The Volume of a Generalized Cone

You should already know from geometry that
the area of a triangle is
$\frac{1}{2}$ (base length)(height).

We're going to prove an interesting generalization of that fact to 3 dimensions. But first we need one other fact from geometry:

The ratio of the areas of two similar figures is the square of the ratio of any one-dimensional measurement in the figures.

That means, for instance,

if you compare two circles, and the bigger radius is 3 times the smaller radius, then the bigger area is 9 times the smaller area. Or if the bigger triangle is 3 times as wide as the smaller triangle, then it also is 3 times as tall, and so it is 9 times as big in area.

Now, let's go on to three dimensions. What most people call a "cone" is what a mathematician calls a right circular cone. What a mathematician calls a "cone" is something more general, which includes the right circular cone as a special case. It also includes, as other special cases, a pyramid, a tetrahedron, and certain other weird shapes:

Here's what all these figures have in common: connect all the points in some planar region to some point outside that region; the resulting solid is what mathematicians call a cone. And we'll prove

$$
\begin{align*}
& \text { the volume of a cone is } \\
& \frac{1}{3} \text { (base area)(height). } \tag{3}
\end{align*}
$$

Note how that is analogous to formula (1). But it includes as special cases the formulas for the volumes of a right circular cone, a pyramid, a
tetrahedron, and other odd shapes.
To begin, we must analyze that last picture. Call the apex point P. The base region R (for "region"), with area b (for "base") lies in a certain plane, and the way that we define the height h of the cone is the distance from P to that plane. In other words, drop a perpendicular from P to that plane, and measure its length. The perpendicular might not actually hit the region R - that is, the apex P does not have to be directly over a part of the region R.

We're going to calculate the volume of the cone by the same method we've been calculating all our volumes: Cut it up into thin slices. Let's consider the slice that lies in the plane that has distance x from the apex point P, where x is between 0 and h. Say that slice has area $a(x)$. Then it has volume $a(x) \Delta x$, if we're only counting finitely many slices; or it has volume $a(x) d x$, when we take the limit as the number of slices goes to infinity and the thickness of the slices becomes infinitesimal. Therefore the volume of the entire cone is $\int_{0}^{h} a(x) d x$.

But by our earlier observation on proportionality, we can see that

$$
\frac{a(x)}{b}=\left(\frac{x}{h}\right)^{2},
$$

and therefore the volume of the cone is

$$
\int_{0}^{h} b \frac{x^{2}}{h^{2}} d x=\frac{b}{h^{2}} \int_{0}^{h} x^{2} d x=\frac{b}{h^{2}}\left[\frac{1}{3} x^{3}\right]_{0}^{h}=\frac{b}{h^{2}} \cdot \frac{1}{3} h^{3}=\frac{1}{3} b h .
$$

That completes the proof of (3).

