- 1. [1 each] Determine whether or not the following statements are true or false. If they are always true circle T. If they are not always true, circle F.
- 2.6.55.d (a) FSuppose f is continuous on [a,b]. Then there is a point c in (a,b) such that $f(c) = \frac{[f(a) + f(b)]}{2}$.
 - 3.1.47.8 (b) $(\widehat{\mathbf{T}})$ F If the function f is differentiable for all values of x, then f is continuous for all values of x.
- 3.2.47. (c) (T) F The slope of a line tangent to $f(x) = e^x$ is never 0.
- 3.5.25. A (d) T(F) If the acceleration of an object remains constant, then its velocity is constant.
- 2.6.55. α (e) $\widehat{\mathbf{T}}$ If a function if left-continuous and right-continuous at a, then it is continuous at a.
- 2.6.21 2. [10] Find the intervals on which the following functions are continuous:

(a)
$$f(x) = \frac{x^5 + 6x + 17}{x^2 - 9} = \frac{x^5 + 6x + 17}{(x - 3)(x + 3)} = \text{rational function}$$

$$(-\infty, -3), (-3, 3), (3, \infty)$$

2.6.35 (b)
$$f(x) = \sqrt{2x^2 - 16}$$
 $2x^2 - 16 \ge 0$ $2x^2 \ge 16$ $x^2 \ge 8$ $|x| \ge \sqrt{8} = 2\sqrt{2}$ $(-\infty, -2\sqrt{2}], [2\sqrt{2}, \infty)$ or $(-\infty, -\sqrt{8}], [\sqrt{8}, \infty)$

3. 3. 55 3. [9] Find
$$f'''(x)$$
 for $f(x) = x^2 e^{3x}$ Use product rule 3 times, or use $(gh)''' = g''' h + 3g'' h' + 3g' h'' + gh'''$ (see 3.3.82)
$$= (x^2)'''(e^{3x}) + 3(x^2)''(e^{3x})' + 3(x^2)'(e^{3x})'' + (x^2)(e^{3x})'''$$

$$= (a)(e^{3x}) + 3(2)(3e^{3x}) + 3(2x)(9e^{3x}) + (x^2)(27e^{3x})$$

$$= e^{3x}((28)(3e^{3x}) + 27x^2)$$

$$= (9(3x^2 + 6x + 2)e^{3x})$$