Markus Lohrey (Univ. Leipzig),

joint work with Benjamin Steinberg (City College, New York) and Georg Zetzsche (Univ. Kaiserslautern)

dedicated to Stuart Margolis' 60th birthday

June 14, 2013

Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For $L \subseteq M$ let L^* denote the submonoid of M generated by L.

Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For $L \subseteq M$ let L^* denote the submonoid of M generated by L.

The set $Rat(M) \subseteq 2^M$ of all rational subsets of M is the smallest set such that:

- Every finite subset of M belongs to Rat(M).
- If $L_1, L_2 \in Rat(M)$, then also $L_1 \cup L_2, L_1L_2 \in Rat(M)$.
- If $L \in Rat(M)$, then also $L^* \in Rat(M)$.

Rational sets in arbitrary monoids: Definition 2

A finite automaton over M is a tuple $A = (Q, \Delta, q_0, F)$ where

- Q is a finite set of states,
- $q_0 \in Q$, $F \subseteq Q$, and
- $\Delta \subseteq Q \times M \times Q$ is finite.

The subset $L(A) \subseteq M$ is the set of all products $m_1 m_2 \cdots m_k$ such that there exist $q_1, \dots, q_k \in Q$ with

$$(q_{i-1}, m_i, q_i) \in \Delta$$
 for $1 \le i \le k$ and $q_k \in F$.

Then:

$$L \in Rat(M) \iff \exists$$
 finite automaton A over $M : L(A) = L$

In this talk: M will be always a finitely generated (f.g.) group G.

In this talk: M will be always a finitely generated (f.g.) group G.

Let Σ be a finite (group) generating set for G.

In this talk: M will be always a finitely generated (f.g.) group G.

Let Σ be a finite (group) generating set for G.

Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

In this talk: M will be always a finitely generated (f.g.) group G.

Let Σ be a finite (group) generating set for G.

Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

The rational subset membership problem for G (RatMP(G)) is the following computational problem:

INPUT: A finite automaton A over G and $g \in G$

QUESTION: $g \in L(A)$?

Membership in submonoids/subgroups

The submonoid membership problem for G is the following computational problem:

INPUT: A finite subset $A \subseteq G$ and $g \in G$

QUESTION: $g \in A^*$?

The subgroup membership problem for G (or generalized word problem for G) is the following computational problem:

INPUT: A finite subset $A \subseteq G$ and $g \in G$

QUESTION: $g \in \langle A \rangle$ (= $(A \cup A^{-1})^*$)?

The generalized word problem is a widely studied problem in combinatorial group theory.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Eilenberg, Schützenberger 1969

Let A be a finitely generated abelian group. Then RatMP(A) is decidable.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Eilenberg, Schützenberger 1969

Let A be a finitely generated abelian group. Then RatMP(A) is decidable.

Mikhailova 1966

Let F_2 be the free group of rank 2. The subgroup membership problem for $F_2 \times F_2$ is undecidable.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Eilenberg, Schützenberger 1969

Let A be a finitely generated abelian group. Then RatMP(A) is decidable.

Mikhailova 1966

Let F_2 be the free group of rank 2. The subgroup membership problem for $F_2 \times F_2$ is undecidable.

Rips 1982

There are hyperbolic groups with an undecidable subgroup membership problem.

Closure result

Observation

If H is a f.g. subgroup of G and RatMP(G) is decidable, then RatMP(H) is decidable too.

Closure result

Observation

If H is a f.g. subgroup of G and RatMP(G) is decidable, then RatMP(H) is decidable too.

Grunschlag 1999

If H is a finite index subgroup of G and RatMP(H) is decidable, then RatMP(G) is decidable too.

Closure result

Observation

If H is a f.g. subgroup of G and RatMP(G) is decidable, then RatMP(H) is decidable too.

Grunschlag 1999

If H is a finite index subgroup of G and RatMP(H) is decidable, then RatMP(G) is decidable too.

