
June 2013

Semigroups and one-way functions

Jean-Camille Birget

To Stuart Margolis on his 60th birthday.

CS Dept., Rutgers U. (Camden Campus), Camden, New Jersey

1

Goal:

Find semigroups (and groups) whose elements represent
computational devices or computable functions.

1. Thompson-Higman groups and monoids:
They represent all finite functions and
acyclic digital circuits.

2. Monoids of polynomial-time computable functions:
Their properties depend on P-vs.-NP.

Study complexity classes through functions and
semigroups (instead of only as sets of languages).

arXiv:1306.1447 [math.GR] 6 Jun 2013

2

Preliminary definitions

Fix a finite alphabet A.

A∗ = set of all finite words over A.

View A∗ as the rooted, regular, infinite, oriented
tree, directed away from the root.

Aω = set of all ω-words over A (the ends of A∗),
with the Cantor space topology.

Def. R ⊆ A∗ is right ideal iff RA∗ ⊆ R.

Def. C (⊆ A∗) generates a right ideal R iff
R is the intersection of all right ideals that contain C.

Equivalently, R = CA∗.

In Aω, the open sets of the Cantor space are of the form
CAω = ends(CA∗).

Def. A right ideal R is essential iff
R intersects every right ideal of A∗.

I.e., ends(R) is dense in Aω.

3

Def. C ⊆ A∗ is a prefix code (prefix-free code) iff
no element of C is a prefix of another element of C.

(Shannon-Fano coding, 1948; Huffman, 1951.)

“Prefix”: any initial segment of a word.

Def. A prefix code C is maximal iff
C is not a strict subset of another prefix code.

Fact. A right ideal R has a unique minimal (for ⊆)
generating set C;
this minimum C is a prefix code.

Fact. A prefix code C is maximal iff
CA∗ is an essential right ideal.

Def. (end-equivalence):
For right ideals R′, R ⊆ A∗ : R′ ∼= R iff

R′ and R intersect the same right ideals iff

ends(R) and ends(R′) “are the same up to density”, i.e.,

ends(R) = ends(R′), where overlining denotes closure in
the Cantor set topology.

4

Def. A right ideal homomorphism of A∗ is
a function ϕ : R1 → A∗ such that
R1 is a right ideal of A∗, and
for all x1 ∈ R1 and all w ∈ A∗:

ϕ(x1w) = ϕ(x1) w.

Notation: Domain R1 = Dom(ϕ) ,
image set = Im(ϕ).

Fact. Dom(ϕ) and Im(ϕ) are right ideals.

Fact. ϕ acts as a continuous partial function on Aω.

Def. RMfin
|A| is the set of all right-ideal morphisms,

whose domains are finitely generated right ideals of A∗

(i.e., the ends of the domain are a clopen set).

Fact. If Dom(ϕ) is finitely generated then Im(ϕ) is also
finitely generated.

Prop. (R. Thompson, G. Higman, E. Scott, for groups)
Every ϕ ∈ RMfin

|A| has a unique maximal end-equivalent

extension (within RMfin
|A|).

This max. extension is denoted by max(ϕ).

5

Definition of the Higman-Thompson monoid Mk,1:

Mk,1 = {max(ϕ) : ϕ is a right-ideal morphism
between finitely generated right ideals of A∗}.

(k = |A|).

Multiplication: function composition followed by
maximal essentially equal extension.
(This is associative.)

Prop. Mk,1 is the faithful action of RMfin
k on Aω.

Definition of the Higman-Thompson group:

Gk,1 = {max(ϕ) : ϕ is a right-ideal isomorphism
between finitely generated
essential right ideals of A∗}.

Prop. Gk,1 is the faithful action on Aω of the isomor-
phisms between finitely generated essential right ideals.

6

Properties of Mk,1

Mk,1 is congruence-simple.

Gk,1 is simple iff k is even.

Gk,1 is the group of units (invertible elements) of Mk,1.

Mk,1 ↪→ Ok (Cuntz algebra).

Mk,1 contains all finite monoids,
Gk,1 contains all finite groups.

The Green relations of a monoid M :

Let s, t ∈M .

t ≤J s iff MtM ⊆MsM

iff (∃x, y ∈M) t = xsy. (t is a two-sided multiple of s)

t ≤R s iff tM ⊆ sM
iff (∃y ∈M) t = sy. (t is a right multiple of s)

t ≤L s iff Mt ⊆Ms contain t
iff (∃x ∈M) t = xs. (t is a left multiple of s)

t ≡D s iff (∃p1 ∈M) t ≡R p1 ≡L s
iff (∃p2 ∈M) t ≡L p2 ≡R s.

