Math 198 Final exam, Spring 2005, 6 pages, 50 points, 120 minutes.

The high score was 46. The class average was 27.35%. The scores were lower than I expected, and also they were spread out quite a bit more than I expected. In fact, it is almost as though I taught two classes: Students with scores under 20 (generally students who did not know algebra or calculus) and students with scores over 31.

All differential equations must be SOLVED EXPLICITLY FOR y.

(1 points) What is the power series for e^x?

Answer:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

(1 points) What is the power series for e^{x^2}? (Write enough terms to make the pattern evident.)

Answer: I think this problem was fairly easy if you attended the last few classes of the semester, but apparently rather difficult otherwise. The easiest method is to replace x with x^2 in the previous problem, to obtain

$$e^{x^2} = 1 + (x^2) + \frac{(x^2)^2}{2!} + \frac{(x^2)^3}{3!} + \frac{(x^2)^4}{4!} + \cdots$$

which is already acceptable for full credit, though I would have preferred that you rewrite it as

$$e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \frac{x^8}{4!} + \cdots$$

A much harder method that also yields the right answer is to figure $f(x) = e^{x^2}$, hence $f'(x) = 2xe^{x^2}$ and $f''(x) = (4x^2 + 2)e^{x^2}$, and so on; hence $f(0) = 1$, $f'(0) = 0$, $f''(0) = 2$, and so on, hence

$$e^{x^2} = 1 + 0x + \frac{2x^2}{2!} + 0x^3 + \frac{12x^4}{4!} + 0x^5 + \frac{120x^6}{6!} + 0x^7 + \frac{1680x^8}{8!} + 0x^9 + \cdots$$

(4 points) Find the radius of convergence of the series $1 - \frac{x^3}{2} + \frac{x^6}{4} - \frac{x^9}{8} + \frac{x^{12}}{16} - \frac{x^{15}}{32} + \cdots$.

Answer: Some students, ignoring the content of my last few lectures, attempted to apply the ratio test to the coefficients

$$c_0 = 1, \quad c_1 = c_2 = 0, \quad c_3 = -\frac{1}{2}, \quad c_4 = c_5 = 0, \quad c_6 = \frac{1}{4}, \quad c_7 = c_8 = 0, \quad c_9 = -\frac{1}{8}, \ldots$$
and thus attempted to find a limit for the sequence of ratios
\[
\frac{c_0}{c_1} = \frac{1}{0} = ?, \quad \frac{c_1}{c_2} = \frac{0}{0} = ?, \quad \frac{c_2}{c_3} = \frac{0}{-\frac{1}{2}} = 0, \quad \frac{c_3}{c_4} = \frac{-\frac{1}{2}}{0} = ?, \quad \frac{c_4}{c_5} = \frac{0}{0} = ?, \quad \frac{c_5}{c_6} = \frac{0}{\frac{1}{4}} = 0, \ldots
\]
which is useless.

The correct procedure, which I discussed in class, was to substitute \(u = x^3 \); this converts the given series to
\[
1 - \frac{u}{2} + \frac{u^2}{4} - \frac{u^3}{8} + \frac{u^4}{16} - \frac{u^5}{32} + \cdots = \sum_{j=0}^{\infty} \left(\frac{-u}{2} \right)^j.
\]
That’s the geometric series, which converges to \(\frac{1}{1 - (-u/2)} = 2/(2 + u) \) when \(\left| \frac{-u}{2} \right| < 1 \); that is, when \(|u| < 2 \). Or, if you didn’t happen to recognize the geometric series, you could use the ratio test: We have \(c_n = (-1/2)^n \), so \(|c_n/c_{n+1}| = 2 \), and so the series with the \(u \)'s has radius of convergence equal to \(\lim_{n \to \infty} |c_n/c_{n+1}| = 2 \).

At this point some students stopped with the answer of 2. I gave half credit for that answer.