Kambites, Silva, Steinberg 2006

If G is the fundamental group of a graph of groups with

- finite edge groups and
- for every vertex group H, RatMP(H) is decidable, then RatMP(G) is decidable too.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba \text{ for all } (a, b) \in E \rangle$.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba \text{ for all } (a, b) \in E \rangle$.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G(A, E) is decidable if (A, E) is a chordal graph (no induced cycle of length ≥ 4).

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba$ for all $(a, b) \in E \rangle$.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G(A, E) is decidable if (A, E) is a chordal graph (no induced cycle of length ≥ 4).

L, Steinberg 2006

The following are equivalent:

- RatMP(G(A, E)) is decidable
- The submonoid membership problem for G(A, E) is decidable.
- The graph (A, E) does not contain an induced subgraph of one of the following two forms (P4 and C4):

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with RatMP($N_{r,c}$) undecidable.

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with RatMP($N_{r,c}$) undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with RatMP($N_{r,c}$) undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

L, 2013

There is a constant d and a fixed sequence C_1, C_2, \ldots, C_k of cyclic subgroups of the group of unitriangluar $(d \times d)$ -matrices of \mathbb{Z} such that membership in the product $C_1 C_2 \cdots C_k$ is undecidable.

A group G is metabelian if it is solvable of derived length ≤ 2 .

A group G is metabelian if it is solvable of derived length ≤ 2 .

Equivalent: G metabelian \iff [G,G] Abelian.

A group G is metabelian if it is solvable of derived length ≤ 2 .

Equivalent: G metabelian \iff [G,G] Abelian.

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

A group G is metabelian if it is solvable of derived length ≤ 2 .

Equivalent: G metabelian \iff [G,G] Abelian.

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_2) is undecidable.

A group G is metabelian if it is solvable of derived length ≤ 2 .

Equivalent: G metabelian \iff [G,G] Abelian.

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_2) is undecidable.

For the proof, one encodes a tiling problem of the Euclidean plane into the submonoid membership problem for M_2 .

Wreath products

Let A and B be groups and let

$$K = \bigoplus_{b \in B} A$$

be the direct sum of copies of A.

Wreath products

Let A and B be groups and let

$$K = \bigoplus_{b \in B} A$$

be the direct sum of copies of A.

Elements of K can be thought as mappings $k: B \to A$ with finite support (i.e., $k^{-1}(A \setminus 1)$ is finite).

Wreath products

Let A and B be groups and let

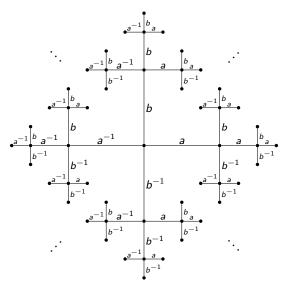
$$K = \bigoplus_{b \in B} A$$

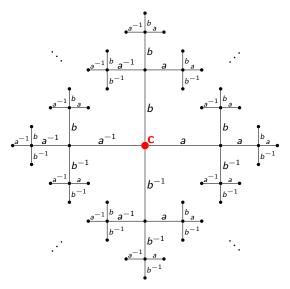
be the direct sum of copies of A.

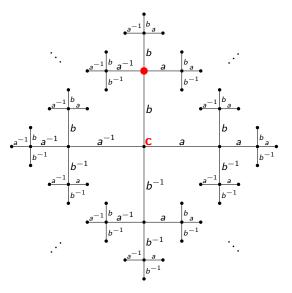
Elements of K can be thought as mappings $k: B \to A$ with finite support (i.e., $k^{-1}(A \setminus 1)$ is finite).

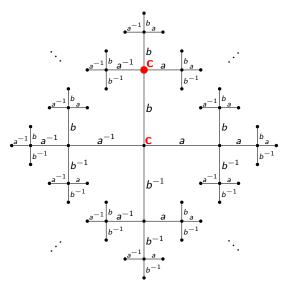
The wreath product $A \wr B$ is the set of all pairs $K \times B$ with the following multiplication, where $(k_1, b_1), (k_2, b_2) \in K \times B$:

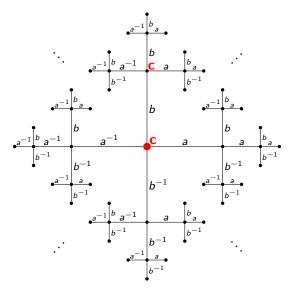
$$(k_1, b_1)(k_2, b_2) = (k, b_1b_2)$$
 with $\forall b \in B : k(b) = k_1(b)k_2(b_1^{-1}b)$.

