Semigroups and one-way functions

Jean-Camille Birget

To Stuart Margolis on his 60th birthday.

CS Dept., Rutgers U. (Camden Campus), Camden, New Jersey
Goal:

Find semigroups (and groups) whose elements represent *computational devices* or *computable functions*.

1. Thompson-Higman groups and monoids:
 They represent all *finite functions* and *acyclic digital circuits*.

2. Monoids of polynomial-time computable functions:
 Their properties depend on *P-vs.-NP*.

 Study complexity classes through functions and semigroups (instead of only as sets of languages).

Preliminary definitions

Fix a finite alphabet A.

$A^* = \text{set of all finite words over } A$.

View A^* as the rooted, regular, infinite, oriented tree, directed away from the root.

$A^\omega = \text{set of all } \omega\text{-words over } A$ (the ends of A^*), with the Cantor space topology.

Def. $R \subseteq A^*$ is **right ideal** iff $RA^* \subseteq R$.

Def. $C (\subseteq A^*)$ generates a right ideal R iff R is the intersection of all right ideals that contain C.

Equivalently, $R = CA^*$.

In A^ω, the open sets of the Cantor space are of the form $CA^\omega = \text{ends}(CA^*)$.

Def. A right ideal R is **essential** iff R intersects every right ideal of A^*.

I.e., $\text{ends}(R)$ is dense in A^ω.
Def. $C \subseteq A^*$ is a **prefix code** (prefix-free code) iff no element of C is a prefix of another element of C.

(Shannon-Fano coding, 1948; Huffman, 1951.)

“Prefix”: any initial segment of a word.

Def. A prefix code C is **maximal** iff C is not a strict subset of another prefix code.

Fact. A right ideal R has a **unique minimal** (for \subseteq) generating set C; this minimum C is a prefix code.

Fact. A prefix code C is **maximal** iff CA^* is an **essential** right ideal.

Def. (end-equivalence):
For right ideals $R', R \subseteq A^*$: $R' \cong R$ iff R' and R intersect the same right ideals iff $\text{ends}(R)$ and $\text{ends}(R')$ “are the same up to density”, i.e., $\overline{\text{ends}(R)} = \overline{\text{ends}(R')}$, where overlining denotes closure in the Cantor set topology.
Def. A **right ideal homomorphism** of A^* is a function $\varphi : R_1 \to A^*$ such that R_1 is a right ideal of A^*, and for all $x_1 \in R_1$ and all $w \in A^*$:

$$\varphi(x_1 w) = \varphi(x_1) w.$$

Notation: Domain $R_1 = \text{Dom}(\varphi)$, image set = $\text{Im}(\varphi)$.

Fact. $\text{Dom}(\varphi)$ and $\text{Im}(\varphi)$ are right ideals.

Fact. φ acts as a continuous partial function on A^ω.

Def. $\mathcal{RM}^{\text{fin}}_{|A|}$ is the set of all **right-ideal morphisms**, whose domains are **finitely generated** right ideals of A^* (i.e., the ends of the domain are a clopen set).

Fact. If $\text{Dom}(\varphi)$ is finitely generated then $\text{Im}(\varphi)$ is also finitely generated.

Prop. (R. Thompson, G. Higman, E. Scott, for **groups**) Every $\varphi \in \mathcal{RM}^{\text{fin}}_{|A|}$ has a **unique** maximal end-equivalent extension (within $\mathcal{RM}^{\text{fin}}_{|A|}$).

This max. extension is denoted by $\text{max}(\varphi)$.
Definition of the Higman-Thompson monoid $M_{k,1}$:

$M_{k,1} = \{ \max(\varphi) : \varphi \text{ is a right-ideal morphism between finitely generated right ideals of } A^* \}$.

($k = |A|$).

Multiplication: function composition followed by maximal essentially equal extension. (This is associative.)

Prop. $M_{k,1}$ is the faithful action of $\mathcal{RM}_{k}^{\text{fin}}$ on A^ω.

