union of all the open intervals contained in S.

Semantics for constructive logic:

Constructive evaluations (complicated; skip this?)

$\square \quad$ An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
$\square \quad$ An open set (in \mathbb{R}) is any union of open intervals.
$\square \quad$ The interior of any set S is the largest open set contained in S. Equivalently, $\operatorname{int}(S)$ is the union of all the open intervals contained in S.

Semantics for constructive logic:
\mathbb{R} is the only true value. All other open subsets of \mathbb{R} are false values.

Constructive evaluations (complicated; skip this?)

$\square \quad$ An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
$\square \quad$ An open set (in \mathbb{R}) is any union of open intervals.
$\square \quad$ The interior of any set S is the largest open set contained in S. Equivalently, $\operatorname{int}(S)$ is the union of all the open intervals contained in S.

Semantics for constructive logic:
\mathbb{R} is the only true value. All other open subsets of \mathbb{R} are false values.
\wedge is $\cap, \quad \vee$ is $\cup, \quad \neg S=\operatorname{int}(\mathbb{R} \backslash S), \quad S \rightarrow T=\operatorname{int}(T \cup(\mathbb{R} \backslash S))$.

Constructive evaluations (complicated; skip this?)

\square An open interval is any set of the form $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
$\square \quad$ An open set (in \mathbb{R}) is any union of open intervals.
$\square \quad$ The interior of any set S is the largest open set contained in S. Equivalently, $\operatorname{int}(S)$ is the union of all the open intervals contained in S.

Semantics for constructive logic:
\mathbb{R} is the only true value. All other open subsets of \mathbb{R} are false values.
\wedge is $\cap, \quad \vee$ is $\cup, \quad \neg S=\operatorname{int}(\mathbb{R} \backslash S), \quad S \rightarrow T=\operatorname{int}(T \cup(\mathbb{R} \backslash S))$.
$P \vee \neg P$ is false (for instance) when $\llbracket P \rrbracket=(0,1) \cup(1,2)$.

CLASSICAL AND NONCLASSICAL LOGICS
 Introduction
 Classical logic
 Multivalued logics
 Relevant logics
 Constructive logic
 AXIOM SYSTEMS
 Example of proving a theorem from some axioms
 AXIOM SYSTEMS

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

But wait! Why do we need to prove $X \rightarrow X$? Isn't it obviously true?

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

But wait! Why do we need to prove $X \rightarrow X$? Isn't it obviously true?
Only if we assume that the symbol " \rightarrow " has some meaning close to the usual meaning of "implies." But we don't want to assume that. In axiomatic logic, we start with no meaning at all for symbols such as " \rightarrow "; they're just symbols. They obtain only the meanings given to them by our axioms.

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").

But wait ${ }^{2}$! Why do we assume the complicated formula "self-distribution" and prove the simple formula "identity"? Wouldn't it make more sense to go the other way?

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").

But wait ${ }^{2}$! Why do we assume the complicated formula "self-distribution" and prove the simple formula "identity"? Wouldn't it make more sense to go the other way?

Many choices of axioms are possible; we'll discuss those soon. But some choices work better than others. For instance, we find that
\{detachment, positive paradox, self-dist.\} \Rightarrow identity, but \{detachment, positive paradox, identity $\Rightarrow \nRightarrow$ self-dist.

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

$\#$	formula	justification
(1)	$X \rightarrow(X \rightarrow X)$	positive paradox with $C=D=X$

Example of proving a theorem from some axioms

Assumptions:	$\{A, A \rightarrow B\} \vdash B$	"detachment"
	$\vdash C \rightarrow(D \rightarrow C)$	"positive paradox"
$\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)]$	"self-distribution"	

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

$\#$	formula	justification
(1)	$X \rightarrow(X \rightarrow X)$	positive paradox with $C=D=X$
(2)	$X \rightarrow[(X \rightarrow X) \rightarrow X]$	pos.pdx. with $C=X, \quad D=X \rightarrow X$

Example of proving a theorem from some axioms

$$
\begin{array}{lrl}
\text { Assumptions: } & \{A, A \rightarrow B\} \vdash B & \text { "detachment" } \\
& \vdash C \rightarrow(D \rightarrow C) & \text { "positive paradox" } \\
\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)] & \text { "self-distribution" }
\end{array}
$$