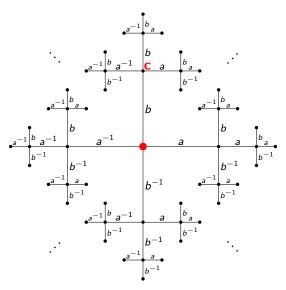


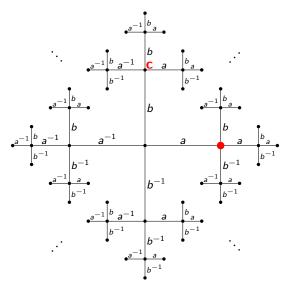


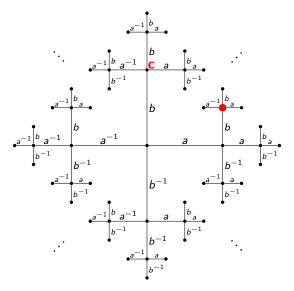


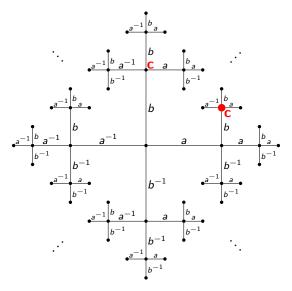


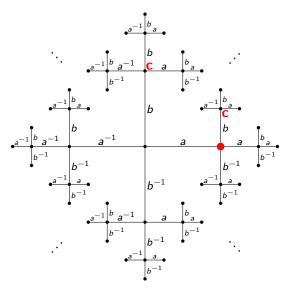


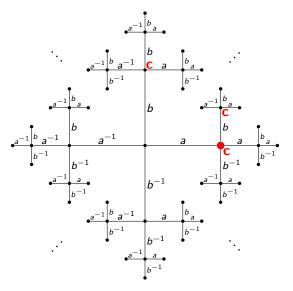


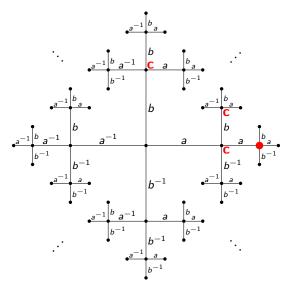












L, Steinberg 2009

For every nontrivial group H, RatMP $(H \wr (\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

L, Steinberg 2009

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg 2009

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.

L, Steinberg 2009

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.

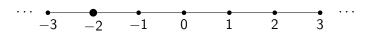
L, Steinberg 2009

For every nontrivial group H, RatMP $(H \wr (\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.



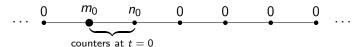
L, Steinberg 2009

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.



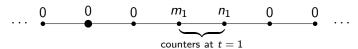
L, Steinberg 2009

For every nontrivial group H, RatMP $(H \wr (\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.



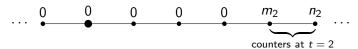
L, Steinberg 2009

For every nontrivial group H, RatMP $(H \wr (\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (and hence Thompson's group) is undecidable.



L, Steinberg, Zetzsche 2012

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

L, Steinberg, Zetzsche 2012

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a,b)$$

with H finite and F(a, b) the free group generated by a and b.

L, Steinberg, Zetzsche 2012

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}.$

L, Steinberg, Zetzsche 2012

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}.$

Fix an automaton $A = (Q, \Delta, q_0, F)$ over the finite alphabet $H \cup \{a, b, a^{-1}, b^{-1}\}$.

L, Steinberg, Zetzsche 2012

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}$.

Fix an automaton $A = (Q, \Delta, q_0, F)$ over the finite alphabet $H \cup \{a, b, a^{-1}, b^{-1}\}.$

We want to check, whether there exists $w \in L(A)$ with w = 1 in G.

