June 2013

Semigroups and one-way functions

Jean-Camille Birget

To Stuart Margolis on his 60th birthday.

CS Dept., Rutgers U. (Camden Campus), Camden, New Jersey

Goal:

Find semigroups (and groups) whose elements represent
computational devices or computable functions.

1. Thompson-Higman groups and monoids:
They represent all finite functions and
acyclic digital circuits.

2. Monoids of polynomial-time computable functions:
Their properties depend on P-vs.-NP.

Study complexity classes through functions and
semigroups (instead of only as sets of languages).

arXiv:1306.1447 [math.GR] 6 Jun 2013

Preliminary definitions

Fix a finite alphabet A.
A* = set of all finite words over A.

View A* as the rooted, regular, infinite, oriented
tree, directed away from the root.

AY = set of all w-words over A (the ends of A*),
with the Cantor space topology.

Def. R C A* isright ideal iff RA" C R.

Def. C (C A*) generates a right ideal R iff
R is the intersection of all right ideals that contain C'.

Equivalently, R = CA*.

In A%, the open sets of the Cantor space are of the form

C'A¥ = ends(C' A%).

Def. A right ideal R is essential iff
R intersects every right ideal of A*.

e, ends(R) is densein A“.

Def. C' C A*is a prefix code (prefix-free code) iff
no element of C'is a prefixz of another element of C.

(Shannon-Fano coding, 1948; Huffman, 1951.)

“Prefix”: any initial segment of a word.

Def. A prefix code C' is maximal iff
(' is not a strict subset of another prefix code.

Fact. A right ideal R has a unique minimal (for C)
generating set C';
this minimum C' is a prefix code.

Fact. A prefix code C is maximal ift
C'A* is an essential right ideal.

Def. (end-equivalence):
For right ideals R\,R C A*: R =R iff

R’ and R intersect the same right ideals iff
ends(R) and ends(R’) “are the same up to density”, i.e.,

ends(R) = ends(R’), where overlining denotes closure in
the Cantor set topology:.

Def. A right ideal homomorphism of A* is
a function ¢ : Ry — A* such that

Ry is a right ideal of A* and

for all x1 € Ry and all w € A*:

p(r1w) = @(z1) w.
Notation: Domain Ry = Dom(yp) |

image set = Im(¢).

Fact. Dom(y) and Im(p) are right ideals.
Fact. ¢ acts as a continuous partial function on A¥.

Def. RME[{‘ is the set of all right-ideal morphisms,
whose domains are finitely generated right ideals of A*
(i.e., the ends of the domain are a clopen set).

Fact. If Dom(y) is finitely generated then Im(¢p) is also
finitely generated.

Prop. (R. Thompson, G. Higman, E. Scott, for groups)
Every ¢ € RM“CL& has a unique maximal end-equivalent

extension (within R/\/lm).

This max. extension is denoted by max(¢p).

Definition of the Higman-Thompson monoid Mj, ;:

Mj.1 = {max(p) : @ is a right-ideal morphism
between finitely generated right ideals of A*}.
(k= [A]).

Multiplication: function composition followed by
mazimal essentially equal extension.
(This is associative.)

Prop. Mj is the faithful action of RMZ” on AY.

Definition of the Higman-Thompson group:

Gj1 = {max(¢) : ¢ is a right-ideal isomorphism
between finitely generated
essential right ideals of A*}.

Prop. Gy is the faithful action on A% of the isomor-
phisms between finitely generated essential right ideals.

Properties of M

Mj.1 1s congruence-simple.

Gy is simple iff £ is even.
G'.1 is the group of units (invertible elements) of Mj, ;.
My, — O (Cuntz algebra).

M1 contains all finite monoids,
(.1 contains all finite groups.

The Green relations of a monoid M:
Let s,t € M.

t<;s iff MtM C MsM

iff (dx,y € M) t=uaxsy. (tisatwo-sided multiple of s)
t SR s ift tM C sM

iff (Jye M) t=sy. (t is a right multiple of s)

t<,s it Mt C Ms contain t
ifft (Jze M) t=us. (t is a left multiple of s)

t=ps it (A eM) t=xrpi=,s
1ft (ElpgéM) L=, p =g S.

Prop. (J): My is J -simple
(the only ideals are 0 and My ; itself).

Prop. (D): M1 has k—1 non-zero =p-classes.
In particular, My is DY-simple (“0-bisimple”).

For all non-zero ¢, v € My,

Y =p ¢ iff
imC(y))] = |imC(¢)] mod £k —1.

Prop. My, isregular (ie., VYf3f : ff'f=7f).

