
Boundary Value Problems — Supplement 1
The Method of Characteristic Curves

This material is taken, in part, from pages 5–6 of our textbook.

Problem: Find u(x, y) satisfying
the partial differential equation

(3)
∂u

∂x
+ p(x, y)

∂u

∂y
= 0

where p is some given function.

The strategy is this: We first solve the related ordinary differential equation

(4)
dy

dx
= p(x, y)

if we can. (We are only to find exact solutions to some first-order ordinary differential equations.
However, if we also allow numerical approximations, then we can solve any first order ODE.)

Since no initial condition is specified for (4), it has many solutions, which we may view as
curves in the xy-plane — i.e., solution curves. Let us write those curves as φ(x, y) = C; each
choice of the constant C gives us a different one of the solution curves. These curves are called
the characteristic curves of the original PDE (3). We now claim that

if f(s) is any continuously differentiable
function of one variable, then

u(x, y) = f(φ(x, y))
is a solution of problem (3), and moreover
u is constant along each characteristic curve.

Since there are many possible choices for f , this gives us many solutions of (3). Of course, our
problem is also restricted by some initial or boundary condition, that will narrow down our
collection of solutions, perhaps just to one solution.

For purposes of this course, the recipe given above is sufficient. The proof of our claim is more technical
and is optional, so I’ll present it in smaller print here.

Observe that φ(x, y) = C is the solution of the exact differential equation

∂φ

∂x
dx +

∂φ

∂y
dy = 0

which is therefore equivalent to (4) (though (4) itself generally is not exact, and we generally do not find φ by
the method of exact equations). Consequently, along each solution curve we have dy

dx = −∂φ
∂x/∂φ

∂y . Since also
p(x, y) = dy

dx , it follows that p(x, y) = −∂φ
∂x/∂φ

∂y along the solution curves.
Now let f be any continuously differentiable function, and define u by u(x, y) = f(φ(x, y)). Then the chain

rule tells us
∂u

∂x
= f ′(φ(x, y))

∂φ

∂x
,

∂u

∂y
= f ′(φ(x, y))

∂φ

∂y
.

Dividing one of those equations by the other, we get

∂u

∂x
/
∂u

∂y
=

∂φ

∂x
/
∂φ

∂y
= −p(x, y),
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so u is a solution of (3).

Example, page 6 problem 3. The given problem is
∂u

∂x
+ x2∂u

∂y
= 0. The related ODE is

dy

dx
= x2. Solve that by separation of variables; dy = x2dx, so y = 1

3
x3 +C. The solution curves

are y − 1
3
x3 = C, so we take φ(x, y) = y − 1

3
x3. The solution to the original problem then is

u(x, y) = f(y − 1
3
x3) for any function f . Let’s check the answer:

If u(x, y) = f
(
y − 1

3
x3

)
,

then ∂u/∂x = f ′
(
y − 1

3
x3

)
(−x2)

and ∂u/∂y = f ′
(
y − 1

3
x3

)
,

so
∂u

∂x
= −x2∂u

∂y
.

Here is a slightly harder problem (not posed in the book): Solve the initial value problem

∂u

∂x
+ x2∂u

∂y
, u(0, y) = sin y.

Answer: As before, we have u(x, y) = f
(
y − 1

3
x3

)
for some function x. When x = 0, this

equation gives us sin y = u(0, y) = f(y). So that tells us what f must be — that is, f(s) = sin s

for all numbers s. Therefore u(x, y) = sin
(
y − 1

3
x3

)
.

Homework: problems 12 and 14 from page 6. Hint: You may have to rewrite these
problems to get them into the form (3).

Additional examples (not in textbook):

Example 1.
∂u

∂x
+

[
(x− y − 4)2 + 2

] ∂u

∂y
= 0

Solution. The associated ODE is
dy

dx
= (x− y− 4)2 +2. That can be solved using the affine

substitution u = x − y − 4 (by methods covered in a first course in ODE’s, not shown here).
The resulting solution is x + arctan(x − y − 4) = C. Thus the function we want is φ(x, y) =

x + arctan(x− y − 4), and the solution to the PDE is u(x, y) = f(x + arctan(x− y − 4)) .

Example 1a.
∂u

∂x
+

[
(x− y − 4)2 + 2

] ∂u

∂y
= 0 with additional condition u(0, y) = y3.

Solution: As in the preceding example, we arrive at

u(x, y) = f(x + arctan(x− y − 4)) .
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Plugging in x = 0 yields

y3 ?
= u(0, y) = f(arctan(−y − 4)).

To find f , substitute −y−4 = tan θ, or y3 = (−4−tan θ)3. That yields (−4−tan θ)3 = f(θ), so
now we know what f is. Plug that formula for f into our formula for u, with θ = x+arctan(x−
y − 4), to obtain

u(x, y) = [−4− tan (x + arctan(x− y − 4))]3 .

Example 2.
∂u

∂x
+

[
2y

x
− x2y2

]
∂u

∂y
= 0.

Solution. The associated ODE is
dy

dx
=

2y

x
− x2y2. Rewrite that as

dy

dx
− 2x−1y = −x2y2

and you’ll see that it is a Bernoulli equation with n = 2; thus it yields a linear equation when

we substitute u = y−1. The solution to the ODE is x2y−1 − 1

5
x5 = C, so the solution to the

original PDE is u(x, y) = f
(
x2y−1 − 1

5
x5

)
.

