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Primes

12334 5H6 03 910 A112 ---
Let P(x) = {p < z|p prime}, 7(x) = #P(x)
To get all primes up to N and greater

than VAN - erase those which are divided
by primes less < v/ N.

Ex:
7(N) — n(VN) = > (_1)\14\ [i]
ACP(VN) pgAp

Sieve methods are sophisticated inclusion-
exclusion inequalities.



Dirichlet: primes on arithmetic pro-
gression

Joo many primes on a + dZ if (a,d) = 1.

Think of it as Z acts on Z by

n:.z— z+nd

if (a,d) = 1 the orbit of a meets co many
primes.

Open problem(s): Z acts on Z™

n: (at,...,am) — (a1,...,am)+n(d1,...,dm)
are there co many vectors on the orbit
whose coordinates are all primes?

e.g. n:(1,3) = (1,3)+n(1,1)
Twin prime conjecturel

But true for Z",r > 2 acting on Z™ (Green-
Tau-Zigler).



but Brun’s sieve: there exist co many
almost primes, i.e. 4 a constant c¢ s.t.
the orbit has co many vectors (v, ..., vm)
where coordinates are product of at most
c primes.



Affine Sieve Method

(Sarnak, Bourgain-Gamburd, Helfgott,
Breuillard-Tao-Green, Pyber-Szabo,
Salehi-Golsefidy—Varju)

Let T < GLm(Z) be a finitely generated
infinite subgroup.

Assume G = T4 = Zariski closure of I" is
such that G° has no central torus (e.g.
G semi-simple), v € Z™. Then Gv has
oo Mmany almost primes.



Key point: (Salehi-Golsefidy—Varju)

[ < GLn(Z), T =(S),|S| < oo, GY = (I)° perfect

qeN, mwg:GLn(Z) — GLn(Z/aZ)

Then the Cayley graphs

Cay(mq(I); mq(S5))

form a family of expanders when g runs
over square-free integers (and conj: for

all q).

Property (1)



Expanders
X k-regular graph on n vertices.
Ax = adjacency matrix of X

an n X n matrix, e.v.'s

AM=k>X\ 22 X\_1.

Def: A family of k regular graphs
(k fixed, n — oo) is a family of expanders
if de > 0 s.t. A1 < k — ¢ for all of them.

Main point: In a family of expanders
X; the random walk on X; converges
to the uniform distribution exponentially
fast and uniformly on z.



T he expansion property enables to apply
Brun's method in this non-commutative
setting!

In the classical case (number theory) we
know the “error term” of taking [1,2,...,N]
mod ¢ when ¢ < vVN. Here we need to
know that the ball of radius n in I w.r.t.

S (with N =~ C™ points) is mapped ap-
prox uniformly to my(I") for ¢ ~ N°.

Up to now, I is acting on Z™.
Let now [ act on itself!



The Group Sieve

How to measure sets in countable group?

Ex: G = SL,(C), For almost every v €
G, Cn(g) is abelian.

Pf: Almost every v € G is diagonalizable
with distinct eigenvalues. U

What about a similar property for
= SLn(Z)7
How to measure a subset Y of 7



Basic setting:

Let T = (S) a finitely generated group

S| < o0, S=85"1 1€85.

A random walk on I" (or better on Cay(l"; s))
is (wg)genN, With wg = e and w41 = wy-s
with s € S chosen randomly.

For a subset Y C I put:

p(M,S,Y) = Prob(w, € Y) =

“probability the walk visits Y in the k-th
step”



T he Basic Theorem:

Let {N;}; € N be a sequence of finite
index normal subgroups of I',I; =/ N;.
Assume dd € N,e > 0 and 8 < 1 s.t.

(1) Vi #j € N,Cay(F/N; N N;, S) are
g-expanders.

(2) [Yi]/|T4] < B where Y; = Y N;/N;

(3) M| <

(4) T/N;ON; S T/N; x TN

Then 37 > 0 s.t. pi(G,S,Y) < e 7F

for every k € N (i.e. Y is exponentially
small).
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A typical example:

[ = SLm(Z) (or a Zariski dense sub-
group).

p-prime.