The series with the \(u \)'s converges when \(|u| < 2 \). Hence the original series converges when \(|x^3| < 2 \); that is, when \(|x| < \frac{\sqrt[3]{2}}{2} \). So the radius of convergence for the original series is \(R = \frac{3\sqrt[3]{2}}{2} \).

(8 points) \(xy'' + \left(\frac{2}{3} - x \right)y' - y = 0 \). (The next page is blank, for further work on this or other problems.)

Answer: Problems like this one are a real pain to grade. Over half the class got most of the problem right, and deserve a substantial amount of partial credit. Most made a few minor errors. But most made different errors, and it takes a long time to figure out each paper. Ouch. Still, it can’t be helped; you do have to be tested on this stuff.

\[
\begin{align*}
y &= \sum_{n=0}^{\infty} c_n x^{n+r} & -1 \\
y' &= \sum_{n=0}^{\infty} (n + r) c_n x^{n+r-1} \\
 &= \sum_{n=-1}^{\infty} (n + r + 1) c_{n+1} x^{n+r} & 2/3 \\
x y' &= \sum_{n=0}^{\infty} (n + r) c_n x^{n+r} & -1 \\
y'' &= \sum_{n=0}^{\infty} (n + r - 1)(n + r) c_n x^{n+r-2} \\
x y'' &= \sum_{n=0}^{\infty} (n + r - 1)(n + r) c_n x^{n+r-1} \\
 &= \sum_{n=-1}^{\infty} (n + r)(n + r + 1) c_{n+1} x^{n+r} & 1 \\
xy'' + \left(\frac{2}{3} - x \right)y' - y &= \sum_{n=-1}^{\infty} \left\{ -c_n + \frac{2}{3}(n + r + 1) c_{n+1} - (n + r) c_n \\
 + (n + r)(n + r + 1) c_{n+1} \right\} x^{n+r}
\end{align*}
\]
hence
\[
\left\{ -c_n + \frac{2}{3}(n + r + 1) c_{n+1} - (n + r) c_n + (n + r)(n + r + 1) c_{n+1} \right\} = 0 \quad (n \geq -1)
\]
which simplifies to
\[
\left(\frac{2}{3} + n + r\right) (n + r + 1)c_{n+1} = (n + r + 1)c_n \quad (n = -1, 0, 1, 2, 3, \ldots)
\]
Since \(c_{-1} = 0\) and \(c_0 \neq 0\), when \(n = -1\) the equation above simplifies to \((r - \frac{1}{3})r = 0\), hence the roots are 0 and 1/3.

For either of those values of \(r\), and for all of \(n = 0, 1, 2, 3, \ldots\), the factor \((n + r + 1)\) is never 0, so we can divide it out. (That’s not just to make our work prettier, but to avoid a tremendous amount of labor and error-risk in the subsequent steps.) That leaves \((\frac{2}{3} + n + r)c_{n+1} = c_n\), which simplifies to
\[
c_{n+1} = \frac{c_n}{\frac{2}{3} + n + r} \quad (n = 0, 1, 2, 3, \ldots)
\]
Partial credit: 3 points for getting the information in either of the following two boxes, or 4 points for getting the information in both boxes.

<table>
<thead>
<tr>
<th>(r = 0) or (r = 1/3)</th>
<th>(c_{n+1} = \frac{c_n}{\frac{2}{3} + n + r}) ((n = 0, 1, 2, 3, \ldots))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 0, c_{n+1} = \frac{3c_n}{3n + 2})</td>
<td>(r = 1/3, c_{n+1} = \frac{c_n}{\frac{2}{3} + n + r})</td>
</tr>
</tbody>
</table>

Now continue. For \(r = 1/3\), we get \(c_n = \frac{c_0}{n!}\). For \(r = 0\), we get
\[
\begin{align*}
c_0 & = \text{arbitrary} \\
(n = 0) & c_1 = 3c_0/2 = 3c_0/2 \\
(n = 1) & c_2 = 3c_1/5 = 3^2c_0/(2 \cdot 5) \\
(n = 2) & c_3 = 3c_2/8 = 3^3c_0/(2 \cdot 5 \cdot 8) \\
(n = 3) & c_4 = 3c_3/11 = 3^4c_0/(2 \cdot 5 \cdot 8 \cdot 11) \\
(n = 4) & c_5 = 3c_4/14 = 3^5c_0/(2 \cdot 5 \cdot 8 \cdot 11 \cdot 14)
\end{align*}
\]
and so on.