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

$\#$	formula	justification
(1)	$X \rightarrow(X \rightarrow X)$	positive paradox with $C=D=X$
(2)	$X \rightarrow[(X \rightarrow X) \rightarrow X]$	pos.pdx. with $C=X, \quad D=X \rightarrow X$
(3)	$\{X \rightarrow[(X \rightarrow X) \rightarrow X]\} \rightarrow$	self-distribution with
	$\{[X \rightarrow(X \rightarrow X)] \rightarrow(X \rightarrow X)\}$	$E=G=X, \quad F=X \rightarrow X$

Example of proving a theorem from some axioms

$$
\begin{array}{lrl}
\text { Assumptions: } & \{A, A \rightarrow B\} \vdash B & \text { "detachment" } \\
& \vdash C \rightarrow(D \rightarrow C) & \text { "positive paradox" } \\
\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)] & \text { "self-distribution" }
\end{array}
$$

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

$\#$	formula	justification
(1)	$X \rightarrow(X \rightarrow X)$	positive paradox with $C=D=X$
(2)	$X \rightarrow[(X \rightarrow X) \rightarrow X]$	pos.pdx. with $C=X, D=X \rightarrow X$
(3)	$\{X \rightarrow[(X \rightarrow X) \rightarrow X]\} \rightarrow$	self-distribution with
	$\{[X \rightarrow(X \rightarrow X)] \rightarrow(X \rightarrow X)\}$	$E=G=X, \quad F=X \rightarrow X$
(4)	$[X \rightarrow(X \rightarrow X)] \rightarrow(X \rightarrow X)$	detach. with $A=(2), A \rightarrow B=(3)$

Example of proving a theorem from some axioms

$$
\begin{array}{lrl}
\text { Assumptions: } & \{A, A \rightarrow B\} \vdash B & \text { "detachment" } \\
& \vdash C \rightarrow(D \rightarrow C) & \text { "positive paradox" } \\
\vdash[E \rightarrow(F \rightarrow G)] \rightarrow[(E \rightarrow F) \rightarrow(E \rightarrow G)] & \text { "self-distribution" }
\end{array}
$$

Theorem: $\vdash X \rightarrow X$ ("identity").
Proof of theorem:

$\#$	formula	justification
(1)	$X \rightarrow(X \rightarrow X)$	positive paradox with $C=D=X$
(2)	$X \rightarrow[(X \rightarrow X) \rightarrow X]$	pos.pdx. with $C=X, D=X \rightarrow X$
(3)	$\{X \rightarrow[(X \rightarrow X) \rightarrow X]\} \rightarrow$	self-distribution with
	$\{[X \rightarrow(X \rightarrow X)] \rightarrow(X \rightarrow X)\}$	$E=G=X, \quad F=X \rightarrow X$
(4)	$[X \rightarrow(X \rightarrow X)] \rightarrow(X \rightarrow X)$	detach. with $A=(2), A \rightarrow B=(3)$
(5)	$X \rightarrow X$	detach. with $A=(1), A \rightarrow B=(4)$

Axioms for classical logic, divided into two parts

$$
\begin{array}{ll}
\{A, A \rightarrow B\} \vdash B, & \{A, B\} \vdash A \wedge B \\
(A \wedge B) \rightarrow A, & A \rightarrow(A \vee B) \\
(A \wedge B) \rightarrow B, & B \rightarrow(A \vee B) \\
A \rightarrow A, & (A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A) \\
{[A \rightarrow(B \rightarrow C)] \rightarrow[B \rightarrow(A \rightarrow C)]} \\
(A \rightarrow B) \rightarrow[(C \rightarrow A) \rightarrow(C \rightarrow B)] \\
{[(A \rightarrow B) \wedge(A \rightarrow C)] \rightarrow[A \rightarrow(B \wedge C)]} \\
{[(B \rightarrow A) \wedge(C \rightarrow A)] \rightarrow[(B \vee C) \rightarrow A]} \\
{[A \wedge(B \vee C)] \rightarrow[(A \wedge B) \vee C]}
\end{array}
$$

"Basic" logic. This is the uncontroversial, "vanilla" part. Most logics satisfy these axioms. They are numerous, but each is fairly simple by itself.

