

(6 points)

(9 points)

Find the smallest possible cost of the fence:

and the dimensions of the rectangle yielding that price.

Solutions. Let n, e, w, s be the cost, per foot, of fencing for the north, east, west, and south sides of the rectangle; and let N, E, W, S be the lengths of those fences. The the cost of the north fence is nN , and similarly for each of the other sides. Thus the total cost is $C =$

 $nN + eE + wW + sS$.

green version	white version
$n=2$	$n=3$
$e=3$	$e=1$
$w=3$	$w=1$
$s=3$	$s=2$
$C = 2N + 3E + 3W + 3S$	$C = 3N + E + W + 2S$

However, it's a rectangle we're dealing with here, so $N = S$ and $E = W$. Thus the total cost is $C = (n + s)N + (e + w)E$.

That's the cost function, as a function of two variables; that equation is worth 1 point.

We're given the total area, $a = NE$. (Recognizing that was worth 1 point.)

$$
NE = 120 \mid NE = 90
$$

We can eliminate either one of the variables — either N or E — and then solve the problem in terms of the other variable.

If we eliminate E, we compute $E = aN^{-1}$, and so $C(N) = (n+s)N + (e+w)aN^{-1},$

where N is a variable and a, n, s, e, w are given constants. That's the cost function as a function of one variable; that's worth 2 points. Differentiating it correctly is worth another point:

$$
C'(N) = (n+s) - (e+w)aN^{-2}.
$$

Thus, in the two versions:

Finding the critical point(s) is worth another point: The only place where $C'(N)$ is zero is where $n+s=(e+w)aN^{-2}$, or $N=$ $\sqrt{(e + w)a}$ $n + s$.

$$
N = 12 \mid N = 6
$$

Finishing the computation was worth the last 3 points: $E = aN^{-1}$, which yields $E =$ $\sqrt{(n+s)a}$ $e + w$ and $C = 2\sqrt{(n+s)(e+s)a}$. $E = 10$ $E = 15$ $C = 120$ $C = 60$

If we eliminate N, we compute $N = aE^{-1}$, and so $C(E) = (n+s)aE^{-1} + (e+w)E,$

where E is a variable and a, n, s, e, w are given constants. That's the cost function as a function of one variable; it's worth 2 points. Differentiating it correctly is worth another point:

$$
C'(E) = -(n+s)aE^{-2} + (e+w).
$$

Thus, in the two versions:

$$
N = 120E^{-1}
$$

\n
$$
C(E) = 600E^{-1} + 6E
$$

\n
$$
C'(E) = -600E^{-2} + 6
$$

\n
$$
C'(E) = -450E^{-2} + 2
$$

\n
$$
C'(E) = -450E^{-2} + 2
$$

Finding the critical point(s) is worth another point: The only place where $C'(E)$ is zero is where $(n+s)aE^{-2} = e+w$, or $E =$ $\sqrt{(n+s)a}$ $e + w$.

$$
E = 10 \qquad E = 15
$$

Finishing the computation was worth the last 3 points: $N = aE^{-1}$, which yields $N =$ $\sqrt{(e + w)a}$ $n + s$, and $C = 2\sqrt{(n+s)(e+s)a}$. $N = 12$ $N = 6$ $C = 120$ $C = 60$