Prop. v <z ift
ends(Im(¢))) C ends(Im(p)) iff

for some end-equivalent restrictions W, @ :

imC(V) C imC(P).

Def. mody is the partition on ends(Dom(y)), defined by
U =modp ¥ It (1) = ().

Prop. v <,¢p iff
ends(Dom(v)) C ends(Dom(y)), and
modi) is coarser than mody on ends(Dom(2)))

Prop. <gx-chains and < -chains are dense.
(If z <ythen J2: z<2z<y.)

Prop. Mj; is finitely generated.

Prop. (Thompson, Higman): Gy is finitely presented.
Open question: [s M} (not) finitely presented ?

Theorem.
Over any finite generating set I of M ;:
The word problem of My is in P.

Deciding the Green relations of My ;1 is in P.

Input: %, p € M 1, given by words over I'.
Question: ¥ <7 7 (or <, <gz, =p)

Connection with combinational circuits
(acyclic digital circuits)

M, acts (partially) on the set of bit-strings {0, 1}*;
so the elements of M5 ; are boolean functions.
We now use a “circuit-like” generating set I'U T ;

["is any finite generating set of My, (generalized gates),

T consists of the position transpositions on strings:
T = {111 >1} (C Gia)

Tii+1 - Ty oo Tji—1 Tj Tig1 Tig2 «.. +F—
L1 - oo Ti—1 Li+1 T Tjy2 -

T;i+1 undefined on short words.

(wire-crossing).

Theorem.

For every combinational circuit C

there is a word w over I' U 7 such that:

(1) C and w represent the same function,
(2) |w| <c-|C|. (¢ is a const.)

Conversely:
If f:A™— A" isrepresented by w e (I'UT)*
then f has a combinational circuit C' with

Cl < e Jwf.

10

Decision problems over a “circuit-like”
generating set 'U 7

Theorem.
The word problem of Mj, ; over I' U 7 is coNP-complete
(similar to the circuit equivalence problem).

Theorem. Over ['U7:

deciding <g is II5-complete

(similar to the surjectiveness problem for circuits);
deciding <, is coNP-complete

(similar to the injectiveness problem for circuits).

coNP = {L : L € NP}.

¥o= NPNF = all languages accepted by polyn.-time
nondet. Turing machines, with oracle in NP (or equiva-
lently, with oracle in coNP).

1 = (coNP)NP = all languages accepted by polyn.-

time co-nondet. Turing machines, with oracle in NP (or
equivalently, with oracle in coNP).

11

Monoids of polyn.-time functions

Motivation:

Use (finitely generated) semigroups to study NP and one-
way functions.

Definition scheme:

A partial function f : A* — A* is called “one-way” iff

(1) f(z)is “easy” to compute (knowing f and x),

(2) knowing f and y € Im(f), it is “difficult” to find
any r € A* such that f(x) = .

(Old idea, William Stanley Jevons 1873; ex. of multiplica-
tion vs. factorization. Diffie & Hellman 1976, discr. log.)

The function semigroup fP
We fix an alphabet A (typically, {0,1}).

Def. A partial function f : A* — A* is polynomaially
balanced iff there exists polynomials p, ¢ such that for all

z € Dom(f) : [f(z)| < p(lz]) and |z| < q(|f(2)]).

Def. P = set of partial functions f : A* — A* such that
e v +— f(x) is computable in det. polyn. time;
e f is polynomially balanced.

The first property implies Dom(f) € P.

Prop. fP is closed under composition.

12

Def. (worst-case one-way function; not “cryptographic”):

A function f is one-way ift f € fP, but there does not

exist any deterministic polyn.-time algorithm which,

— on input y € A",

— finds any z € A* such that f(x) =y when y € Im(f).
(There is no requirement in when y & Im(f).)

Prop. (well known, 1980s or 1970s):
One-way functions exist iff P # NP.

Lemma. (Definition of “inverse”): The following are
equivalent for partial functions f, f/: A* — A*.

e Forally € Im(f), f'(y)is defined and f(f'(y)) = y.
(Thus, Im(f) € Dom(f").)

o [[limr) = idlim(s) -
o« fff=f

Such an f’ is called an inverse of f.

How any inverse [’ of f is made:

(1) Choose Dom(f) arbitrarily, with Im(f) € Dom(f").

For every y € Im(f), choose f'(y) to be any x € f~1(y).
(f'lim() 1s the choice function of f'.)

(2) For every y € Dom(f")—Im(f), choose f'(y) arbitrarily
in A*.
Then ff'f = f. Any inverse of f arises in this way.

Prop. fP is regular iftf one-way functions do not exist.

13

Prop.
(1) If f € fP then Im(f) € NP.