A common error. Note the leftmost column, which I have noted with the word “note.” I included that column in my examples on the chalkboard, but apparently I did not stress its usefulness enough. Some students who did not write that column, made the following type of error in their substitutions. Use the formula \(c_{n+1} = 3c_n/(3n + 2)\). To calculate \(c_1\), some students substituted \(n = 1\), and so they decided \(c_1 = 3c_0/(3 \cdot 1 + 2) = 3c_0/5\); similarly substituting \(n = 2\) gave them \(c_2 = 3c_1/(3 \cdot 2 + 2) = 3c_1/8\), and so on. But that’s not right, and I deducted a point for the answers that resulted from this type of error (if no other errors were made). The correct substitutions, of course, are: \(n = 0\) gives us \(c_1 = 3c_0/(3 \cdot 0 + 2) = 3c_0/2\), and \(n = 1\) gives us \(c_2 = 3c_1/(3 \cdot 1 + 2) = 3c_1/5\).

Another common error. Several students neglected to carry out the computation in the column that I have marked “second note.” Instead they made the mistake of plugging in \(c_0\) for \(c_n\) — thus obtaining \(c_2 = 3c_0/5\), \(c_3 = 3c_0/8\), \(c_4 = 3c_0/11\), etc. This type of error is partly conceptual, so I charged 2 points for it, in those cases when I could identify it — which usually means when it was not combined with other errors.

Partial credit. If you got all the main ideas up to this point, then:
• getting one of the two series in the answer completely right and the other series in the answer mostly wrong, was worth 6 points.

• getting one of the two series right and the other mostly right, was worth 7 points.

Finally, the solution to the problem is

\[
y = Ax^{1/3} \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots \right) \\
+ B \left(1 + \frac{3x}{2} + \frac{3^2 x^2}{2 \cdot 5} + \frac{3^3 x^3}{2 \cdot 5 \cdot 8} + \frac{3^4 x^4}{2 \cdot 5 \cdot 8 \cdot 11} + \cdots \right)
\]

or

\[
y = Ax^{1/3} e^x + B \left(1 + \frac{3x}{2} + \frac{3^2 x^2}{2 \cdot 5} + \frac{3^3 x^3}{2 \cdot 5 \cdot 8} + \frac{3^4 x^4}{2 \cdot 5 \cdot 8 \cdot 11} + \cdots \right)
\]

A common error. Because \(c_0\) is arbitrary, the chart for computing the \(c_j\)’s sometimes is written with the \(c_0\) row omitted. Consequently, some students forgot that term in their answers — i.e., they omitted the “1 +” at the left end of the expression inside the big parentheses. I deducted 1 point for this type of error.

Partial checking: One of the two linearly independent solutions is fairly easy to check.

If \(y = x^{1/3} e^x\)
then \(y' = \frac{1}{3} x^{-2/3} e^x\)
\(y'' = \frac{2}{3} x^{-5/3} e^x\)
\(xy' = \frac{1}{3} x^{1/3} e^x\)
\(xy'' = \frac{2}{9} x^{-2/3} e^x\)

\[
x y'' + \left(\frac{2}{3} - x \right) y' - y = 0 \quad \sqrt{\text{(7 points)}}
\]

Answer:

Rewrite as \(\frac{(D - 1)x}{Dx} + 2Dy = t\), \(\frac{-y}{-y} = 1\). Solve the second equation for \(y\); thus \(y = Dx - 1\). Plug that into the first equation; thus the first equation becomes \((D - 1)x + 2D(Dx - 1) = t\). (Keep in mind that \(D1 = 0\).) That equation simplifies to which simplifies to \((2D^2 + D - 1)x = t\) or \(2(D - \frac{1}{2})(D + 1) = t\), which has general solution \(x(t) = Ae^{t/2} + Be^{-t} - t - 1\).