Example 3.
∂u

∂x
+

20x3y − 3y4

5x4 − 12xy3

∂u

∂y
= 0

Solution. The associated ODE is
dy

dx
=

20x3y − 3y4

5x4 − 12xy3
; this is homogeneous. Its solution is

5x4y − 3xy4 = C. Hence the PDE has solution u(x, y) = f(5x4y − 3xy4) .

Example 3a.
∂u

∂x
+

20x3y − 3y4

5x4 − 12xy3

∂u

∂y
= 0 with boundary/initial condition u(x, x) = cos x.

Solution. As in the preceding example, the general solution of the PDE is u(x, y) = f(5x4y−
3xy4). Substituting y = x yields cos x = u(x, x) = f(2x5). Substitute z = 2x5 and x = (z/2)1/5;

this yields cos
(

5

√
z/2

)
= f(z). Now that we know what f is, we can plug that into the general

solution of the PDE, with z = 5x4y − 3xy4. This yields u(x, y) = cos
5

√
5x4y − 3xy4

2
.

Problem 4.
∂u

∂x
+

x− 3

y + 2

∂u

∂y
= 0

Problem 5.
∂u

∂x
+

2x− y − 2

2x− y + 1

∂u

∂y
= 0

Problem 5a.
∂u

∂x
+

2x− y − 2

2x− y + 1

∂u

∂y
= 0 with additional condition u(x, x) = cos(x).
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Problem 6.
∂u

∂x
+
−x + 5y

3x + y

∂u

∂y
= 0

Problem 6a.
∂u

∂x
+
−x + 5y

3x + y

∂u

∂y
= 0 with additional condition u(0, y) = ln y.

Unfortunately, the textbook switches notation between pages 6 and 108, so we must do
likewise. To make the results of page 108 more understandable, let us first restate the results

of page 6 in new notation. Let α(x, y) =
1

p(x, y)
, replace y with t, and replace φ with L. The

letter φ will be used for something else, below. After some algebraic rearrangements, our recipe
takes this form:

Problem: Find u(x, t) satisfying

(3)
∂u

∂t
+ α(x, t)

∂u

∂x
= 0

where α is some given function.

The strategy is this: We first consider the related ordinary differential equation

(4)
dx

dt
= α(x, t)

The solution curves of that equation are called the characteristic curves of (3). Let us denote
those curves by L(x, t) = C, with one curve for each choice of C. Then

if f(s) is any continuously differentiable
function of one variable, then

u(x, t) = f(L(x, t))
is a solution of problem (3), and moreover
u is constant along each characteristic curve.

The following material is based mostly on page 108 of our textbook. We now consider
another type of problem, slightly different from the preceding one.

Problem: Find u(x, t) satisfying




(3)
∂u

∂t
+ A(u)

∂u

∂x
= 0,

(IC) u(x, 0) = φ(x),

where A and φ are some given functions.

The initial condition was optional in the previous exercises, but it’s essential in this modified
problem. The big modification is this: instead of a given, known function α(x, t), we have a
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function A(u) that depends on the unknown u. We can still reason about A(u) as a function
of x and t, viewing it as A(u(x, t)), so much of our previous reasoning is still valid. But our
methods of computation may have to change slightly, since we don’t know yet what u is.

Keep in mind that the functions A and φ are known. Here is the recipe for the answer:

If the equation x = tA(φ(C)) + C can be solved explicitly for C,
obtaining an equation of the form C = L(x, t) for some function L,
and if f(s) is any continuously differentiable function of one variable,
then u(x, t) = f(L(x, t)) is a solution of (3). Moreover, when we
plug in φ(x) = u(x, 0) = f(L(x, 0)), we may determine what f is.

Proof (optional). We modify slightly our earlier reasoning about characteristic curves. We still have u constant
along each of its characteristic curves. Those are the solutions ordinary differential equation

dx

dt
= A(u).

Along each of those curves, u is constant, so A(u) is constant, so dx/dt is constant, so the “curve” x = x(t) is
actually a straight line with slope A(u). Thus, it is the line x(t) = tA(u) + x(0). Say x(0) takes the value C;
we get different straight lines for different choices of C.

Let’s look at one of those lines. On that line, the value of u is constant. That is, u = u(x(t), t) = u(x(0), 0) =
u(C, 0) = φ(C). Therefore A(u) = A(φ(C)), and the line is given by x = tA(φ(C)) + C. If we can rewrite that
equation in the form C = L(x, t) for some function L, then we can apply the technique of characteristic curves
developed earlier.

Example: page 108 problem 13. The given problem is ut + ln(u)ux = 0 with initial condition
u(x, 0) = ex. Here we have A(u) = ln(u) and φ(x) = ex. Hence equation (∗) is

x = t ln(eC) + C.

Rewrite that as x = tC + C, or as x = (t + 1)C. Thus x/(t + 1) = C, so we get L(x, t) =
x/(t + 1). Then the solution to the PDE is u(x, t) = f(x/(t + 1)). Plug in the initial condition:

ex ?
= u(x, 0) = f(x), so we must have f(x) = ex. Thus the solution is u(x, t) = exp (x/(t + 1)) .

Additional exercises (not in the textbook):

Problem 7. ut + (3u− 7)ux = 0 with u(x, 0) = 5x + 2.

Problem 8. ut + u−1ux = 0 with u(x, 0) =
1

x + 3
.

Problem 9. ut + u−1ux = 0 with u(x, 0) = 4x, for x > 0. Hints : Solving for C involves
solving a quadratic equation, though you may have to rewrite the problem before that becomes
apparent. Also, as with any quadratic equation, you’ll find ± appearing in your computations,
but within a few steps you’ll find that only one of the two interpretations (+ or −) yields a
meaningful solution.

5