Axioms for classical logic, divided into two parts

$$
\begin{aligned}
& \{A, A \rightarrow B\} \vdash B, \quad\{A, B\} \vdash A \wedge B \\
& (A \wedge B) \rightarrow A, \\
& (A \wedge B) \rightarrow B, \quad A \rightarrow(A \vee B) \\
& A \rightarrow A, \\
& {[A \rightarrow(B \rightarrow C)] \rightarrow[B \rightarrow(A \rightarrow C)]} \\
& (A \rightarrow B) \rightarrow[(C \rightarrow A) \rightarrow(C \rightarrow B)] \\
& {[(A \rightarrow B) \wedge(A \rightarrow C)] \rightarrow[A \rightarrow(B \wedge C)]} \\
& {[(B \rightarrow A) \wedge(C \rightarrow A)] \rightarrow[(B \vee C) \rightarrow A]} \\
& {[A \wedge(B \vee C)] \rightarrow[(A \wedge B) \vee C]}
\end{aligned}
$$

$A \rightarrow(B \rightarrow A)$ positive paradox $[A \rightarrow(A \rightarrow B)] \rightarrow(A \rightarrow B) \quad$ contraction $(\neg \neg A) \rightarrow A \quad$ double negation
"Basic" logic. This is the uncontroversial, "vanilla" part. Most logics satisfy these axioms. They are numerous, but each is fairly simple by itself.

Non-basic axioms. Add just some of these spices to get nonclassical logics.

Axioms for classical logic, divided into two parts

$$
\left.\begin{array}{lc}
\{A, A \rightarrow B\} \vdash B, & \{A, B\} \vdash A \wedge B \\
(A \wedge B) \rightarrow A, & A \rightarrow(A \vee B) \\
(A \wedge B) \rightarrow B, & B \rightarrow(A \vee B) \\
A \rightarrow A, & (A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A) \\
{[A \rightarrow(B \rightarrow C)] \rightarrow[B \rightarrow(A \rightarrow C)]} \\
(A \rightarrow B) \rightarrow[(C \rightarrow A) \rightarrow(C \rightarrow B)] \\
{[(A \rightarrow B) \wedge(A \rightarrow C)] \rightarrow[A \rightarrow(B \wedge C)]} \\
{[(B \rightarrow A) \wedge(C \rightarrow A)] \rightarrow[(B \vee C) \rightarrow A]} \\
{[A \wedge(B \vee C)] \rightarrow[(A \wedge B) \vee C]}
\end{array}\right\} \begin{aligned}
& \\
& \text { "Basic" logic. This is the } \\
& \text { uncontroversial, "vanilla" } \\
& \text { part. Most logics satisfy } \\
& \text { these axioms. They are nu- } \\
& \text { merous, but each is fairly } \\
& \text { simple by itself. } \\
&
\end{aligned}
$$

A book on just classical logic uses a shorter list of stronger axioms.

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach.	

Two different approaches to any logic

Evaluations (semantics)

The concrete approach. Formulas are evaluated independently of one another. They take values (or "meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or some other set.

Two different approaches to any logic

Evaluations (semantics)
Axioms (syntactics)
The concrete approach. Formulas are evaluated independently of one another. They take values (or "meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or some other set. An always-true formula is called a tautology.

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach.
are evaluated independently of one	
another. They take values (or	
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	
some other set. An always-true	
formula is called a tautology.	

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach. We study
are evaluated independently of one	which formulas generate which
another. They take values (or	other formulas, without regard to
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	what they might "mean."
some other set. An always-true formula is called a tautology.	

Two different approaches to any logic

Evaluations (semantics)
The concrete approach. Formulas
are evaluated independently of one
another. They take values (or
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or
some other set. An always-true
formula is called a tautology.

Axioms (syntactics)

The abstract approach. We study which formulas generate which other formulas, without regard to what they might "mean." A formula that can be proved from the axioms is called a theorem.

