Reference section. Following are two formulas that you were told you did not need to memorize, but did need to understand how to use:

Zadeh:
\[[A \rightarrow B] = 1 - \max\{0, [A] - [B]\} = 1 + \min\{0, [B] - [A]\} \]

Sugihara:
\[[A \rightarrow B] = \begin{cases}
\max\{-[A], [B]\} & \text{if } [A] \leq [B] \\
\min\{-[A], [B]\} & \text{if } [A] > [B]
\end{cases} \]

(12 points) Evaluate:

In the Zadeh interpretation,
\((\frac{1}{2} \otimes \frac{1}{3}) \oplus \frac{1}{5} = \)

Solution:
\(\frac{1}{2} \otimes \frac{1}{3} = \min\{\frac{1}{2}, \frac{1}{3}\} = \frac{1}{3}\), and then
\(\frac{1}{3} \oplus \frac{1}{5} = 1 - \max\{0, \frac{1}{3} - \frac{1}{5}\} = \frac{13}{15}\).

In the Sugihara interpretation,
\((2 \otimes -3) \oplus 5 = \)

Solution:
\(2 \otimes -3 = \min\{2, -3\} = -3\), and then
\(-3 \oplus 5 = \max\{- -3, 5\} = 5\).

In the comparative interpretation,
\((2 \otimes -3) \oplus 5 = \)

Solution:
\(2 \otimes -3 = \min\{2, -3\} = -3\), and then
\(-3 \oplus 5 = 5 - (-3) = 8\).

In the powerset interpretation with \(\Omega = \mathbb{Z}\), evaluate

\([\{1, 2, 3\} \otimes \{3, 4, 5\}] \oplus \{1, 2, 3, 4, 5, 6, 7\} = \)

Solution:
\(\{1, 2, 3\} \otimes \{3, 4, 5\} = \{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}\), and
\(\mathcal{C}\{3\} = \mathbb{Z} \setminus \{3\} = \{1, 2, 4, 5, 6, 7, \ldots\}\). Then
\(\{3\} \oplus \{1, 2, 3, 4, 5, 6, 7\} = \{1, 2, 3, 4, 5, 6, 7\} \cup \mathcal{C}\{3\} = \mathbb{Z}\)
or \([\Omega]\).

(6 points) Draw a diagram showing which of the following formula schemes are specializations or generalizations of which others:

\[A = P \rightarrow Q \quad B = R \rightarrow (S \lor T) \quad C = (U \land V) \rightarrow W \]
\[D = (H \land I) \rightarrow (J \lor K) \quad \varepsilon = (H \lor I) \rightarrow (J \land K) \quad \mathcal{F} = R \rightarrow (\overline{S} \lor T) \]

\[\text{Answer.} \]

\[A = P \rightarrow Q \quad \text{More general} \]

\[B = R \rightarrow (S \lor T) \quad \varepsilon = (U \land V) \rightarrow W \quad \varepsilon = (H \lor I) \rightarrow (J \land K) \]

\[\mathcal{F} = R \rightarrow (\overline{S} \lor T) \quad \mathcal{D} = (H \land I) \rightarrow (J \lor K) \quad \text{More specialized} \]

(4 points) Let \(X \) be the formula \(\pi_1 \rightarrow (\pi_2 \lor \neg \pi_3) \). Draw a tree diagram of \(X \).

(5 points) For the same formula \(X \) given above, list all of the subformulas of \(X \). Classify each subformula's relation to \(X \) by listing it in one of the following two columns.

<table>
<thead>
<tr>
<th>order-preserving/isotone/increasing</th>
<th>order-reversing/antitone/decreasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1 \rightarrow (\pi_2 \lor \neg \pi_3)), (\pi_2 \lor \neg \pi_3), (\neg \pi_3), (\pi_2)</td>
<td>(\pi_1), (\pi_3)</td>
</tr>
</tbody>
</table>

The most common error was to omit the formula \(X \), which is an isotone subformula of itself; one-point penalty for that.
Let \(\Omega = \{0, 1, 2, 3\} \) and
\[
\Sigma = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \Omega\}.
\]
Then \(\Sigma \) is a topology on \(\Omega \) (you don’t have to prove that fact; you can take my word for it). Now let \([A] = \{1\}\) and \([B] = \{2\}\) and \([C] = \{3\}\). Evaluate \([C \rightarrow (A \lor B)]\) in the topological interpretation.

Answer. \(\Omega \) or \(\{0, 1, 2, 3\} \).

