7. [5] Let R be the region bounded by $y=x^2$ and y=1. Construct a solid with R for its base where each horizontal line segment (y=c) going across R is the diameter of a semicircle that is perpendicular to the xy-plane. Write an integral that expresses the volume of the solid. DO NOT EVALUATE THE INTEGRAL.

Aren of semicircle
$$= \frac{1}{2} \pi (\sqrt{y})^2 = \frac{1}{2} \pi y$$

$$V = \int_0^1 \frac{1}{2} \pi y \, dy$$

$$6.3.9$$

8. [4] Write an integral that expresses the length of the curve y=1/x for $2 \le x \le 4$. DO NOT EVALUATE THE INTEGRALS.

$$\int_{2}^{4} \sqrt{1+x^{-4}} dx$$

$$f(x) = X^{-1}$$

 $f'(x) = -X^{-2}$
 $f(x)^2 = X^{-4}$
 $f(x)^2 = 1 + X^{-4}$

9. [8] Find the value of a where the length of $y = \frac{4}{3}x^{3/2}$ from x = 0 to x = a is 7/6.

$$\begin{array}{lll}
7 & = & \frac{1}{4} \int_{8.1}^{1+4a} u^{3/2} du \\
= & \frac{1}{4} \left[\frac{2}{3} u^{3/2} \right]_{1}^{1+4a} \\
= & \frac{1}{6} \left[\frac{1}{44a} \right]_{3/2}^{3/2} - 1 \right] = \frac{7}{6} \\
(1+4a)^{3/2} - 1 = 7 \\
(1+4a)^{3/2} = 8 \\
1+4a = 4 \\
4a = 3 \quad a = \frac{3/4}{4}
\end{array}$$