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Most results in this presentation are joint work with
Pavel Zalesskii

Notation: C denotes a nonempty class of finite groups
satisfying the following conditions:

- If K ≤ H and H ∈ C, then K ∈ C,
- If K ! H and H ∈ C, then H/K ∈ C,
- If

1 → K → G → H → 1

is an exact sequence of finite groups and H ∈ C, then
G ∈ C.

For example, C could be the class of

(i) all finite groups, or
(ii) all finite solvable groups, or
(iii) all finite p-groups, where p is a fixed prime

number.
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Definition 1 One says that an abstract group R is

“conjugacy C-separable”

if for every pair of elements x, y ∈ R, these elements
are conjugate in R if and only if their images in every
quotient of R which is in C are conjugate.

This is a “profinite property” in the following
sense:

Assume that R is residually C, that is,
⋂

U!R,R/U∈C

U = 1.

Then R is naturally embedded in its pro-C completion
RĈ

R ↪→ RĈ = lim←−
U!R,R/U∈C

R/U

Then R being conjugacy C-separable means that
whenever two elements x, y ∈ R are conjugate in RĈ ,
then they are conjugate in R.
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Definition 2 One says that a subgroup H of an ab-
stract group R is

“conjugacy C-distinguished”

if whenever a ∈ R, then H contains a conjugate of
a in R if and only if the images of a and H in any
quotient of R that is in C satisfy analogous properties;
or equivalently, if aR denotes the conjugacy class of a
in R, then aR ∩ H = ∅ if and only if there exists an
open (in the pro-C topology of R) normal subgroup N
of R such that aR ∩ HN = ∅.

Being conjugacy C-distinguished is a ‘profinite
property’ as well.
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In this talk we are interested in finitely gen-
erated groups

R

that are extensions of free groups by groups
in C (free-by-C groups), i.e., R is a group which
contains a normal subgroup Φ that is free of
finite rank and

R/Φ ∈ C.

Example. It is easy to give examples of these types of
groups: let A, B ∈ C and consider the exact sequence

1 −→ Φ −→ A ∗ B
ϕ−→ A × B −→ 1,

where ϕ is the homomorphism that sends A identically
to A, and B identically to B, and where Φ = Ker(ϕ).
It is not difficult to see that Φ (the cartesian subgroup
of the free product A ∗ B) is a free group with basis

{[a, b] | 1 *= a ∈ A, 1 *= b ∈ B}.
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In fact this example is rather representative. In
general we have

Proposition If R is a finitely generated group which
is an extension of a free group by a group in C, then
there exists a finite connected graph ∆ and a graph of
groups that are in C,

(G,∆),

over ∆ so that R is the fundamental group Πabs =
Πabs

1 (G,∆) of this graph of groups:

R = Πabs
1 (G,∆).

[This follows immediately from a characterization
of finite extensions of free groups due to Serre and
Karrass-Pietrovski-Solitar.]
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An important consequence is that R acts in
a natural way on a tree with finite stabilizers (en C):
specifically R operates on the universal covering graph

Sabs = Sabs(G,∆)

of the graph of groups (G,∆).

7



Since the groups of (G,∆) are in C, the graph
of groups (G,∆) can be viewed as a graph of pro-C
groups. Therefore one has a corresponding fundamen-
tal pro-C group

Π = Π1(G,∆)

and a corresponding universal pro-C cover

S = S(G,∆)

of the graph (G,∆) of pro-C groups.

In this case (because Πabs
1 (G,∆) is a group resid-

ually C) one has that Π1(G,∆) is the pro-C completion
of the group Πabs

1 (G,∆); in particular

Πabs
1 (G,∆) ≤dense Π1(G,∆).
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On the other hand (because the groups G(m)
(m ∈ ∆) are finite, and hence closed in the pro-C
topology of Πabs

1 (G,∆)), we have

Sabs(G,∆) ⊆dense S(G,∆)

(as graphs).
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In this talk I will concentrate on the following
sample result

Theorem 3 Let R be a finitely generated free-by-C ab-
stract group and let H be a finitely generated subgroup
of R which is closed in its pro-C topology. Then H is
conjugacy C-distinguished.