Definition of the Higman-Thompson group:

$G_{k,1} = \{ \max(\varphi) : \varphi \text{ is a right-ideal isomorphism between finitely generated essential right ideals of } A^* \}$.

Prop. $G_{k,1}$ is the faithful action on A^ω of the isomorphisms between finitely generated essential right ideals.
Properties of \(M_{k,1} \)

\(M_{k,1} \) is congruence-simple.

\(G_{k,1} \) is simple iff \(k \) is even.

\(G_{k,1} \) is the group of units (invertible elements) of \(M_{k,1} \).

\(M_{k,1} \) \(\hookrightarrow \) \(O_k \) (Cuntz algebra).

\(M_{k,1} \) contains all finite monoids,
\(G_{k,1} \) contains all finite groups.

The Green relations of a monoid \(M \):

Let \(s, t \in M \).

\(t \leq_J s \) iff \(MtM \subseteq MsM \)
iff \((\exists x, y \in M) \ t = xsy. \ (t \text{ is a two-sided multiple of } s) \)

\(t \leq_R s \) iff \(tM \subseteq sM \)
iff \((\exists y \in M) \ t = sy. \ (t \text{ is a right multiple of } s) \)

\(t \leq_L s \) iff \(Mt \subseteq Ms \) contain \(t \)
iff \((\exists x \in M) \ t = xs. \ (t \text{ is a left multiple of } s) \)

\(t \equiv_D s \) iff \((\exists p_1 \in M) \ t \equiv_R p_1 \equiv_L s \)
iff \((\exists p_2 \in M) \ t \equiv_L p_2 \equiv_R s. \)
Prop. \((\mathcal{J})\): \(M_{k,1}\) is \(\mathcal{J}^0\)-simple
(the only ideals are \(0\) and \(M_{k,1}\) itself).

Prop. \((\mathcal{D})\): \(M_{k,1}\) has \(k - 1\) non-zero \(\equiv_{\mathcal{D}}\)-classes.
In particular, \(M_{2,1}\) is \(\mathcal{D}^0\)-simple ("0-bisimple").

For all non-zero \(\varphi, \psi \in M_{k,1}\):
\[
\psi \equiv_{\mathcal{D}} \varphi \quad \text{iff} \quad |\text{im}C(\psi)| \equiv |\text{im}C(\varphi)| \mod k - 1.
\]

Prop. \(M_{k,1}\) is regular (i.e., \(\forall f \exists f' : ff'f = f\)).

Prop. \(\psi \leq_{\mathcal{R}} \varphi \quad \text{iff} \quad \text{ends}(\text{Im}(\psi)) \subseteq \text{ends}(\text{Im}(\varphi)) \quad \text{iff} \quad \text{for some end-equivalent restrictions } \Psi, \Phi : \text{im}C(\Psi) \subseteq \text{im}C(\Phi).

Def. \(\text{mod}\varphi\) is the partition on \(\text{ends}(\text{Dom}(\varphi))\), defined by
\(u \equiv_{\text{mod}\varphi} v \quad \text{iff} \quad \varphi(u) = \varphi(v)\).

Prop. \(\psi \leq_{\mathcal{L}} \varphi \quad \text{iff} \quad \text{ends}(\text{Dom}(\psi)) \subseteq \text{ends}(\text{Dom}(\varphi))\), and \(\text{mod}\psi\) is coarser than \(\text{mod}\varphi\) on \(\text{ends}(\text{Dom}(\psi))\)

Prop. \(<_{\mathcal{R}}\)-chains and \(<_{\mathcal{L}}\)-chains are dense.
(If \(x < y\) then \(\exists z : x < z < y\).)
Prop. $M_{k,1}$ is finitely generated.

Prop. (Thompson, Higman): $G_{k,1}$ is finitely presented.

Open question: Is $M_{k,1}$ (not) finitely presented?

Theorem.
Over any finite generating set Γ of $M_{k,1}$:
The word problem of $M_{k,1}$ is in \mathcal{P}.
Deciding the Green relations of $M_{k,1}$ is in \mathcal{P}.