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for 1 < i < n-1:

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \leq i \leq n-1$:

• For all $1 \le i \le n-1$, the unique reduced word for u_i does not start with d^{-1} .

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

- For all $1 \le i \le n-1$, the unique reduced word for u_i does not start with d^{-1} .
- $u_{n-1} = 1$ in F_2 .

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

- For all $1 \le i \le n-1$, the unique reduced word for u_i does not start with d^{-1} .
- $u_{n-1} = 1$ in F_2 .

We define

•
$$depth(\pi) = max\{|u_i| + 1 \mid 1 \le i \le n - 1\}$$

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

- For all $1 \le i \le n-1$, the unique reduced word for u_i does not start with d^{-1} .
- $u_{n-1} = 1$ in F_2 .

We define

- $depth(\pi) = max\{|u_i| + 1 \mid 1 \le i \le n 1\}$
- effect $(\pi) = d\alpha_1 \cdots \alpha_{n-1} d^{-1} \in K$.

For all types
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 define

$$C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}$$

For all types $t \in \{1, a, a^{-1}, b, b^{-1}\}$ define

$$C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}\$$

 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q)\text{-loop}\}\$

For all types $t \in \{1, a, a^{-1}, b, b^{-1}\}$ define

$$C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}\$$

 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q)\text{-loop}\}\$

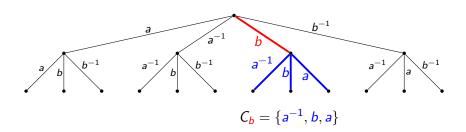
The alphabet X_t can be computed.

For all types $t \in \{1, a, a^{-1}, b, b^{-1}\}$ define

$$C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}\$$

 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q) \text{-loop}\}\$

The alphabet X_t can be computed.



Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

A loop pattern at t is a word

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \leq i \leq n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1 \text{ in } K.$$

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

A loop pattern at t is a word

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \leq i \leq n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1 \text{ in } K.$$

The depth of this loop pattern is $\min(\max_{1 \le i \le n} \operatorname{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

A loop pattern at t is a word

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \leq i \leq n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1 \text{ in } K.$$

The depth of this loop pattern is $min(max_{1 \le i \le n} depth(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

A loop pattern at t is a word

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \leq i \leq n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1 \text{ in } K.$$

The depth of this loop pattern is $\min(\max_{1 \leq i \leq n} \operatorname{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

We will show:

 \bullet P_t is regular and

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

A loop pattern at t is a word

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \leq i \leq n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1 \text{ in } K.$$

The depth of this loop pattern is $\min(\max_{1 \le i \le n} \operatorname{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

We will show:

- \bullet P_t is regular and
- \bullet an automaton for P_t can be computed.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_i$.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_j$.

For a group H, we define a partial order \leq_H on X^* (X any finite alphabet) as follows: $u \leq_H v$ iff there exist factorizations

$$u = x_1 x_2 \cdots x_n \quad (x_i \in X)$$

$$v = v_0 x_1 v_1 x_2 \cdots v_{n-1} x_n v_n$$

such that for every homomorphism $\varphi: X^* \to H$ we have $\varphi(v_0) = \varphi(v_1) = \cdots \varphi(v_n) = 1$.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_j$.

For a group H, we define a partial order \leq_H on X^* (X any finite alphabet) as follows: $u \leq_H v$ iff there exist factorizations

$$u = x_1 x_2 \cdots x_n \quad (x_i \in X)$$

$$v = v_0 x_1 v_1 x_2 \cdots v_{n-1} x_n v_n$$

such that for every homomorphism $\varphi: X^* \to H$ we have $\varphi(v_0) = \varphi(v_1) = \cdots \varphi(v_n) = 1$.

Lemma

For every finite group H, \leq_H is a WQO.

The set of loop patterns is regular

Lemma

For every $t \in \{1, a, a^{-1}, b, b^{-1}\}$, the set of loop patterns P_t is upward closed w.r.t. \leq_H .