Then compute \(y = Dx - 1\), so \(y = \frac{1}{2} a e^{t/2} - be^{-t} - 2\). Alternate formulation: To eliminate a fraction in the answer, substitute \(A = \frac{1}{2} a\) and \(B = b\). Thus \(x(t) = 2Ae^{t/2} + Be^{-t} - t - 1\) and \(y(t) = Ae^{t/2} - be^{-t} - 2\).
Checking:

\[
\begin{array}{c|cccc}
 & x = 2Ae^{t/2} + Be^{-t} -t -1 & y = Ae^{t/2} - Be^{-t} -2 & x' = Ae^{t/2} - Be^{-t} -1 & y' = \frac{1}{2} Ae^{t/2} + Be^{-t} \\
\hline
 & -1 & -1 & 1 & 1
\end{array}
\]

\[
x' + x + 2y' = t
\]

\[
x' - y = 1
\]

Common errors: I did not deduct any points for writing \(a/2\) as \(1/2a\), though I should have. I did not deuct any points for replacing all the \(t\)’s in the answer with \(x\)’s, though I should have. Only 6 students got full credit on this one. I gave 5 points for any answer of the form

\[
x(t) = 2Ae^{t/2} + Be^{-t} + \left(\begin{array}{c}
\text{some polynomial in } t \\
\text{of degree } \leq 1
\end{array} \right)
\]

\[
y(t) = Ae^{t/2} - Be^{-t} + \left(\begin{array}{c}
\text{some other polynomial in } t \\
\text{of degree } \leq 1
\end{array} \right)
\]

I gave 3 points for any answer of the form

\[
x(t) = Ae^{t/2} + Be^{-t} + \text{(some function of } t) \\
y(t) = Ae^{t/2} + Be^{-t} + \text{(some other function of } t)
\]

I gave 1 point for any answer that included both \(x(t) = \text{something}\) and \(y(t) = \text{something}\).

Answer:

This is a constant-coefficient equation, so the solutions are of the form \(y = e^{kt}\). The number \(k\) is the solution of \(k^3 + 1 = 0\). That is, the values of \(k\) are the cube roots of \(-1\). One of those values is \(-1\). The other two values can be found by geometry — the numbers \(-1\) and the other two values are equally spaced along a circle centered at the origin. Or, this may be simpler: Divide \(k^3 + 1\) by \(k + 1\) (e.g., using synthetic division); we find \(k^3 + 1 = (k + 1)(k^2 - k + 1)\). So the remaining two roots are the solutions of the quadratic equation \(k^2 - k + 1\). Use the quadratic formula; we get \(k = \frac{1}{2} \pm \frac{1}{2} i \sqrt{3}\). Thus the answer is

\[
y = Ae^{-x} + e^{x/2} \left[B \cos\left(\frac{1}{2} \sqrt{3} x\right) + C \sin\left(\frac{1}{2} \sqrt{3} x\right) \right].
\]

I did not deduct any points for writing \(1/2x\) instead of \(x/2\), though probably I should have. Next year I’ll make a bigger fuss about that.

About a third of the class got full credit on this one.

I deducted 1 point from students who clearly had the right idea but made some simple error of arithmetic, algebra, or transcription. One of the most common one-point errors was in writing \(e^{1/2}\) instead of \(e^{x/2}\).

I deducted 2 points from students whose solutions to the third degree polynomial differed in substantial ways from the correct solutions. I also deducted 2 points for an answer of \(y = \)
A \exp(-x) + B \exp \left((\frac{1}{2} + \frac{i}{2}\sqrt{3})x \right) + C \exp \left((\frac{1}{2} - \frac{i}{2}\sqrt{3})x \right), \text{ because (as I repeatedly specified in class) the number } i \text{ should only appear in intermediate steps, not in your answer.}

(6 points) \quad \frac{dy}{dx} = (y + 2x - 2)^2 - 1 \text{ with } y(1) = 1.