(2) For every language L € NP there exists f7 € fP such
that L = |m(fL)

Proof. (2) Let M, be a non-det. polyn.-time Turing ma-
chine accepting L. Define

fr(xz,s)=x iff
M7, with choice sequence s, accepts x:
fr(x,s) is undefined otherwise. O

Prop. If f € fP is regular then Im(f) € P.

Thm. (JCB 2011) If IT5 # X then there exist surjective
one-way functions.

Consequence: For f € fP. Im(f) € P is not equivalent to
f being regular (if I15 # XF).

14

Prop. (regular £- and R-orders):
If f,r € fP and r is reqular with an inverse r’ € fP then:

o [<gr iff f=rr'f iff Im(f)C Im(r).
o f<,r iff f= fr'r iff modf < modr.

The D-relation:

[t is not known which infinite languages in P can be mapped
onto each other by maps in fP.

Are all regular elements of fP with infinite image in the
D-class of id| 4+ 7

Prop. Let P C A* be a prefix code in P, and let py € P.
All regular elements f € fP with Im(f) of the form

Lp = (P — {pg}) A* U Do (poA* U PA*)
are in the D-class of id| 4.

Lp is an “approximation” of the right ideal PA*, since
(P—{po})A* C Lp C PA"

In general, P is infinite, in P; so, P — {py} is “almost” P.

Lemma.

(1) L € P implies LA* € P.

(2) Let R be a right ideal in P, let P be the prefix code P
of R (i.e., R= PA"); then P € P.

15

Def.

RME’ = {f € fP: f is a right ideal morphism of A*}.

If f is a right ideal morphism, Dom(f) is a right ideal.
fin P

RM‘A, C RM,A‘.

Prop. 72./\/l|F;1| is J ' -simple.

Proof. Let (v < u) denote uz — vz (for all z € A%).
So, (€ < €) = id|a+. For f # 0, let f(xy) = yo. Then
(e4¢e)=(e+yy)ofo(xy¢¢e) O

Prop. fP is not J%simple.
[t has regular continuous (prefix-order preserving) ele-
ments in different non-0 7-classes.

Prop. Every regular f € RMSY is “close” to an element
of fP belonging to the D-class of id| 4.

Restrict f from Im(f) = PA*, with py € P, to
L = (P—{po}) A" U po(poA* U PA")
then
Im(f) —poA* C L C Im(f).

Prop. The D-class of id in RMY is H-trivial.

16

Def. The polyn.-time Thompson-Higman monoid M}

consists of the end-equivalence classes of elements of RM, .

M? is the faithful action of RMY on A%

The Thompson-Higman monoid My ; is a submonoid of

MIF;H (where k = |A]).

Padding arquments:
Time-complexity is defined as a function of the input length.
By making inputs longer, without changing the essential
difficulty of a problem, one obtains a new (but “similar”)
problem with lower time-complexity.

Padding can mean, e.g., to replace x by all words of the
form xw for w € A"

This padding preserves end-equivalence.

rec

The padding argument implies that M5 = M€ ie.,
the faithful action on A¥ of RM5C. Here, RMS® = all
right-ideal morphisms that are recursive partial functions,
with recursive domain, recursively balanced.

Prop. M} is regular and D%simple (hence J -simple).

One can define a Thompson group of polynomial-time
functions by taking the group of units of M}

17

Embedding fP into RM?

Def. P uses the alphabet {0, 1}; let # be a new letter.
For any f € fP, define fu : {0,1,#}* — {0,1,#}* by
Dom(f4) = Dom(f)# {0, 1, #}", and
fela#w) = f(z)#w,
for all x € Dom(f) (C {0,1}*), and all w € {0, 1, #}*.

Prop.
(1) Forany L C {0,1}*, L# isaprefix codein {0, 1, #}*.
(2) fefP iff fu.ec RME

Def. Encoding from {0, 1,#} to {0,1}:
code(0) = 00, code(1) =01, code(#) = 11.
Def. We define f¢: {0,1}* — {0,1}* by
Dom(f¢) = code(Dom(f)#) {0,1}*, and

1< (code(z#)v) = code(f(x)#) v,
for all x € Dom(f) (C {0,1}*), and all v € {0, 1}*.

Prop. f efP iff f¢ e RMS.

Prop.

(1) fefP— f€ecRMS isan injective monoid homo-
morphism.

(2) fis regular in fP iff £C is regular in RMSY.

18

Embeddings:

P < RME c [d c P

Here, [id]g(fp) is the Rees quotient of the J-class of the

identity id of fP.
fP embeds into its J-class of the identity (plus zero).

