
Sieve Methods

in Group Theory

Alex Lubotzky

Hebrew University

Jerusalem, Israel

joint with: Chen Meiri



Primes

1 ⃝2 ⃝3 ̸4 ⃝5 ̸6 ⃝7 ̸8 ̸9 1̸0 ⃝11 1̸2 · · ·

Let P(x) = {p ≤ x|p prime}, π(x) = #P(x)

To get all primes up to N and greater

than
√
N - erase those which are divided

by primes less ≤
√
N .

Ex:

π(N )− π(
√
N ) =

∑
A⊆P(

√
N )

(−1)|A|
[

N

π
p∈A

p

]

Sieve methods are sophisticated inclusion-

exclusion inequalities.
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Dirichlet: primes on arithmetic pro-
gression

∃∞ many primes on a+ dZ if (a, d) = 1.

Think of it as Z acts on Z by

n : z 7→ z + nd

if (a, d) = 1 the orbit of a meets ∞ many
primes.

Open problem(s): Z acts on Zm

n: (a1, . . . , am) → (a1, . . . , am)+n(d1, . . . , dm)
are there ∞ many vectors on the orbit
whose coordinates are all primes?

e.g. n : (1,3) → (1,3) + n(1,1)
Twin prime conjecture!

But true for Zr, r ≥ 2 acting on Zm (Green-
Tau-Zigler).
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but Brun’s sieve: there exist ∞ many

almost primes, i.e. ∃ a constant c s.t.

the orbit has ∞ many vectors (v1, . . . , vm)

where coordinates are product of at most

c primes.
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Affine Sieve Method

(Sarnak, Bourgain-Gamburd, Helfgott,

Breuillard-Tao-Green, Pyber-Szabo,

Salehi-Golsefidy−Varju)

Let Γ ≤ GLm(Z) be a finitely generated

infinite subgroup.

Assume G = Γ̄Z = Zariski closure of Γ is

such that G0 has no central torus (e.g.

G semi-simple), v ∈ Zm. Then Gv has

∞ many almost primes.
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Key point: (Salehi-Golsefidy−Varju)

Γ ≤ GLn(Z), Γ = ⟨S⟩, |S| < ∞,G0 = (Γ̄)0 perfect

q ∈ N, πq : GLn(Z) → GLn(Z/qZ)

Then the Cayley graphs

Cay(πq(Γ);πq(S))

form a family of expanders when q runs

over square-free integers (and conj: for

all q).

Property (τ)
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Expanders

X k-regular graph on n vertices.

AX = adjacency matrix of X

an n× n matrix, e.v.’s

λ0 = k ≥ λ1 ≥ · · · ≥ λn−1.

Def: A family of k regular graphs

(k fixed, n → ∞) is a family of expanders

if ∃ε > 0 s.t. λ1 ≤ k − ε for all of them.

Main point: In a family of expanders

Xi the random walk on Xi converges

to the uniform distribution exponentially

fast and uniformly on i.
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The expansion property enables to apply

Brun’s method in this non-commutative

setting!

In the classical case (number theory) we

know the “error term” of taking [1,2, . . . ,N ]

mod q when q ≤
√
N . Here we need to

know that the ball of radius n in Γ w.r.t.

S (with N ≈ Cn points) is mapped ap-

prox uniformly to πq(Γ) for q ∼ N δ.

Up to now, Γ is acting on Zn.

Let now Γ act on itself!

7



The Group Sieve

How to measure sets in countable group?

Ex: G = SLn(C), For almost every γ ∈
G, CG(g) is abelian.

Pf: Almost every γ ∈ G is diagonalizable

with distinct eigenvalues. �

What about a similar property for

Γ = SLn(Z)?
How to measure a subset Y of Γ?
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Basic setting:

Let Γ = ⟨S⟩ a finitely generated group

|S| < ∞, S = S−1, 1 ∈ S.

A random walk on Γ (or better on Cay(Γ; s))

is (wk)k∈N, with w0 = e and wk+1 = wk ·s
with s ∈ S chosen randomly.

For a subset Y ⊆ Γ put:

pk(Γ, S, Y ) = Prob(wk ∈ Y ) =

“probability the walk visits Y in the k-th

step”
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The Basic Theorem:

Let {Ni}i ∈ N be a sequence of finite

index normal subgroups of Γ,Γi = Γ/Ni.

Assume ∃d ∈ N, ε > 0 and β < 1 s.t.

(1) ∀i ̸= j ∈ N, Cay(Γ/Ni ∩ Nj;S) are

ε-expanders.