Input: $\psi, \varphi \in M_{k,1}$, given by words over Γ.
Question: $\psi \leq_J \varphi$? (or \leq_R, \leq_L, \equiv_D)
Connection with combinational circuits
(acyclic digital circuits)

$M_{2,1}$ acts (partially) on the set of bit-strings $\{0, 1\}^*$; so the elements of $M_{2,1}$ are boolean functions.

We now use a "circuit-like" generating set $\Gamma \cup \tau$; Γ is any finite generating set of $M_{k,1}$ (generalized gates), τ consists of the position transpositions on strings; $\tau = \{\tau_{i,i+1} : i \geq 1\}$ ($\subset G_{k,1}$)

$\tau_{i,i+1}$: $x_1 \ldots x_{i-1} x_i x_{i+1} x_{i+2} \ldots \rightarrow x_1 \ldots x_{i-1} x_{i+1} x_i x_{i+2} \ldots$

$\tau_{i,i+1}$ undefined on short words.

(wire-crossing).

Theorem.
For every combinational circuit C there is a word w over $\Gamma \cup \tau$ such that:
(1) C and w represent the same function,
(2) $|w| \leq c \cdot |C|$. (c is a const.)

Conversely:
If $f : A^m \rightarrow A^n$ is represented by $w \in (\Gamma \cup \tau)^*$ then f has a combinational circuit C with

$|C| \leq c \cdot |w|^2$.
Decision problems over a “circuit-like” generating set $\Gamma \cup \tau$

Theorem. The word problem of $M_{k,1}$ over $\Gamma \cup \tau$ is coNP-complete (similar to the circuit equivalence problem).

Theorem. Over $\Gamma \cup \tau$:
- deciding \leq_R is Π^P_2-complete (similar to the surjectiveness problem for circuits);
- deciding \leq_L is coNP-complete (similar to the injectiveness problem for circuits).

$\text{coNP} = \{ L : \overline{L} \in \text{NP} \}$.

$\Sigma^P_2 = \text{NP}^{\text{NP}} = \text{all languages accepted by polyn.-time nondet. Turing machines, with oracle in } \text{NP} \text{ (or equivalently, with oracle in } \text{coNP}).$

$\Pi^P_2 = (\text{coNP})^{\text{NP}} = \text{all languages accepted by polyn.-time co-non} \text{det. Turing machines, with oracle in } \text{NP} \text{ (or equivalently, with oracle in } \text{coNP}).$
Monoids of polyn.-time functions

Motivation:
Use (finitely generated) semigroups to study NP and one-way functions.

Definition scheme:
A partial function $f : A^* \to A^*$ is called “one-way” iff
(1) $f(x)$ is “easy” to compute (knowing f and x),
(2) knowing f and $y \in \text{Im}(f)$, it is “difficult” to find any $x \in A^*$ such that $f(x) = y$.
(Old idea, William Stanley Jevons 1873; ex. of multiplication vs. factorization. Diffie & Hellman 1976, discr. log.)

The function semigroup $f\mathcal{P}$
We fix an alphabet A (typically, $\{0, 1\}$).

Def. A partial function $f : A^* \to A^*$ is polynomially balanced iff there exists polynomials p, q such that for all $x \in \text{Dom}(f) : |f(x)| \leq p(|x|)$ and $|x| \leq q(|f(x)|)$.

Def. $f\mathcal{P} = \text{set of partial functions } f : A^* \to A^* \text{ such that}$
$\bullet \ x \mapsto f(x) \text{ is computable in det. polyn. time;}
\bullet \ f \text{ is polynomially balanced.}$

The first property implies $\text{Dom}(f) \in \mathcal{P}$.

Prop. $f\mathcal{P}$ is closed under composition.
Def. (worst-case one-way function; not “cryptographic”): A function f is **one-way** iff $f \in f\mathcal{P}$, but there does not exist any deterministic polyn.-time algorithm which,
- on input $y \in A^*$,
- finds any $x \in A^*$ such that $f(x) = y$ when $y \in \text{Im}(f)$.
 (There is no requirement in when $y \not\in \text{Im}(f)$.)