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach. We study
are evaluated independently of one	which formulas generate which
another. They take values (or	other formulas, without regard to
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	what they might "mean." A
some other set. An always-true	formula that can be proved from
formula is called a tautology.	the axioms is called a theorem.

A completeness pairing is a matching of some evaluation system with some axiom system, such that

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach. We study
are evaluated independently of one	which formulas generate which
another. They take values (or	other formulas, without regard to
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	what they might "mean." A
some other set. An always-true	formula that can be proved from
formula is called a tautology.	the axioms is called a theorem.

A completeness pairing is a matching of some evaluation system with some axiom system, such that

$$
\{\text { tautologies }\}=\{\text { theorems }\}
$$

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach. We study
are evaluated independently of one	which formulas generate which
another. They take values (or	other formulas, without regard to
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	what they might "mean." A
some other set. An always-true	formula that can be proved from
formula is called a tautology.	the axioms is called a theorem.

A completeness pairing is a matching of some evaluation system with some axiom system, such that

$$
\{\text { tautologies }\}=\{\text { theorems }\}, \quad \text { hence }
$$

every statement has an abstract proof or a concrete counterexample.

Two different approaches to any logic

Evaluations (semantics)	Axioms (syntactics)
The concrete approach. Formulas	The abstract approach. We study
are evaluated independently of one	which formulas generate which
another. They take values (or	other formulas, without regard to
"meanings") in $\{0,1\},[0,1], \mathbb{Z}$, or	what they might "mean." A
some other set. An always-true	formula that can be proved from
formula is called a tautology.	the axioms is called a theorem.

A completeness pairing is a matching of some evaluation system with some axiom system, such that

$$
\{\text { tautologies }\}=\{\text { theorems }\}, \quad \text { hence }
$$

every statement has an abstract proof or a concrete counterexample.
But such pairings are hard to find, and harder to prove.

A few examples of completeness pairings

name	values:	axioms: basic, plus \ldots
classical	$\{0,1\}$	positive paradox, double negation, contraction
Łukasiewicz	$\left\{0, \frac{1}{2}, 1\right\}$	positive paradox, double negation, $((A \rightarrow B) \rightarrow B) \rightarrow(A \vee B)$, and $(A \rightarrow(A \rightarrow \neg A)) \rightarrow(A \rightarrow \neg A)$,
fuzzy	$[0,1]$	positive paradox, double negation, and $((A \rightarrow B) \rightarrow B) \rightarrow(A \vee B)$
comparative	integers	$((A \rightarrow B) \rightarrow B) \rightarrow A$, $(A \rightarrow A) \leftrightarrow \neg(A \rightarrow A)$
crystal	6 sets	contraction, double negation, $A \vee(A \rightarrow B)$, and $((\neg A) \wedge B) \rightarrow(((\neg A) \rightarrow A) \vee(A \rightarrow B))$
constructive	open sets	positive paradox, contraction, and explosion

A few examples of completeness pairings

name	values:	axioms: basic, plus \ldots	
classical	$\{0,1\}$	positive paradox, double negation, contraction	$\sqrt{ }$
Łukasiewicz	$\left\{0, \frac{1}{2}, 1\right\}$	positive paradox, double negation, $((A \rightarrow B) \rightarrow B) \rightarrow(A \vee B)$, and $(A \rightarrow(A \rightarrow \neg A)) \rightarrow(A \rightarrow \neg A)$,	$\sqrt{ }$
fuzzy	$[0,1]$	positive paradox, double negation, and $((A \rightarrow B) \rightarrow B) \rightarrow(A \vee B)$	h
comparative	integers	$((A \rightarrow B) \rightarrow B) \rightarrow A$, $(A \rightarrow A) \leftrightarrow \neg(A \rightarrow A)$	h
crystal	6 sets	contraction, double negation, $A \vee(A \rightarrow B)$, and $((\neg A) \wedge B) \rightarrow(((\neg A) \rightarrow A) \vee(A \rightarrow B))$	h
constructive	open sets	positive paradox, contraction, and explosion	$\sqrt{ }$

$\sqrt{ }=$ proved in my book; $\quad h=$ too hard to prove in my book.