Y C I an interesting subset.

Easy cases: Y a subvariety; SLy_1(Z),
the unipotent elements, non semisimple
elements

cor: each of these sets is exponentially
small.

Compare to: Almost every element of
SLm(C) is semisimple.
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Compare to works of Borovick, Kapovich,
Myasnikov, Schupp, Shpilrain ...

also: Arzhantseva-Ol'shanskii and of course
Gromov, --- random groups;

also: Bassino-Martino-Nicaud-Ventura-
Weil.



Our main application: Powers in linear
groups

Background:
Malcev (60's):

[ fin. gen. nilpotent group, m € N,
then the set ' = {«™|x € '} contains
a finite index subgroup of I (like in Z").

Hrushovski-Kropholler-Lubotzky-Shalev
(1995) If I is either a solvable or linear
fin. gen. group s.t. '™ contains a finite
index subgroup of ', then [ is virtually
nilpotent.

Remark:

3 solvable I (not virt. nilp.) with ™
contains a coset of finite index subgroup,
but for non-solv linear ' is never “of fi-
nite index’ .
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Thm (Lubotzky-Meiri): Let I' be a fin.
generated subgroup of GL4(C) that is
not virtually solvable. Then

Y={gelNam>2, zclst g=2a2"}
m>2

IS exponentially small.

Note:

Much stronger than [HKLS]:

(i) There only “not of finite index",
here a quantitative estimate — “exp small”

(ii) All m's together!

It is possible to prove (ii) only due to (i)!

Open problem: The set of commuta-
torsin " (even T =SL(3,2)).
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Other applications:

Thm (Breuillard-de Cornulier-Lubotzky-
Meiri)

[ a fin. gen. group, ' = (S).
Cn(l") = # conj classes of I represented
by elements of length <n w.r.t. S.

If I is non-virt-solvable linear group then
Cn(I") grows exponentially

(conj by Guba & Sapir).

True also with # characteristic polyno-
mials.
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Thm (Lubotzky-Rosenzweig)
[ a finitely generated group < GLn([F)

a finitely generated field, char = O,

I fi
G=T
GO without central torus

3 MN: G/GY — FINITE GROUPS

s.t. Pr(Gal(F(v)/F) # M(~yGp)) is expo-
nentially small

F(~v) = splitting field of the characteris-
tic poly of ~.

This generalizes special cases by Rivin,
Jouve, Kowalski, Zywina

(compare: Gallagher, Prasad-Rapinchuk,
Gorodnik-Nevo)
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Thm: (Rivin, Kowalski)
[ = mapping class group = MCG(g)

Then the non pseudo-Anasov elements
IS an exp. small subset

Conj of Thurston (see also Maher).

Thm: (Lubotzky-Meiri)/(Malestein-
Souto)

A similar result for the Torelli subgroup
Ker(MCG(g) — Sp(2g,7))

(asked by Kowalski)
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Analogous results for Aut(F'n)

Thm: (Rivin, Kapovich)
The non iwip and the non hyperbolic el-
emnts of Aut(Fy) are exp. small subsets.

Thm: (Lubotzky-Meiri)

A similar result for
TA(F,) = Ker(Aut(Fp) — GLp(Z))

17



The key ingredient for the last result:
Let A = Aut(Fy), and |G| < oo.

7w Fp— G, R= Ker(m).

M(r) ={a € Alroa =}

Then [A: T(7)] < co and () preserves
Randinducesw: I — GL(R = R/[R, R]).
The image is in Cg(R) and:

Thm(Grunewald-Lubotzky) under suit-
able conditions, Im(I(x)) is an arith-
metic group (and so is Im(IA(F) = Torelli)).

This enables to apply the above machin-
ery.
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Potentials applications
Apply sieve method on MCG to get re-
sults on random 3-manifolds a la Dun-

field & Thurston.
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