Answer:

Use the affine substitution \(u = y + 2x - 2 \). Then \(u' = y' + 2 = ((y + 2x - 2)^2 - 1) + 2 = u^2 + 1 \). That is, \(\frac{du}{dx} = u^2 + 1 \), so \(x = \int dx = \int (u^2 + 1)\, du = \arctan u + c = \arctan(y + 2x - 2) + c \), or \(\tan(x - c) = y + 2x - 2 \). To find \(c \), plug in \(x = y = 1 \); that yields \(\tan(1 - c) = 1 \); hence \(1 - c = \pi/4 \), and \(-c = (\pi/4) - 1 \). Thus \(\tan(x + \frac{\pi}{4} - 1) = y + 2x - 2 \), or \(y = -2x + 2 + \tan \left(x + \frac{\pi}{4} - 1 \right) \). I also gave full credit for \(y = -2x + 2 + \tan \left(x - 0.2146 \right) \).

To check: Recall that \(\tan^2 \theta + 1 = \sec^2 \theta \). If \(y = -2x + 2 + \tan(x + \frac{\pi}{4} - 1) \), then \(\frac{dy}{dx} = -2 + \sec^2(x + \frac{\pi}{4} - 1) = -2 + 1 + \tan^2(x + \frac{\pi}{4} - 1) = -1 + (y + 2x - 2)^2 \).

Penalty 1 point for not finding \(y \) explicitly (see instructions on page 1 of exam). Penalty of 2 points for not finding \(c \).

Some of the errors were a bit strange. Students who take a course in differential equations should first have mastered a few basics of calculus; I mentioned that on the first day of the semester. Anyone who takes differential equations without knowing the chain rule deserves to flunk for that alone. Nevertheless, in future semesters I guess I will spend a few more minutes on the chain rule at the beginning of the semester.

(6 points) \quad \text{Given the solution } y = Ax + B(x^2 + 1), \text{ find the differential equation.}

Answer:
\[
y = Ax + B(x^2 + 1)
\]

isolate \(A\)
\[
x^{-1}y = A + B(x + x^{-1})
\]

differentiate both sides
\[
x^{-1}y' - x^{-2}y = B(1 - x^{-2})
\]
simplify: multiply through by \(x^2\)
\[
xy' - y = B(x^2 - 1)
\]
isolate \(B\)
\[
\frac{xy' - y}{x^2 - 1} = B
\]
differentiate both sides
\[
\frac{(xy' - y)'(x^2 - 1) - (xy' - y)(x^2 - 1)'}{(x^2 - 1)^2} = 0
\]
multiply through by denominator
\[
(xy' - y)'(x^2 - 1) - (xy' - y)(x^2 - 1)' = 0
\]
add same to both sides
\[
(xy' - y)'(x^2 - 1) = (xy' - y)(x^2 - 1)'
\]
rearrange terms
\[
(xy'')(x^2 - 1) = 2x(xy' - y)
\]
\[
(x^2 - 1)y'' = 2(xy' - y).
\]

Or, compute the functions in the left column; then do some algebraic elimination to discover what numbers in the right column will make everything cancel out.

<table>
<thead>
<tr>
<th>(y)</th>
<th>(y')</th>
<th>(y'')</th>
<th>(x^2y'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ax) + (Bx^2) + (B)</td>
<td>(A) + (2Bx)</td>
<td>(2B)</td>
<td>(2Bx^2)</td>
</tr>
</tbody>
</table>

\[-2y + y'' + 2xy' - x^2y = 0Ax + 0Bx^2 + 0B\]

Apparently I overestimated the class; only two students got full credit on this problem. I couldn’t make much sense out of the wrong answers on this problem, so I didn’t give out much partial credit. I did give one point for these answers, since they are at least true statements (though they are not the answer to the problem): \(y''' = 0\) or \(y'' = 2B\) or \(y' = A + 2Bx\).