Prop. (well known, 1980s or 1970s): One-way functions exist iff $P \neq \text{NP}$.

Lemma. (Definition of “inverse”): The following are equivalent for partial functions $f, f': A^* \to A^*$.

- For all $y \in \text{Im}(f)$, $f'(y)$ is defined and $f(f'(y)) = y$.
 (Thus, $\text{Im}(f) \subseteq \text{Dom}(f')$.)
- $f \cdot f'|_{\text{Im}(f)} = \text{id}|_{\text{Im}(f)}$.
- $f \cdot f' \cdot f = f$.

Such an f' is called an **inverse** of f.

How any inverse f' of f is made:
1. Choose $\text{Dom}(f')$ arbitrarily, with $\text{Im}(f) \subseteq \text{Dom}(f')$.
 For every $y \in \text{Im}(f)$, choose $f'(y)$ to be any $x \in f^{-1}(y)$.
 ($f'|_{\text{Im}(f)}$ is the *choice function* of f'.)
2. For every $y \in \text{Dom}(f') - \text{Im}(f)$, choose $f'(y)$ arbitrarily in A^*.
 Then $ff'f = f$. Any inverse of f arises in this way.

Prop. $f\mathcal{P}$ is **regular** iff one-way functions do not exist.
Prop. (1) If \(f \in \mathsf{fP} \) then \(\text{Im}(f) \in \mathsf{NP} \).
(2) For every language \(L \in \mathsf{NP} \) there exists \(f_L \in \mathsf{fP} \) such that \(L = \text{Im}(f_L) \).

Proof. (2) Let \(M_L \) be a non-det. polyn.-time Turing machine accepting \(L \). Define
\[
f_L(x, s) = x \quad \text{iff} \quad M_L, \text{ with choice sequence } s, \text{ accepts } x;
\]
\(f_L(x, s) \) is undefined otherwise. \(\square \)

Prop. If \(f \in \mathsf{fP} \) is regular then \(\text{Im}(f) \in \mathsf{P} \).

Thm. (JCB 2011) If \(\Pi^P_2 \neq \Sigma^P_2 \) then there exist surjective one-way functions.

Consequence: For \(f \in \mathsf{fP}, \text{Im}(f) \in \mathsf{P} \) is not equivalent to \(f \) being regular (if \(\Pi^P_2 \neq \Sigma^P_2 \)).
Prop. (regular \(L\)- and \(R\)-orders):

If \(f, r \in fP\) and \(r\) is regular with an inverse \(r' \in fP\) then:

- \(f \leq R r\) iff \(f = rr'f\) iff \(\text{Im}(f) \subseteq \text{Im}(r)\).
- \(f \leq L r\) iff \(f = fr'r\) iff \(\text{mod} f \leq \text{mod} r\).

The \(D\)-relation:

It is not known which infinite languages in \(P\) can be mapped onto each other by maps in \(fP\).

Are all regular elements of \(fP\) with infinite image in the \(D\)-class of \(\text{id}|_{A^*}\)?

Prop. Let \(P \subseteq A^*\) be a prefix code in \(P\), and let \(p_0 \in P\). All regular elements \(f \in fP\) with \(\text{Im}(f)\) of the form

\[
L_P = (P - \{p_0\}) A^* \cup p_0 (p_0 A^* \cup PA^*)
\]

are in the \(D\)-class of \(\text{id}|_{A^*}\).

\(L_P\) is an “approximation” of the right ideal \(PA^*\), since

\[
(P - \{p_0\}) A^* \subseteq L_P \subseteq PA^*.
\]

In general, \(P\) is infinite, in \(P\); so, \(P - \{p_0\}\) is “almost” \(P\).

Lemma.

(1) \(L \in P\) implies \(LA^* \in P\).

(2) Let \(R\) be a right ideal in \(P\), let \(P\) be the prefix code \(P\) of \(R\) (i.e., \(R = PA^*\)); then \(P \in P\).
Def. \(\mathcal{RM}_{|A|}^P = \{ f \in fP : f \text{ is a right ideal morphism of } A^* \} \).