7

Prop. (J): Mk,1 is J 0-simple
(the only ideals are 0 and Mk,1 itself).

Prop. (D): Mk,1 has k − 1 non-zero ≡D-classes.
In particular, M2,1 is D0-simple (“0-bisimple”).

For all non-zero ϕ, ψ ∈Mk,1 :

ψ ≡D ϕ iff

|imC(ψ)| ≡ |imC(ϕ)| mod k − 1.

Prop. Mk,1 is regular (i.e., ∀f∃f ′ : ff ′f = f).

Prop. ψ ≤R ϕ iff

ends(Im(ψ)) ⊆ ends(Im(ϕ)) iff

for some end-equivalent restrictions Ψ,Φ :
imC(Ψ) ⊆ imC(Φ).

Def. modϕ is the partition on ends(Dom(ϕ)), defined by
u ≡modϕ v iff ϕ(u) = ϕ(v).

Prop. ψ ≤L ϕ iff
ends(Dom(ψ)) ⊆ ends(Dom(ϕ)) , and
modψ is coarser than modϕ on ends(Dom(ψ))

Prop. <R-chains and <L-chains are dense.
(If x < y then ∃z : x < z < y.)

8

Prop. Mk,1 is finitely generated.

Prop. (Thompson, Higman): Gk,1 is finitely presented.

Open question: Is Mk,1 (not) finitely presented ?

Theorem.

Over any finite generating set Γ of Mk,1:

The word problem of Mk,1 is in P.

Deciding the Green relations of Mk,1 is in P.

Input: ψ, ϕ ∈Mk,1, given by words over Γ.
Question: ψ ≤J ϕ ? (or ≤R, ≤L, ≡D)

9

Connection with combinational circuits
(acyclic digital circuits)

M2,1 acts (partially) on the set of bit-strings {0, 1}∗;
so the elements of M2,1 are boolean functions.

We now use a “circuit-like” generating set Γ ∪ τ ;

Γ is any finite generating set of Mk,1 (generalized gates),

τ consists of the position transpositions on strings;
τ = {τi,i+1 : i ≥ 1} (⊂ Gk,1)

τi,i+1 : x1 . . . xi−1 xi xi+1 xi+2 . . . 7−→
x1 . . . xi−1 xi+1 xi xi+2 . . .

τi,i+1 undefined on short words.

(wire-crossing).

Theorem.
For every combinational circuit C
there is a word w over Γ ∪ τ such that:
(1) C and w represent the same function,
(2) |w| ≤ c · |C|. (c is a const.)

Conversely:
If f : Am → An is represented by w ∈ (Γ ∪ τ)∗

then f has a combinational circuit C with

|C| ≤ c · |w|2.

10

Decision problems over a “circuit-like”
generating set Γ ∪ τ

Theorem.
The word problem of Mk,1 over Γ ∪ τ is coNP-complete
(similar to the circuit equivalence problem).

Theorem. Over Γ ∪ τ :

deciding ≤R is ΠP
2 -complete

(similar to the surjectiveness problem for circuits);

deciding ≤L is coNP-complete
(similar to the injectiveness problem for circuits).

coNP = {L : L ∈ NP}.

ΣP
2 = NPNP = all languages accepted by polyn.-time

nondet. Turing machines, with oracle in NP (or equiva-
lently, with oracle in coNP).

ΠP
2 = (coNP)NP = all languages accepted by polyn.-

time co-nondet. Turing machines, with oracle in NP (or
equivalently, with oracle in coNP).

11

Monoids of polyn.-time functions

Motivation:

Use (finitely generated) semigroups to study NP and one-
way functions.

Definition scheme:
A partial function f : A∗ → A∗ is called “one-way” iff
(1) f (x) is “easy” to compute (knowing f and x),
(2) knowing f and y ∈ Im(f), it is “difficult” to find

any x ∈ A∗ such that f (x) = y.

(Old idea, William Stanley Jevons 1873; ex. of multiplica-
tion vs. factorization. Diffie & Hellman 1976, discr. log.)

The function semigroup fP

We fix an alphabet A (typically, {0, 1}).