This generalizes a result of Wilson-Zalesskii, who
proved this in the case when C is the class of all finite
groups. Observe that in this case a finitely generated
subgroup H of a free-by-finite group R is automatically
closed in the profinite topology of R.
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The following result is central in the work that I
am presenting here:

Theorem 1 Let R be a group which is an extension of
a free group of finite rank by a finite group in C. Let
H be a subgroup of R finitely generated and closed (in
the pro-C topology of R). Then

NR(H) = NRĈ
(H̄),

where if X is a subset of R, we denote by X̄ its topo-
logical closure in

RĈ = lim←−
U!R,R/U∈C

R/U,

the pro-C completion of R.

For the proof we distinguish two cases.
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Case 1 : H is infinite. In this case we need to study
the H-invariant pro-C subtrees of Sabs:

Proposition We continue with the same hypotheses
and the same notation. Say

H = 〈h1, . . . , hr〉

is an infinite finitely generated subgroup of

R = Πabs
1 (G,∆),

and assume H is closed in the pro-C topology of
Πabs

1 (G,∆). Denote by H̄ topological closure of H in
RĈ. Then Sabs has a unique minimal H-invariant sub-
tree Dabs, and its topological closure Dabs = D in S is
the unique minimal H̄-invariant pro-C subtree of S.

In addition

(a) Sabs ∩ D = Dabs, and

(b) H\Dabs = H̄\D is finite.
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Case 2 : H is finite. In this case the following result
plays a fundamental role.

Proposition Let R be a group which is an extension
of a free group of finite rank by a finite group in C. Let

H1 and H2

be finitely generated and closed subgroups of R (closed
in the pro-C topology of R). Then

H1 ∩ H2 = H1 ∩ H2

in
RĈ = lim←−

U!R,R/U∈C

R/U,

the pro-C completion of R.
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Applications:

Recall that R is conjugacy C-separable if whenever
two elements x, y ∈ R are conjugate in RĈ , then they
are conjugate in R.

Theorem 2 Let R be a group which is an extension of
a free group of finite rank by a finite group in C. Then
R is conjugacy C-separable.

This generalizes results of

– J. Dyer (who proved it when C is the class of all
finite groups), and

– E. Toinet (who has proved it when C is the class of
all finite p-groups, where p is a fixed prime number).
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Theorem 3 Let R be a finitely generated free-by-C ab-
stract group and let H be a finitely generated subgroup
of R which is closed in its pro-C topology. Then H is
conjugacy C-distinguished.

To prove this theorem we view R as the funda-
mental group of a graph of groups (G,∆), where the
graph ∆ is finite and G(m) ∈ C, for each m ∈ ∆; fur-
thermore, RĈ is the pro-C fundamental group of (G,∆)
viewed as graph of groups in C.
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Case (i): a has finite order.

– Recall that H̄ = HĈ .

– Since H is also a finitely generated free-by-C
group, one has H = Πabs(G′,∆′), over a finite graph
∆′; and H̄ = HĈ is the pro-C fundamental group of
(G′,∆′), with G′(v) = Πabs(v) ≤ H.

– Since γ−1aγ ∈ H̄ has finite order, it is conjugate
in H̄ = HĈ to an element of some vertex group G′(w) =
Πabs(w) ≤ H.

– Therefore, since HĈ ≤ RĈ , a is conjugate in RĈ
to an element, say b, of H.

– Thus, by Theorem 2, there exists c ∈ R with
c−1ac = b ∈ H.
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Case (ii): a has infinite order.

– One may reduce to the following situation. Φ is
an open free subgroup of R such that

Φ = (Φ ∩ H) ∗ L

and γ ∈ Φ̄ = ΦĈ . Moreover, for some natural number
n, 1 *= an ∈ Φ.

– Using that an is conjugate in Φ̄ = (Φ ∩ H). L̄,
one proves that there exists c ∈ Φ with

c−1anc ∈ Φ ∩ H,

and from this that (γ−1c)c−1anc(c−1γ) ∈ (Φ ∩ H).

– Then
c−1γ ∈ (Φ ∩ H).

This together with γ−1aγ ∈ H̄ implies that

– (γ−1c)c−1ac(c−1γ) ∈ H̄, and therefore c−1ac ∈
H̄ ∩ R = H.
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