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Name: ANSWER KEY
Math 155B Test 3, Thurs 3 Nov 2011, 4 pages, 50 points, 75 minutes.

Class results –
Median score, 34/50 = 68%
Mean score, 34.06/50 = 68.12%
High score, 50/50 (1 person)

Note: In this answer key, I have tried to show far more than what a fully
knowledgeable student would write — I have also tried to show what the student
would think. As you will see, most of the solutions involve relatively little actual
computation, and so if you knew what you were doing, this could all be done
with relatively little writing.

Except where otherwise indicated, answer the problem by circling the ap-
propriate UNDERLINED, CAPITALIZED word or phrase. Partial credit on
wrong answers may in some cases be given for additional work shown.

(5 points)
∞∑
n=0

cosn

1 + en
is DIVERGENT or ABSOLUTELY CONVERGENT or

CONDITIONALLY CONVERGENT.

Solution. ABSOLUTELY CONVERGENT , because
∞∑
n=0

∣∣∣∣ cosn

1 + en

∣∣∣∣ ≤ ∞∑
n=0

1

1 + en

≤
∞∑
n=0

1

en
which is a convergent geometric series.

Some students tried to apply the alternating series test, but that is inapplica-
ble for two reasons. First, the sign of cosn is not alternating — rather, it goes
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± in a somewhat erratic fashion. Indeed, the first few values are

n cosn

0 1.00 · · ·
1 0.54 · · ·
2 −0.41 · · ·
3 −0.98 · · ·
4 −0.65 · · ·
5 0.28 · · ·

(Perhaps you were thinking of cos(nπ), which is alternating in sign.) And second,
even though en is increasing, we don’t always have | cosn|/(1 + en) decreasing.
Indeed, once in a while cosn is near 0, and then we’re going to have

| cos(n+ 1)|
1 + en+1

>
| cos(n)|
1 + en

.

For example,

cos(11) = 0.0044 · · · e11 ≈ 5.98× 104
| cos(11)|
1 + e11

≈ 7.39× 10−8

cos(12) = −.843 · · · e12 ≈ 1.62× 105
| cos(12)|
1 + e12

≈ 5.18× 10−6

and the latter is much bigger.

(6 points)
∞∑
n=1

(−1)n lnn
3
√
n

is DIVERGENT or ABSOLUTELY CONVERGENT

or CONDITIONALLY CONVERGENT.

Solution. CONDITIONALLY CONVERGENT .
Some students noted that limn→∞(lnn)/ 3

√
n = 0; that by itself is worth 2

points.
For n sufficiently large we have

lnn > 1, hence
lnn
3
√
n
>

1
3
√
n
,

and
∑
n−1/3 is divergent by the p-test with p = 1/3. Some students reasoned

that far correctly, and then incorrectly decided “divergent” is the answer to the
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problem — I gave 2 points if they showed that reasoning. But the conclusion
we actually reach from the computation above is that the given series is not
absolutely convergent.

Is it conditionally convergent? It’s an alternating series, so we just have to
show that the absolute values of the terms, (lnn)/ 3

√
n, are decreasing to 0 when

n gets large enough. We know that they are positive (for n > 1) and they are
tending to 0 in the limit, since lnn grows more slowly than any power of n. Are
they monotone?

Here is a computation-free way to see that they are: Let g(x) = (lnx)/ 3
√
x.

Without actually computing g′(x), think in very general terms about what kind
of function it is. It might be a mess — we don’t really want to compute it — but
we can see that it involves nothing except a few powers of x and perhaps a few
lnx terms. It doesn’t involve anything periodic, like sinx. And so there might
conceivably be a few places where g′(x) = 0, but there are only finitely many of
them. Once x gets past those, g′(x) stays positive or stays negative, so g(x) is
going to be monotone from then on.

If you don’t find that argument convincing, go ahead and compute g′(x) =
(1− 1

3 lnx)x−4/3. That’s negative for all x > e3, so the sequence g(n) is decreasing
for sufficiently large n. That fact by itself was worth 3 points.