(2) |Yi|/|Γi| ≤ β where Yi = YNi/Ni

(3) |Γi| ≤ id

(4) Γ/Ni ∩Nj
∼→ Γ/Ni × Γ/Nj

Then ∃τ > 0 s.t. pk(G,S, Y ) ≤ e−τk

for every k ∈ N (i.e. Y is exponentially

small).
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A typical example:

Γ = SLm(Z) (or a Zariski dense sub-

group).

Np = Ker(SLm(Z) → SLm(Z/pZ))
p-prime.

Y ⊆ Γ an interesting subset.

Easy cases: Y a subvariety; SLn−1(Z),
the unipotent elements, non semisimple

elements

cor: each of these sets is exponentially

small.

Compare to: Almost every element of

SLm(C) is semisimple.
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Compare to works of Borovick, Kapovich,

Myasnikov, Schupp, Shpilrain ...

also: Arzhantseva-Ol’shanskii and of course

Gromov, · · · random groups;

also: Bassino-Martino-Nicaud-Ventura-

Weil.



Our main application: Powers in linear
groups

Background:

Malcev (60’s):

Γ fin. gen. nilpotent group, m ∈ N,
then the set Γm = {xm|x ∈ Γ} contains
a finite index subgroup of Γ (like in Zr).

Hrushovski-Kropholler-Lubotzky-Shalev
(1995) If Γ is either a solvable or linear
fin. gen. group s.t. Γm contains a finite
index subgroup of Γ, then Γ is virtually
nilpotent.

Remark:

∃ solvable Γ (not virt. nilp.) with Γm

contains a coset of finite index subgroup,
but for non-solv linear Γm is never “of fi-
nite index”.
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Thm (Lubotzky-Meiri): Let Γ be a fin.
generated subgroup of GLd(C) that is
not virtually solvable. Then

Y = {g ∈ Γ|∃m ≥ 2, x ∈ Γ s.t. g = xm}
=

∪
m≥2

Γm

is exponentially small.

Note:

Much stronger than [HKLS]:

(i) There only “not of finite index”,
here a quantitative estimate – “exp small”

(ii) All m’s together!

It is possible to prove (ii) only due to (i)!

Open problem: The set of commuta-
tors in Γ (even Γ = SL(3,Z)).
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Other applications:

Thm (Breuillard-de Cornulier-Lubotzky-

Meiri)

Γ a fin. gen. group, Γ = ⟨S⟩.
Cn(Γ) = # conj classes of Γ represented

by elements of length ≤ n w.r.t. S.

If Γ is non-virt-solvable linear group then

Cn(Γ) grows exponentially

(conj by Guba & Sapir).

True also with # characteristic polyno-

mials.
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Thm (Lubotzky-Rosenzweig)

Γ a finitely generated group ≤ GLn(F)

F a finitely generated field, char = 0,
G = Γ̄

G0 without central torus

∃ Π: G/G0 → FINITE GROUPS

s.t. Pr(Gal(F(γ)/F) ̸= Π(γG0)) is expo-
nentially small

F(γ) = splitting field of the characteris-
tic poly of γ.

This generalizes special cases by Rivin,
Jouve, Kowalski, Zywina

(compare: Gallagher, Prasad-Rapinchuk,
Gorodnik-Nevo)
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Thm: (Rivin, Kowalski)

Γ = mapping class group = MCG(g)

Then the non pseudo-Anasov elements

is an exp. small subset

Conj of Thurston (see also Maher).

Thm: (Lubotzky-Meiri)/(Malestein-

Souto)

A similar result for the Torelli subgroup

Ker(MCG(g) → Sp(2g,Z))

(asked by Kowalski)
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Analogous results for Aut(Fn)

Thm: (Rivin, Kapovich)

The non iwip and the non hyperbolic el-

emnts of Aut(Fn) are exp. small subsets.

Thm: (Lubotzky-Meiri)

A similar result for

IA(Fn) = Ker(Aut(Fn) → GLn(Z))
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The key ingredient for the last result:

Let A = Aut(Fn), and |G| < ∞.

π : Fn � G,R = Ker(π).

Γ(π) = {α ∈ A|π ◦ α = π}

Then [A : Γ(π)] < ∞ and Γ(π) preserves

R and induces π̄ : Γ → GL(R̄ = R/[R,R]).

The image is in CG(R̄) and:

Thm(Grunewald-Lubotzky) under suit-

able conditions, Im(Γ(π)) is an arith-

metic group (and so is Im(IA(F ) = Torelli)).

This enables to apply the above machin-

ery.
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Potentials applications

Apply sieve method on MCG to get re-

sults on random 3-manifolds á la Dun-

field & Thurston.
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