Def. A partial function f : A∗ → A∗ is polynomially
balanced iff there exists polynomials p, q such that for all
x ∈ Dom(f) : |f (x)| ≤ p(|x|) and |x| ≤ q(|f (x)|).

Def. fP = set of partial functions f : A∗ → A∗ such that
• x 7−→ f (x) is computable in det. polyn. time;
• f is polynomially balanced.

The first property implies Dom(f) ∈ P.

Prop. fP is closed under composition.

12

Def. (worst-case one-way function; not “cryptographic”):
A function f is one-way iff f ∈ fP, but there does not
exist any deterministic polyn.-time algorithm which,
– on input y ∈ A∗,
– finds any x ∈ A∗ such that f (x) = y when y ∈ Im(f).

(There is no requirement in when y 6∈ Im(f).)

Prop. (well known, 1980s or 1970s):
One-way functions exist iff P 6= NP.

Lemma. (Definition of “inverse”): The following are
equivalent for partial functions f, f ′ : A∗ → A∗.

• For all y ∈ Im(f), f ′(y) is defined and f (f ′(y)) = y.
(Thus, Im(f) ⊆ Dom(f ′).)

• f · f ′|Im(f) = id|Im(f) .

• f · f ′ · f = f .

Such an f ′ is called an inverse of f .

How any inverse f ′ of f is made:
(1) Choose Dom(f ′) arbitrarily, with Im(f) ⊆ Dom(f ′).
For every y ∈ Im(f), choose f ′(y) to be any x ∈ f−1(y).

(f ′|Im(f) is the choice function of f ′.)

(2) For every y ∈ Dom(f ′)−Im(f), choose f ′(y) arbitrarily
in A∗.

Then ff ′f = f . Any inverse of f arises in this way.

Prop. fP is regular iff one-way functions do not exist.

13

Prop.
(1) If f ∈ fP then Im(f) ∈ NP.

(2) For every language L ∈ NP there exists fL ∈ fP such
that L = Im(fL).

Proof. (2) Let ML be a non-det. polyn.-time Turing ma-
chine accepting L. Define

fL(x, s) = x iff

ML, with choice sequence s, accepts x;
fL(x, s) is undefined otherwise. 2

Prop. If f ∈ fP is regular then Im(f) ∈ P.

Thm. (JCB 2011) If ΠP
2 6= ΣP

2 then there exist surjective
one-way functions.

Consequence: For f ∈ fP, Im(f) ∈ P is not equivalent to
f being regular (if ΠP

2 6= ΣP
2).

14

Prop. (regular L- and R-orders):
If f, r ∈ fP and r is regular with an inverse r′ ∈ fP then:

• f ≤R r iff f = rr′f iff Im(f) ⊆ Im(r).

• f ≤L r iff f = fr′r iff modf ≤ modr.

The D-relation:

It is not known which infinite languages in P can be mapped
onto each other by maps in fP.

Are all regular elements of fP with infinite image in the
D-class of id|A∗ ?

Prop. Let P ⊆ A∗ be a prefix code in P, and let p0 ∈ P .
All regular elements f ∈ fP with Im(f) of the form

LP = (P − {p0})A∗ ∪ p0 (p0A
∗ ∪ PA∗)

are in the D-class of id|A∗.

LP is an “approximation” of the right ideal PA∗, since

(P − {p0})A∗ ⊂ LP ⊂ PA∗.

In general, P is infinite, in P; so, P −{p0} is “almost” P .

Lemma.
(1) L ∈ P implies LA∗ ∈ P.
(2) Let R be a right ideal in P, let P be the prefix code P
of R (i.e., R = PA∗); then P ∈ P.

15

Def.
RMP

|A|
= {f ∈ fP : f is a right ideal morphism of A∗}.

If f is a right ideal morphism, Dom(f) is a right ideal.

RMfin
|A|
⊂ RMP

|A|
.

Prop. RMP
|A|

is J 0-simple.

Proof. Let (v ← u) denote uz 7→ vz (for all z ∈ A∗).
So, (ε ← ε) = id|A∗. For f 6= 0, let f (x0) = y0. Then
(ε← ε) = (ε← y0) ◦ f ◦ (x0 ← ε). 2

Prop. fP is not J 0-simple.
It has regular continuous (prefix-order preserving) ele-

ments in different non-0 J -classes.

Prop. Every regular f ∈ RMP
2 is “close” to an element

of fP belonging to the D-class of id|A∗.