(6 points)
∞∑
n=3

1

n(lnn)4/3
is DIVERGENT or ABSOLUTELY CONVERGENT

or CONDITIONALLY CONVERGENT.

Solution. For n > e the terms are positive and decreasing, so we can use the
integral test — i.e., analyze

∫∞
3 x−1(lnx)−4/3 dx; getting this far was worth 2

points. Probably the best approach is to substitute u = lnx and du = 1
xdx; that

yields
∫∞
ln 3 u

−4/3 du — worth 4 points, if you get this far correctly. That integral
converges, so the given series is convergent (worth 5 points). Since its terms are
positive, it is ABSOLUTELY CONVERGENT (6 points).

Some students tried working with
∫∞
1 x−1(lnx)−4/3 dx =

∫∞
0 u−4/3 du – i.e.,

with the wrong lower limit of integration – but that integral diverges, giving the
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wrong answer.

(6 points)
∞∑
n=3

1

(lnn)lnn
is DIVERGENT or ABSOLUTELY CONVERGENT

or CONDITIONALLY CONVERGENT. Hint: First find an expression v such
that (lnn)lnn = nv.

Solution. I’m surprised that some students answered “conditionally convergent.”
That can’t happen in a series whose terms are all positive. Evidently those
students did not understand the definitions.

Take ln on both sides of the hint equation, to get (lnn)(ln lnn) = v lnn, and
therefore v = ln lnn (worth 2 points). The reason for the hint is that the problem
is now transformed to deciding whether

∑
1
nv is convergent. Of course, v is not

a constant, so the p-test is not directly applicable. But v is getting larger, and
we can make use of that fact. Indeed, for all n sufficiently large we have v > 2,
and therefore 1

nv <
1
n2 , and we know

∑
1
n2 is convergent. Thus the given series is

ABSOLUTELY CONVERGENT .
(In case you’re wondering, “for all n sufficiently large” in this instance means

for all n > ee
2

, but we don’t actually need to compute that.)

(5 points) For what value of x is
∞∑
n=0

2nx equal to 5 ?

Solution. We have a geometric series, a + ar + ar2 + ar3 + · · · = a/(1 − r). In
this case a = 1 and r = 2x, so we have the equation 1/(1− 2x) = 5; getting that
far was worth 3 points. Solving algebraically yields 2x = 4/5, which is worth 4
points. For full credit, then, x = log2(4/5) . That answer can also be written

in a few other forms, such as 2− log2 5 or ln(4/5)
ln 2 or 2− ln 5

ln 2 .
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(5 points)
∞∑
n=1

n
√
n+ 2

n5 + 3n+ 7
is DIVERGENT or ABSOLUTELY CONVERGENT

or CONDITIONALLY CONVERGENT.

Solution. ABSOLUTELY CONVERGENT . Use the limit comparison test, com-
paring with

∞∑
n=1

n
√
n

n5
=

∞∑
n=1

1

n7/2

which converges by the p-test, since 7/2 > 1.
Most got this one right. I couldn’t understand the work of the two students

who wrote “divergent.” But I was more puzzled by the four students who wrote
either “conditionally convergent” or just “divergent” — they evidently did not
understand the definitions. No series of positive terms can ever be conditionally
convergent. If it is convergent at all, then it is absolutely convergent.

(5 points)
∞∑
n=1

sin
(
n2
)

sin

(
1

n2

)
is DIVERGENT or

ABSOLUTELY CONVERGENT or CONDITIONALLY CONVERGENT.