If \(f \) is a right ideal morphism, \(\text{Dom}(f) \) is a right ideal.

\[\mathcal{RM}_{|A|}^{\text{fin}} \subset \mathcal{RM}_{|A|}^P. \]

Prop. \(\mathcal{RM}_{|A|}^P \) is \(\mathcal{J}^0 \)-simple.

Proof. Let \((v \leftarrow u)\) denote \(uz \mapsto vz \) (for all \(z \in A^* \)). So, \((\varepsilon \leftarrow \varepsilon) = \text{id}|_{A^*}\). For \(f \neq 0 \), let \(f(x_0) = y_0 \). Then
\[
(\varepsilon \leftarrow \varepsilon) = (\varepsilon \leftarrow y_0) \circ f \circ (x_0 \leftarrow \varepsilon).
\]

Prop. \(fP \) is not \(\mathcal{J}^0 \)-simple.

It has regular continuous (prefix-order preserving) elements in different non-0 \(\mathcal{J} \)-classes.

Prop. Every regular \(f \in \mathcal{RM}_2^P \) is “close” to an element of \(fP \) belonging to the \(\mathcal{D} \)-class of \(\text{id}|_{A^*} \).

Restrict \(f \) from \(\text{Im}(f) = PA^* \), with \(p_0 \in P \), to
\[
L = (P - \{p_0\}) A^* \cup p_0 \left(p_0 A^* \cup \overline{PA^*}\right);
\]
then
\[
\text{Im}(f) - p_0 A^* \subset L \subset \text{Im}(f).
\]

Prop. The \(\mathcal{D} \)-class of \(\text{id} \) in \(\mathcal{RM}_2^P \) is \(\mathcal{H} \)-trivial.
Def. The *polyn.-time Thompson-Higman monoid* \(\mathcal{M}_2^P \) consists of the *end-equivalence classes* of elements of \(\mathcal{RM}_2^P \). \(\mathcal{M}_2^P \) is the faithful action of \(\mathcal{RM}_2^P \) on \(A^\omega \).

The Thompson-Higman monoid \(M_{k,1} \) is a submonoid of \(\mathcal{M}_{|A|}^P \) (where \(k = |A| \)).

Padding arguments:

Time-complexity is defined as a function of the input length. By making inputs longer, without changing the essential difficulty of a problem, one obtains a new (but “similar”) problem with lower time-complexity.

Padding can mean, e.g., to replace \(x \) by all words of the form \(xw \) for \(w \in A^n \).

This padding preserves end-equivalence.

The padding argument implies that \(\mathcal{M}_2^P = \mathcal{M}_2^{\text{rec}} \), i.e., the faithful action on \(A^\omega \) of \(\mathcal{RM}_2^{\text{rec}} \). Here, \(\mathcal{RM}_2^{\text{rec}} \) = all right-ideal morphisms that are recursive partial functions, with recursive domain, recursively balanced.

Prop. \(\mathcal{M}_2^P \) is regular and \(\mathcal{D}^0 \)-simple (hence \(\mathcal{J}^0 \)-simple).

One can define a *Thompson group* of polynomial-time functions by taking the group of units of \(\mathcal{M}_2^P \).
Embedding \(f\mathcal{P} \) into \(\mathcal{RM}_2^P \)

Def. \(f\mathcal{P} \) uses the alphabet \(\{0, 1\} \); let \(\# \) be a new letter. For any \(f \in f\mathcal{P} \), define \(f\# : \{0, 1, \#\}^* \to \{0, 1, \#\}^* \) by

\[
\text{Dom}(f\#) = \text{Dom}(f) \# \{0, 1, \#\}^*, \quad \text{and} \quad f\#(x\#w) = f(x) \# w,
\]
for all \(x \in \text{Dom}(f) (\subseteq \{0, 1\}^*) \), and all \(w \in \{0, 1, \#\}^* \).

Prop.