\[\frac{dy}{dx} = \frac{2y - x}{x}.\]

\textbf{Answer:}

This problem is homogeneous. Hence we can substitute \(y = ux\) and \(dy = u\,dx + x\,du\). (If you messed up that equation, then you haven’t understood the Chain Rule and Product Rule from calculus.) Simplifying and separating variables yields \(\frac{du}{u - 1} = \frac{dx}{x}\). Integrate both sides; thus \(\ln|u - 1| = c_1 + \ln|x|\). Raising \(e\) to the power on both sides yields \(u - 1 = cx\). (Note that the
right side should be \(cx \), not \(c + x \). That’s because \(e^{a+b} \) is equal to \(e^a e^b \), not \(e^a + e^b \). I charged 3 points for an error in this step.) That is, \(u = cx + 1 \), so \(y = cx^2 + x \).

A second method: The equation is linear. Rewrite it as \(y' - \frac{2}{x} y = -1 \). The integrating factor to use is \(e^{\int \frac{2}{x} dx} = x^2 \). Multiplying the differential equation through by that amount yields \((x^2y)' = x^{-2}y' - 2x^{-3}y = -x^{-2} \). Integrate both sides; thus \(x^{-2}y = x^{-1} + c \). Now multiply both sides by \(x^2 \), to arrive at the answer. A common error in this procedure was to misplace the \(c \), or omit it altogether; I charged 3 points for that.

Another error made by several students was to use an integrating factor of \(e^{\int \frac{2}{x} dx} = x^2 \). When you multiply the differential equation through by that amount, you get \(x^2 y' - 2xy = -x^2 \). The students then wrote the next step to be \((x^2y)' = -x^2 \), not bothering to check whether \(x^2y' - 2xy \) is in fact equal to \((x^2y)' \). It’s not. This is a checking step that I mentioned repeatedly in class. I charged 3 points for this error.

(6 points) \(xy' + 2y = 3x^3y^{-2} \).

\textbf{Answer:}

Rewrite this equation in standard form as \(y' + 2x^{-1}y = 3x^2y^{-2} \). This is a Bernoulli equation with \(n = -2 \); observing that fact was worth 1 point. Calculate

\[v = y^{1-n} = y^3 \quad \text{and} \quad v' = 3y^2y' \; ; \]

getting all of that correctly was worth 2 points. (Some students who still do not understand the chain rule from calculus did not get this far.)

Multiply the standard form equation through by \(3y^2 \); obtain \(3y^2y' + 6x^{-1}y^3 = 9x^2 \). That is,

\[v' + 6x^{-1}v = 9x^2, \]

worth 3 points. This is linear first-order, in standard form. The integrating factor is \(I(x) = e^{\int 6x^{-1} dx} = e^{6 \ln x} = x^6 \). Multiply through by that factor; we obtain \(x^6v' + 6x^5v = 9x^8 \). That is,

\[\frac{d}{dx} \left(x^6v \right) = \frac{d}{dx} \left(x^9 \right) . \]

As I repeatedly explained in class, at this point you should check that \(\frac{d}{dx} \left(x^6v \right) \) (or whatever you have in its place) is actually equal to \(x^6v' + 6x^5v \) (or whatever you have in its place); checking this takes very little time and would have helped many students catch their errors.

Integrate both sides; \(x^6v = x^9 + c \). Divide out \(x^6 \); thus \(y^3 = v = x^3 + cx^{-6} \). Solve for \(y \); thus \(y = \frac{3}{\sqrt[3]{x^3 + cx^{-6}}} \). That last function is \textit{not} equal to \(\frac{3}{\sqrt[3]{x^3}} + \frac{3}{\sqrt[3]{cx^{-6}}} = x + c_1x^{-2} \), see the “common errors” web page.

Only 4 students got full credit for this problem. I gave 5 points out of 6 for answers of the form \(y = \frac{3}{\sqrt[3]{kx^3 + cx^{-6}}} \) where \(k \) was some particular number other than 1.