Restrict f from Im(f) = PA∗, with p0 ∈ P , to

L = (P − {p0})A∗ ∪ p0 (p0A
∗ ∪ PA∗) ;

then

Im(f)− p0A
∗ ⊂ L ⊂ Im(f).

Prop. The D-class of id in RMP
2 is H-trivial.

16

Def. The polyn.-time Thompson-Higman monoidMP
2

consists of the end-equivalence classes of elements ofRMP
2 .

MP
2 is the faithful action of RMP

2 on Aω.

The Thompson-Higman monoid Mk,1 is a submonoid of
MP
|A| (where k = |A|).

Padding arguments:
Time-complexity is defined as a function of the input length.
By making inputs longer, without changing the essential
difficulty of a problem, one obtains a new (but “similar”)
problem with lower time-complexity.

Padding can mean, e.g., to replace x by all words of the
form xw for w ∈ An.

This padding preserves end-equivalence.

The padding argument implies that MP
2 = Mrec

2 , i.e.,
the faithful action on Aω of RMrec

2 . Here, RMrec
2 = all

right-ideal morphisms that are recursive partial functions,
with recursive domain, recursively balanced.

Prop. MP
2 is regular and D0-simple (hence J 0-simple).

One can define a Thompson group of polynomial-time
functions by taking the group of units ofMP

2 .

17

Embedding fP into RMP
2

Def. fP uses the alphabet {0, 1}; let # be a new letter.
For any f ∈ fP, define f# : {0, 1,#}∗ → {0, 1,#}∗ by

Dom(f#) = Dom(f) # {0, 1,#}∗, and

f#(x#w) = f (x) #w,

for all x ∈ Dom(f) (⊆ {0, 1}∗), and all w ∈ {0, 1,#}∗.

Prop.
(1) For any L ⊆ {0, 1}∗, L# is a prefix code in {0, 1,#}∗.
(2) f ∈ fP iff f# ∈ RMP

3

Def. Encoding from {0, 1,#} to {0, 1}:
code(0) = 00, code(1) = 01, code(#) = 11.

Def. We define fC : {0, 1}∗ → {0, 1}∗ by

Dom(fC) = code(Dom(f) #) {0, 1}∗, and

fC(code(x#) v) = code(f (x) #) v,

for all x ∈ Dom(f) (⊆ {0, 1}∗), and all v ∈ {0, 1}∗.

Prop. f ∈ fP iff fC ∈ RMP
2 .

Prop.

(1) f ∈ fP 7→ fC ∈ RMP
2 is an injective monoid homo-

morphism.

(2) f is regular in fP iff fC is regular in RMP
2 .

18

Embeddings:

fP
C
↪→ RMP

2 ⊂ [id]0
J (fP)

⊂ fP.

Here, [id]0
J (fP)

is the Rees quotient of the J -class of the

identity id of fP.
fP embeds into its J -class of the identity (plus zero).

19

Evaluation maps

Turing machine evaluation function

eval
TM

(w, x) = fw(x)

where fw is the input-output (partial) function described
by the word (program) w.
eval

TM
is the I/O map of the universal Turing machines, or

of TM interpreters.

Evaluation function for acyclic circuits

evalcirc(C, x) = fC(x),

where fC is the input-output map of a circuit C.
(Assume fC is length-preserving, i.e., |fC(x)| = |x|.)

Levin’s universal one-way function (1980s):

evLevin(C, x) = (C, fC(x)),

Then, evLevin ∈ fP.

Thm. (L. Levin) If one-way functions exist then evLevin is
a one-way function.

20

Evaluation maps for fP:

Use programs with built-in polyn.-time counter, for time
complexity, and for balancing. (1970’s, Hartmanis, Lewis,
Stearns, et al.)

First attempt: For fP we define

evpoly(w, x) = (w, fw(x)),

where w is any polynomial program, and fw ∈ fP.

But evpoly is not in fP :
complexity on input (w, x) is > c |w| · pw(|x|),
and balancing function is > c (|w| + pw(|x|));
the degree of pw depends on w.

21

For a fixed polynomial q, let

fP(q) = {fw ∈ fP(q) : for all x ∈ Dom(f),

w has time-complexity Tw(|x|) ≤ q(|x|) and

input-balance |x| ≤ q(|fw(x)|) }.
Let

ev(q)(w, x) = (w, fw(x)),

where w is any q-polynomial program.

Encoding:

evC(q)(code(w#)x) = code(w#) fw(x).