Solution. We first analyze the two ingredients separately:

behavior of sin
(
n2
)

behavior of sin
(
n−2
)

sin
(
n2
)

does not behave like n2.
Rather, it oscillates between positive
and negative, in a somewhat erratic
fashion, not a very regular pattern.
And | sin

(
n2
)
| is not monotone. So

we’re not going to be able to use the
alternating series test. But in any
case we always have

∣∣sin (n2)∣∣ ≤ 1,
which is worth 2 points by itself.

sin
(
n−2
)

behaves much like n−2.
It is a sequence of positive terms
converging to 0, at about the
same rate as n−2 is — that is,
limn→∞ sin

(
n−2
)
/n−2 = 1 (worth 2

points), since limx→0 sin(x)/x = 1.
And we know

∑
n−2 is convergent (p-

series with p=2). Hence
∑

sin
(
n−2
)

is convergent (worth 3 points).

Then ∞∑
n=1

| sin(n2) sin(1/n2)| ≤
∞∑
n=1

sin(1/n2) = convergent,
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and so
∑

sin(n2) sin(1/n2) is ABSOLUTELY CONVERGENT .

(6 points)
∞∑
n=1

(−1)n tan

(
1√
n

)
is DIVERGENT or

ABSOLUTELY CONVERGENT or CONDITIONALLY CONVERGENT.

Solution. CONDITIONALLY CONVERGENT .
Partial credit for wrong answers was based on how much was shown of the

following two parts to this problem; each part was worth 3 points.

Use the alternating series test
to show that the series is con-
vergent (and thus it is ei-
ther absolutely or condition-
ally convergent).

Show that
∑∞

n=1 tan
(

1√
n

)
is divergent, and

therefore the series given in the problem is not
absolutely convergent.

Proof or computation – It’s
clear that as n increases to
∞, then 1/

√
n decreases to

0, and therefore the numbers
tan(1/

√
n) are positive num-

bers decreasing to 0.

Proof or computation – For small x, we know
that cos x is near 1 and sinx behaves like
x; hence tanx also behaves like x. That is,
limx→0

tanx
x = 1. Therefore, by the limit com-

parison test,
∑

tan(1/
√
n) has the same con-

vergence behavior as
∑

1/
√
n, which diverges

by the p-test with p = 1/2.

Some students tried to determine whether
∑∞

n=1 tan
(

1√
n

)
converges by figur-

ing that it has the same behavior as
∫∞
1 tan(1/

√
x) dx. That’s correct reasoning,

but a difficult integral to work with. That integral turns out to be divergent, but
the only ways I’ve found so far for showing that are by comparing tan(1/

√
x)

with 1/
√
x.

(6 points) Find the sum (i.e., a number) for
1

5
+

1

21
+

1

45
+

1

77
+ · · ·
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Solution. Begin by factoring: the given series is

1

1 · 5
+

1

3 · 7
+

1

5 · 9
+

1

7 · 11
+ · · ·

– I gave 2 points for noticing that much of a pattern. You can analyze* this like
examples covered in class; this yields the telescoping series

1

4

{ (
1− 1

5

)
+

(
1

3
− 1

7

)
+

(
1

5
− 1

9

)
+

(
1

7
− 1

11

)
+ · · ·

}

All the terms cancel out except
1

4

{
1 +

1

3

}
=

1

3
. Some students misplaced

the factor of 1/4, and came up with an answer of 4/3 or 16/3, for either of which
I gave 4 points.

If you need more explanation of the analysis* step, here it is:

1

1 · 5
+

1

3 · 7
+

1

5 · 9
+

1

7 · 11
+ · · · =

∞∑
n=1

1

(2n− 1)(2n+ 3)

(3 points for getting that far) and you can use the method of partial fractions to
decompose

1

(2x− 1)(2x+ 3)
=

1/4

2x− 1
− 1/4

2x+ 3
=

1

4

(
1

2x− 1
− 1

2x+ 3

)
(4 points for getting that far).

Some students decided this had to be a geometric series, whose first two terms
are 1/5 and 1/21. If that were so, the common ratio would be r = 5/21, and
so the next term in the series would be 25/441. With a = 1/5, the total would
then be

a

1− r
=

1/5

1− (5/21)
=

1/5

16/21
=

21

80
,

an answer for which I gave 2 points — or 1 point for answers attempting to arrive
at that.