The set of loop patterns is regular

Lemma

For every $t \in \{1, a, a^{-1}, b, b^{-1}\}$, the set of loop patterns P_t is upward closed w.r.t. \leq_H .

This implies that P_t is regular, but can we compute an NFA for P_t ?

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $u_t: Y_t^* \to H \text{ is the homomorphism with }$

$$u_t(p,d,q) = 1 \text{ for } (p,d,q) \in X_t$$
 $u_t(p,h,q) = h \text{ for } (p,h,q) \in Y_t \setminus X_t.$

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $u_t: Y_t^* \to H \text{ is the homomorphism with }$

$$u_t(p,d,q) = 1 \text{ for } (p,d,q) \in X_t$$
 $u_t(p,h,q) = h \text{ for } (p,h,q) \in Y_t \setminus X_t.$

For $p, q \in Q$ and $t \in T$ define the regular set

$$R_{p,q}^t = \{(p_0, g_1, p_1)(p_1, g_2, p_2) \cdots (p_{n-1}, g_n, p_n) \in Y_t^* \mid p_0 = p, p_n = q\}.$$

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $\nu_t: Y_t^* \to H$ is the homomorphism with

$$u_t(p, d, q) = 1 \text{ for } (p, d, q) \in X_t$$
 $u_t(p, h, q) = h \text{ for } (p, h, q) \in Y_t \setminus X_t.$

For $p, q \in Q$ and $t \in T$ define the regular set

$$R_{p,q}^t = \{(p_0,g_1,p_1)(p_1,g_2,p_2)\cdots(p_{n-1},g_n,p_n)\in Y_t^*\mid p_0=p,p_n=q\}.$$

For $t \in \mathcal{T}$, $d \in \mathcal{C}_t$, define a regular substitution $\sigma_{t,d}: X_t \to \operatorname{Reg}(Y_d)$ by

$$\sigma_{t,d}(p,d,q) = \bigcup \{R_{p',q'}^d \mid (p,d,p'), (q',d^{-1},q) \in \Delta\}
\sigma_{t,d}(p,u,q) = \{\varepsilon\} \text{ for } u \in C_t \setminus \{d\}.$$

Lemma

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1,a,a^{-1},b,b^{-1}\}$ we have $\varepsilon \in P_t$ and

$$\bigcap_{d\in C_t} \sigma_{t,d}^{-1}\left(\pi_d^{-1}(P_d)\cap \nu_d^{-1}(1)\right) \subseteq P_t.$$

Lemma

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1,a,a^{-1},b,b^{-1}\}$ we have $\varepsilon \in P_t$ and

$$\bigcap_{d\in C_t} \sigma_{t,d}^{-1}\left(\pi_d^{-1}(P_d)\cap \nu_d^{-1}(1)\right)\subseteq P_t.$$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most i.

Lemma

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1,a,a^{-1},b,b^{-1}\}$ we have $\varepsilon \in P_t$ and

$$\bigcap_{d\in\mathcal{C}_t}\sigma_{t,d}^{-1}\left(\pi_d^{-1}(P_d)\cap\nu_d^{-1}(1)\right)\subseteq P_t.$$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most i. Then:

$$P_{t}^{(0)} = \{\varepsilon\}$$

$$P_{t}^{(i+1)} = P_{t}^{(i)} \cup \bigcap_{d \in C_{t}} \sigma_{t,d}^{-1} \left(\pi_{d}^{-1}(P_{d}^{(i)}) \cap \nu_{d}^{-1}(1) \right).$$

Lemma

 $(P_t)_{t\in\{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t\in\{1,a,a^{-1},b,b^{-1}\}$ we have $\varepsilon\in P_t$ and

$$\bigcap_{d\in\mathcal{C}_t}\sigma_{t,d}^{-1}\left(\pi_d^{-1}(P_d)\cap\nu_d^{-1}(1)\right)\subseteq P_t.$$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most i. Then:

$$P_{t}^{(0)} = \{\varepsilon\}$$

$$P_{t}^{(i+1)} = P_{t}^{(i)} \cup \bigcap_{d \in C_{t}} \sigma_{t,d}^{-1} \left(\pi_{d}^{-1}(P_{d}^{(i)}) \cap \nu_{d}^{-1}(1) \right).$$

The lemma follows since $P_t = \bigcup_{i>0} P_t^{(i)}$.