19

Evaluation maps

Turing machine evaluation function

eval, (w,z) = fu(z)
where f,, is the input-output (partial) function described
by the word (program) w.
eval,,, is the I/O map of the universal Turing machines, or
of TM interpreters.

FEvaluation function for acyclic circuits

evalcirc(ca aj) = fC’(CE>7
where fco is the input-output map of a circuit C.
(Assume fe is length-preserving, i.e., | fo(x)| = |z]|.)

Levin’s universal one-way function (1980s):
eVLevin<Cfa 37) — (Ca f0<33)>,
Then, eviein € fP.

Thm. (L. Levin) If one-way functions exist then evyeyin is
a one-way function.

20

Evaluation maps for fP:

Use programs with built-in polyn.-time counter, for time
complexity, and for balancing. (1970’s, Hartmanis, Lewis,
Stearns, et al.)

First attempt: For fP we define

eVpoly(W,) = (W, fu()),
where w is any polynomial program, and f,, € fP.

But evpoly 1s mot in P

complexity on input (w, x) is > ¢ |w| - pu(|x]),
and balancing function is > ¢ (|w| + pu(|x|));
the degree of p,, depends on w.

21

For a fixed polynomial g, let

P = {f,efPY: forall z € Dom(f),
w has time-complexity T,,(|z]) < ¢(]z|) and
input-balance |z| < q(| fu(x)]) }-
Let
ev(g)(w, z) = (w, fulz)),

where w is any g-polynomial program.

Encoding:

ev(c;)(code(w#) x) = code(w#) fu,(x).

When f,, is a right ideal morphism, evf’;) is also a right ideal

morphism.

Prop. Suppose ¢ satisfies ¢(n) > c¢n? + ¢
(for an appropriate constant ¢ > 1 that depends on the
model of computation). Then

evg) e P9 and

evg) is a one-way function if one-way functions exist.

22

For any fixed word v € {0, 1}* we define
i x € {0, 1} — v ;

and for any fixed integer £ > 0 we define
m. o zx € 40,1} — x, where |2| = k
(7(t) undefined if |t| < k).

m, 18 a composite of the maps my and ;.
7. is the kth power of 7.

We define the padding map,
expand(w, z) = (e(w), (01, x))
where e(w) is such that

o) (OF, @) = (OF, fu(x)), for all k.

Encoding:
expand(code(w) 11) =
code(ex(w)) 11 ol 11 2,
now with ex(w) such that
fox(w)(0F 11 2) = 0% 11 f,(z) forall k> 0.

We define a repeated padding map,
reexpand(code(ex(w)) 11 0% 11 x) =
code(ex(w)) 11 0% 11 x,
with ex(w) as above.

23

Unpadding map:

contr(ex(w), (0M, y)) = (w, y)
(undefined on other inputs).

Encoding:
contr(code(ex(w)) 11 0 11 y) = w11y
(undefined on other inputs).

Repeated unpadding:

recontr(code(ex(w)) 11 0F° 11 y)
= code(ex(w)) 11 0% 11 y
(undefined on other inputs).

24

Prop. fP is finitely generated.
Proof. The following is a generating set of fP:

{expand, reexpand, contr, recontr, my, 7w, 7, ev(CQQ)}7
where qo(n) = cn® + c.

For any f,, € fP'9, let m be an integer > log, of the sum
of the degrees and the positive coefficients of q.

folz) = @ o contr o recontr” o ev®
2 w|+2 (g2)

o reexpand™ o expand o m_, (7).

Now we have two ways to describe a function by a word.

Prop. (Program vs. generator string).

The maps s +— w and w +— s are in fP, where
s is over the generators of fP,
w 1s a polynomial program,
with IIs = f,,.

(Compiler maps.)

Prop. fP is not finitely presented. Its word problem is
co-r.e. but not r.e.

(Undecidability of word probl.:

The problem L Z A* for conteat- free languages is unde-
cidable. Context-free languages are in P.)

25

Q. Is RMY finitely generated?

The maps 7y, m, 7}, reexpand, contr, recontr are in RMQP.
There exists an evaluation map that works just for RM,.
But the first padding map expand is not in RMS .

Prop. fP is finitely generated by regular elements.

Proof. Use E)(w,z) = (w, fu(v),x); clearly, E, is
not one-way. But ev(,) can be expressed as a composition
of F(, and the other generators. O

Prop. There are elements of fP that are non-regular (if
P = NP), whose product is regular.

26

Reductions

The usual reduction between partial functions:

h=/f it
(38, a, polyn.-time computable) | f1 = S o fo 0 a].