When fw is a right ideal morphism, evC(q) is also a right ideal
morphism.

Prop. Suppose q satisfies q(n) > cn2 + c
(for an appropriate constant c > 1 that depends on the
model of computation). Then

evC(q) ∈ fP(q) , and

evC(q) is a one-way function if one-way functions exist.

22

For any fixed word v ∈ {0, 1}∗ we define

πv : x ∈ {0, 1}∗ 7−→ v x ;

and for any fixed integer k > 0 we define

π′k : z x ∈ {0, 1}∗ 7−→ x, where |z| = k
(πk(t) undefined if |t| < k).

πv is a composite of the maps π0 and π1.
π′k is the kth power of π′1.

We define the padding map,

expand(w, x) = (e(w), (0|x|
2
, x))

where e(w) is such that

fe(w)(0
k, x) = (0k, fw(x)), for all k.

Encoding:

expand(code(w) 11 x) =

code(ex(w)) 11 0|x|
2

11 x,

now with ex(w) such that

fex(w)(0
k 11 x) = 0k 11 fw(x) for all k ≥ 0.

We define a repeated padding map,

reexpand(code(ex(w)) 11 0k 11 x) =

code(ex(w)) 11 0k
2

11 x,

with ex(w) as above.

23

Unpadding map:

contr(ex(w), (0|y|
2
, y)) = (w, y)

(undefined on other inputs).

Encoding:

contr(code(ex(w)) 11 0|y|
2

11 y) = w 11 y

(undefined on other inputs).

Repeated unpadding:

recontr(code(ex(w)) 11 0k
2

11 y)

= code(ex(w)) 11 0k 11 y

(undefined on other inputs).

24

Prop. fP is finitely generated.

Proof. The following is a generating set of fP:

{expand, reexpand, contr, recontr, π0, π1, π
′
1, ev

C
(q2)},

where q2(n) = c n2 + c.
For any fw ∈ fP(q), let m be an integer ≥ log2 of the sum

of the degrees and the positive coefficients of q.

fw(x) = π′
2 |w|+2

◦ contr ◦ recontrm ◦ evC(q2)

◦ reexpandm ◦ expand ◦ π
code(w) 11

(x).

Now we have two ways to describe a function by a word.

Prop. (Program vs. generator string).
The maps s 7→ w and w 7→ s are in fP, where
s is over the generators of fP,
w is a polynomial program,
with Πs = fw.

(Compiler maps.)

Prop. fP is not finitely presented. Its word problem is
co-r.e. but not r.e.

(Undecidability of word probl.:

The problem L
?
= A∗ for context-free languages is unde-

cidable. Context-free languages are in P.)

25

Q. Is RMP
2 finitely generated?

The maps π0, π1, π
′
1, reexpand, contr, recontr are inRMP

2 .
There exists an evaluation map that works just for RMP

2 .
But the first padding map expand is not in RMP

2 .

Prop. fP is finitely generated by regular elements.

Proof. Use E(q)(w, x) = (w, fw(x), x); clearly, E(q) is
not one-way. But ev(q) can be expressed as a composition
of E(q) and the other generators. 2

Prop. There are elements of fP that are non-regular (if
P 6= NP), whose product is regular.

26

Reductions

The usual reduction between partial functions:

f1 4 f2 iff

(∃β, α, polyn.-time computable) [f1 = β ◦ f2 ◦ α].

“f1 is simulated by f2”

For languages, recall polyn.-time many-to-one reduction:

L1 4m:1 L2 iff

(∃ polyn.-time computable function α)(∀x ∈ A∗)
[x ∈ L1 ⇔ α(x) ∈ L2].

Fact. L1 4m:1 L2 with α as above iff
L1 = α−1(L2) iff
χL1 = χL2 ◦ α (i.e., χL1 is simulated by χL2).

For monoids M0 ≤M1 in general:
simulation is≤J (M0) withinM1 (submonoid J -order, using
multipliers in the submonoid M0).

We want an “inversive reduction” such that
if a one-way function f1 reduces to a function f2 ∈ fP,
then f2 is also one-way.

27

Idea:
f1 reduces “inversively” to f2 iff
(1) f1 is simulated by f2, and
(2) the “easiest inverses” of f1 are simulated by the

“easiest inverses” of f2.
(The “easiest inverses” are the “minimal inverses” for the
simulation preorder. But do minimal inverses exist?)