Solution and partial credit. Reason as follows:

Noting \([C \rightarrow (A \lor B)] = \text{int} \ (\ [A \lor B] \cup C \ [C])\) is worth 1 point.

\([A \lor B] = \{1\} \cup \{2\} = \{1, 2\}\). That’s worth 1 point.

\(C[C] = \Omega \setminus \{3\} = \{0, 1, 2\}\) is worth 2 points, or \([-C] = \text{int} \ (C[C]) = \text{int} \ (\{0, 1, 2\}) = \{1, 2\}\) is worth 4 points, or \(C[C] = \{0, 3\}\) is worth 5 points.

Finally, showing \([A \lor B] \cup C[C] = \{0, 1, 2, 3\}\) or = \(\Omega \) in your computations is worth 7 points. Putting either of those answers in the answer box (i.e., realizing that you’ve arrived at the answer) is the 8th point.

The answer, in any case, should be a member of \(\Sigma \). I gave zero partial credit for any answer that was not a member of \(\Sigma \).

The most common error was as follows: \([\neg C]\) should be equal to \(\text{int} \ (C[C])\), but some students simply took \([\neg C]\) to be \(C[C]\), which is \(\{0, 1, 2\}\). That’s not a member of \(\Sigma \), so it can’t be the semantic value of a formula, but let’s continue the computation as though it were. Now its complement is \(\{3\}\), and so some students took \([C \rightarrow (A \lor B)] = \text{int} \ (\ [A \lor B] \cup C[C])\) to be equal to \(\text{int} \ (\{1, 2\} \cup \{3\}) = \{1, 2, 3\}\). I gave 5 points for this incorrect answer.

(7 points) Show that \((A \rightarrow B) \rightarrow (A \rightarrow (A \rightarrow B))\) is not a tautology in the
comparative interpretation, by giving suitable values of $[A] = \quad$ and $[B] = \quad$.

Solution. Recall that in the comparative interpretation, $x \odot y = y - x$. Therefore

$$[[(A \rightarrow B) \rightarrow (A \rightarrow (A \rightarrow B))]] = ((([B] - [A]) - [A]) - ([B] - [A])) = -[A].$$

To get that to be less than 0 (and thus false), we just need

$$[A] = \text{any positive integer}; \quad [B] = \text{any integer}.$$

(8 points) **Church’s chain** is an interpretation that can be described as follows: For semantic values use the numbers ± 1 and ± 2, with $\Sigma_+ = \{+2, +1, -1\}$ and $\Sigma_- = \{-2\}$. Let \bigvee be the maximum and let \bigwedge be the minimum of two numbers. Let $\ominus x = -x$. Finally, define implication by

$$S \ominus T = \begin{array}{c|cccc}
 & T = -2 & -1 & +1 & +2 \\
\hline
S = -2 & +2 & +2 & +2 & +2 \\
S = -1 & -2 & -1 & +1 & +2 \\
S = +1 & -2 & -2 & -1 & +2 \\
S = +2 & -2 & -2 & -2 & +2 \\
\end{array} = \begin{cases}
-2 \text{ if } S > T \\
-1 \text{ if } S = T = -1 \text{ or } S = T = +1 \\
+1 \text{ if } S = -1 \text{ and } T = +1 \\
+2 \text{ if } S = -2 \text{ or } T = +2 \\
\end{cases}$$

(Thus $S \ominus T$ is true if and only if $S \leq T$.) This logic has enough in common with familiar logics such as classical logic that it is worthy of study. But it has at least a few properties of relevant logic. For instance, $(A \land \neg A) \rightarrow B$ is tautological in classical logic, but you are now to show that $(A \land \neg A) \rightarrow B$ is not a tautology in Church’s chain, by giving suitable values of $[A] = \quad$ and $[B] = \quad$.

Hint: First figure out what are the possible values of $A \land \neg A$.
Solution. We can compute

\[
\begin{array}{c|c|c|c|c}
[A] & -2 & -1 & +1 & +2 \\
[\neg A] & +2 & +1 & -1 & -2 \\
[A \land \neg A] & -2 & -1 & -1 & -2 \\
\end{array}
\]

We’re trying to find an example in which \[(A \land \neg A) \rightarrow B \] is false; that requires \[[A \land \neg A] > [B] \]. Since \[[A \land \neg A] \] is either \(-2\) or \(-1\), the only way it can be greater than \[[B] \] is if \[[A \land \neg A] = -1 \] and \[[B] = -2 \]. Thus we have either \[[A] = -1 \text{ and } [B] = -2 \] or \[[A] = +1 \text{ and } [B] = -2 \].