“f1 is simulated by f5”

For languages, recall polyn.-time many-to-one reduction:
Ly Xm1 Lo iff
(3 polyn.-time computable function a)(Vx € A*)
lzel; & alx)e Ly

Fact. L <.,1 Lo with a as above 1ift
Ly = Oé_l(LQ) iff
XL, = XL, © @ (i.e., xz, is simulated by xr,).

For monoids My < M; in general:
simulation is < 7(yz,) within M; (submonoid J-order, using
multipliers in the submonoid M).

We want an “inversive reduction” such that
if a one-way function f; reduces to a function fy € fP,
then f, is also one-way:.

27

Idea:

f1 reduces “inversively” to fo ift

(1) f1 is simulated by f5, and

(2) the “easiest inverses” of f; are simulated by the
“easiest inverses” of fs.
(The “easiest inverses” are the “minimal inverses” for the
simulation preorder. But do minimal inverses exist?)

Def. (inversive reduction).
f1 <inv fo (“f1 reduces inversively to fo7) iff

(1) i< fe, and

(2) for every inverse fi of fy there exists an inverse f{ of
fi such that f{ < f5 .

Here, f1, fo, f1, f5 range over all partial functions on strings.

The relation <, can be defined on monoids.

Assume My < My < M,, with fi, fo ranging over M,
inverses f1, fy ranging over My, and simulation being < 7y
(i.e., multipliers are in Mj).

We should assume that M is regular within Ms, to avoid
empty ranges for the quantifiers (Vf3)(3f;) (otherwise,
f1 < fo is trivially equivalent to fi < fo, when f5 has
no inverse in My).

28

Prop. <, is transitive and reflexive (pre-order).

Prop. If fi <w fo, fo € fP, and f5 is regular, then
f1 € P and f; is regular.

Contrapositive: If fi, fo € fP and f; is one-way, then f,
1S one-way.

Prop. The evaluation map evgp) is complete in fP with

respect to inversive reduction.
Proof. For any fuw € fP with g-polynomial program w,

m C
fulz) = o contr o recontr™ o evi, ,

a2
o reexpand™ o expand o w_ . - (7).
Let € be any inverse of ev(q) Then for any string of the
form code(w)1ly with y € Im(f,) we have:
e/(code(w) 11y) = code(w) 11 x; ,
for some z; € f, (y).

So €' simulates the inverse of f,, defined by f/ (y) =
where x; is as above (when y € Im(f,,)). O

Prop. Levin’s critical map evieyin is <iny-complete in Py,
(length-preserving partial functions in fP).

Levin’s map eVieyin 1S <iny T-complete in fP, where

<inv.T 1s polynomial inversive Turing reduction.

Prop. For each f € fP there exists £; € fP, such that
f <inv,T gf .

29

Inversification of any simulation:
For any <x, define f; <jnwx fo iff

f1 <x fo, and
(V inverse f5 of fo) (3 inverse fi of f1) fi <x f4.

Prop. If <x is transitive then <y x is transitive.

Prop. For every f,r € RMS with r regular and f
non-empty, we have r <y f.

Prop. The =p-relation is a refinement of <, -equivalence.

30

The polynomial hierarchy

The classical polynomial hierarchy for languages:
Y =NP, II"=coNP; andfork >0:
xP = NP%,
i.e., all languages accepted by non-det. Turing machines
with oracle in 3} (equivalently, with oracle in TI}):

17, = (coNP)™ (= co(NP™))
PH = (J,2, (C PSpace).

Polynomial hierarchy for functions:

fPEE consists of all polynomially balanced partial func-
tions (on A*) computed by det. polyn.-time Turing ma-
chines with oracle in ¥} (equivalently, with oracle in II}).

fPPH consists of all polynomially balanced partial func-
tions (on A*) computed by det. polyn.-time Turing ma-
chines with oracle in PH.

fPSpace consists of all polynomially balanced partial func-
tions (on A*) computed by det. polyn.-space Turing ma-
chines.

31

Prop. Every f € fP has an inverse in fPN".

p p
Every f € fP** has an inverse in fP>+1,

The monoids fP™H and fPSpace are regular.

Proof. The following is an inverse of f:

) = min(f~'(y)) if y € Im(f),
Y otherwise,
where min refers to dictionary order. (]

I[f P = NP then P = PH and fPP" = fP; so fP™ is a

“minimal” regular extension of fP.

Prop.

P
For each k > 1, fP¥+ is finitely generated, but not finitely
presented. The word problem is co-r.e. but not r.e.

fPSpace is also finitely generated, but not finitely presented.
The word problem is co-r.e. but not r.e.

The monoid fP”7 is not finitely generated, unless the polyn.
hierarchy collapses.

32