Currently we have no example of a f.g. group such that:

- ullet the submonoid membership problem for G is decidable but
- RatMP(G) is undecidable.

Currently we have no example of a f.g. group such that:

- the submonoid membership problem for G is decidable but
- RatMP(G) is undecidable.

L, Steinberg 2009

If the f.g. group G splits over a finite group (i.e., has infinitely many ends), then the following are equivalent:

- RatMP(G) is decidable.
- ullet The submonoid membership problem for G is decidable.

Currently we have no example of a f.g. group such that:

- the submonoid membership problem for G is decidable but
- RatMP(G) is undecidable.

L, Steinberg 2009

If the f.g. group G splits over a finite group (i.e., has infinitely many ends), then the following are equivalent:

- RatMP(G) is decidable.
- ullet The submonoid membership problem for G is decidable.

Remarks:

• If G has exactly two ends, then G is virtually \mathbb{Z} .

Currently we have no example of a f.g. group such that:

- the submonoid membership problem for G is decidable but
- RatMP(G) is undecidable.

L, Steinberg 2009

If the f.g. group G splits over a finite group (i.e., has infinitely many ends), then the following are equivalent:

- RatMP(G) is decidable.
- The submonoid membership problem for G is decidable.

Remarks:

ullet If G has exactly two ends, then G is virtually $\mathbb{Z}.$

Thus, RatMP(G) (and hence also the submonoid membership problem for G) is decidable.

• Complexity of RatMP($H \wr V$) for H finite and V virtually-free. Is RatMP($\mathbb{Z}_2 \wr \mathbb{Z}$) primitive recursive?

- Complexity of RatMP($H \wr V$) for H finite and V virtually-free. Is RatMP($\mathbb{Z}_2 \wr \mathbb{Z}$) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?

- Complexity of RatMP(H \(\cdot V\)) for H finite and V virtually-free.
 Is RatMP(Z₂ \(\cdot Z\)) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)

- Complexity of RatMP(H \(\bar{V}\)) for H finite and V virtually-free.
 Is RatMP(Z₂ \(\mathbb{Z}\)) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)
 Look at products of f.g. subgroups.

- Complexity of RatMP(H \(\cdot V\)) for H finite and V virtually-free.
 Is RatMP(Z₂ \(\cdot Z\)) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)
 Look at products of f.g. subgroups.
- Submonoid membership problem for f.g. nilpotent groups.

- Complexity of RatMP(H \(\cdot V\)) for H finite and V virtually-free.
 Is RatMP(Z₂ \(\cdot Z\)) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)
 Look at products of f.g. subgroups.
- Submonoid membership problem for f.g. nilpotent groups.
- Rational subset membership problem for wreath products $H \wr V$ with V virtually free and H a f.g. infinite torsion group.

- Complexity of RatMP(H \(\cdot V\)) for H finite and V virtually-free.
 Is RatMP(Z₂ \(\cdot Z\)) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)
 Look at products of f.g. subgroups.
- Submonoid membership problem for f.g. nilpotent groups.
- Rational subset membership problem for wreath products $H \wr V$ with V virtually free and H a f.g. infinite torsion group.
- Rational subset membership problem for wreath products $H \wr G$ with $H \neq 1$ and G not virtually-free.

- Complexity of RatMP($H \wr V$) for H finite and V virtually-free. Is RatMP($\mathbb{Z}_2 \wr \mathbb{Z}$) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group (submonoid membership is decidable!)
 Look at products of f.g. subgroups.
- Submonoid membership problem for f.g. nilpotent groups.
- Rational subset membership problem for wreath products $H \wr V$ with V virtually free and H a f.g. infinite torsion group.
- Rational subset membership problem for wreath products $H \wr G$ with $H \neq 1$ and G not virtually-free.
- Conjecture: Whenevery H is non-trivial and G is not virtually-free, then RatMP(H \(\cap G\)) is undecidable.