Def. (inversive reduction).
f1 6inv f2 (“f1 reduces inversively to f2”) iff

(1) f1 4 f2 , and

(2) for every inverse f ′2 of f2 there exists an inverse f ′1 of
f1 such that f ′1 4 f ′2 .

Here, f1, f2, f
′
1, f

′
2 range over all partial functions on strings.

The relation 6inv can be defined on monoids.
Assume M0 ≤ M1 ≤ M2, with f1, f2 ranging over M1,

inverses f ′1, f
′
2 ranging overM2, and simulation being≤J (M0)

(i.e., multipliers are in M0).
We should assume that M1 is regular within M2, to avoid

empty ranges for the quantifiers (∀f ′2)(∃f ′1) (otherwise,
f1 6inv f2 is trivially equivalent to f1 4 f2, when f2 has
no inverse in M2).

28

Prop. 6inv is transitive and reflexive (pre-order).

Prop. If f1 6inv f2, f2 ∈ fP, and f2 is regular, then
f1 ∈ fP and f1 is regular.

Contrapositive: If f1, f2 ∈ fP and f1 is one-way, then f2

is one-way.

Prop. The evaluation map evC(q2) is complete in fP with
respect to inversive reduction.

Proof. For any fw ∈ fP with q-polynomial program w,

fw(x) = π′
2 |w|+2

◦ contr ◦ recontrm ◦ evC(q2)

◦ reexpandm ◦ expand ◦ π
code(w) 11

(x).

Let e′ be any inverse of evC(q2). Then for any string of the

form code(w) 11 y with y ∈ Im(fw) we have:

e′(code(w) 11 y) = code(w) 11xi ,

for some xi ∈ f−1
w (y).

So e′ simulates the inverse of fw, defined by f ′w(y) = xi,
where xi is as above (when y ∈ Im(fw)). 2

Prop. Levin’s critical map evLevin is 6inv-complete in fPlp

(length-preserving partial functions in fP).

Levin’s map evLevin is 6inv,T-complete in fP, where

6inv,T is polynomial inversive Turing reduction.

Prop. For each f ∈ fP there exists `f ∈ fPlp such that
f 6inv,T `f .

29

Inversification of any simulation:

For any 4X , define f1 6inv,X f2 iff

f1 4X f2, and
(∀ inverse f ′2 of f2) (∃ inverse f ′1 of f1) f ′1 4X f ′2.

Prop. If 4X is transitive then 6inv,X is transitive.

Prop. For every f, r ∈ RMP
2 with r regular and f

non-empty, we have r 6inv f .

Prop. The≡D-relation is a refinement of 6inv-equivalence.

30

The polynomial hierarchy

The classical polynomial hierarchy for languages:

ΣP
1 = NP, ΠP

1 = coNP ; and for k > 0 :

ΣP
k+1 = NPΣP

k ,
i.e., all languages accepted by non-det. Turing machines
with oracle in ΣP

k (equivalently, with oracle in ΠP
k);

ΠP
k+1 = (coNP)ΣP

k (= co(NPΣP
k));

PH =
⋃
k ΣP

k (⊆ PSpace).

Polynomial hierarchy for functions:

fPΣP
k consists of all polynomially balanced partial func-

tions (on A∗) computed by det. polyn.-time Turing ma-
chines with oracle in ΣP

k (equivalently, with oracle in ΠP
k).

fPPH consists of all polynomially balanced partial func-
tions (on A∗) computed by det. polyn.-time Turing ma-
chines with oracle in PH.

fPSpace consists of all polynomially balanced partial func-
tions (on A∗) computed by det. polyn.-space Turing ma-
chines.

31

Prop. Every f ∈ fP has an inverse in fPNP.

Every f ∈ fPΣP
k has an inverse in fPΣP

k+1.

The monoids fPPH and fPSpace are regular.

Proof. The following is an inverse of f :

f ′(y) =

{
min(f−1(y)) if y ∈ Im(f),
y otherwise,

where min refers to dictionary order. 2

If P = NP then P = PH and fPPH = fP; so fPPH is a
“minimal” regular extension of fP.

Prop.

For each k ≥ 1, fPΣP
k is finitely generated, but not finitely

presented. The word problem is co-r.e. but not r.e.

fPSpace is also finitely generated, but not finitely presented.
The word problem is co-r.e. but not r.e.

The monoid fPPH is not finitely generated, unless the polyn.
hierarchy collapses.

32