1. For any \(L \subseteq \{0, 1\}^* \), \(L\# \) is a prefix code in \(\{0, 1, \#\}^* \).
2. \(f \in f\mathcal{P} \) iff \(f\# \in \mathcal{RM}_3^P \)

Def. Encoding from \(\{0, 1, \#\} \) to \(\{0, 1\} \):

\[
\text{code}(0) = 00, \quad \text{code}(1) = 01, \quad \text{code}(\#) = 11.
\]

Def. We define \(f^C : \{0, 1\}^* \to \{0, 1\}^* \) by

\[
\text{Dom}(f^C) = \text{code}(\text{Dom}(f) \#) \{0, 1\}^*, \quad \text{and} \quad f^C(\text{code}(x\#) v) = \text{code}(f(x) \#) v,
\]
for all \(x \in \text{Dom}(f) (\subseteq \{0, 1\}^*) \), and all \(v \in \{0, 1\}^* \).

Prop. \(f \in f\mathcal{P} \) iff \(f^C \in \mathcal{RM}_2^P \).

Prop.

1. \(f \in f\mathcal{P} \mapsto f^C \in \mathcal{RM}_2^P \) is an injective monoid homomorphism.
2. \(f \) is regular in \(f\mathcal{P} \) iff \(f^C \) is regular in \(\mathcal{RM}_2^P \).
Embeddings:

\[
fP \overset{C}{\hookrightarrow} \mathcal{RM}_2 \subset [\text{id}]^0_{\mathcal{J}(\mathcal{P})} \subset fP.
\]

Here, \([\text{id}]^0_{\mathcal{J}(\mathcal{P})}\) is the Rees quotient of the \(\mathcal{J}\)-class of the identity \(\text{id}\) of \(fP\).

\(fP\) embeds into its \(\mathcal{J}\)-class of the identity (plus zero).
Evaluation maps

Turing machine evaluation function

\[\text{eval}_{\text{TM}}(w, x) = f_w(x) \]

where \(f_w \) is the input-output (partial) function described by the word (program) \(w \).

\(\text{eval}_{\text{TM}} \) is the I/O map of the universal Turing machines, or of TM interpreters.

Evaluation function for acyclic circuits

\[\text{eval}_{\text{circ}}(C, x) = f_C(x), \]

where \(f_C \) is the input-output map of a circuit \(C \).

(Assume \(f_C \) is length-preserving, i.e., \(|f_C(x)| = |x| \).)

Levin’s universal one-way function (1980s):

\[\text{ev}_{\text{Levin}}(C, x) = (C, f_C(x)), \]

Then, \(\text{ev}_{\text{Levin}} \in \text{fP} \).

Thm. (L. Levin) If one-way functions exist then \(\text{ev}_{\text{Levin}} \) is a one-way function.
Evaluation maps for fP:

Use programs with *built-in polyn.-time counter*, for time complexity, and for balancing. (1970’s, Hartmanis, Lewis, Stearns, et al.)

First attempt: For fP we define

$$\text{ev}_{\text{poly}}(w, x) = (w, f_w(x)),$$

where w is any polynomial program, and $f_w \in \text{fP}$.

But ev_{poly} is not in fP:
complexity on input (w, x) is $> c |w| \cdot p_w(|x|)$,
and balancing function is $> c (|w| + p_w(|x|))$;
the degree of p_w depends on w.
For a fixed polynomial q, let
\[
\mathsf{fP}^{(q)} = \{ f_w \in \mathsf{fP}^{(q)} : \text{ for all } x \in \text{Dom}(f), \]
\[
\text{ } w \text{ has time-complexity } T_w(|x|) \leq q(|x|) \text{ and } \\
\text{input-balance } |x| \leq q(|f_w(x)|) \}.
\]

Let
\[
\text{ev}^{(q)}(w, x) = (w, f_w(x)),
\]
where w is any q-polynomial program.

Encoding:
\[
\text{ev}^C_{(q)}(\text{code}(w\#) x) = \text{code}(w\#) f_w(x).
\]

When f_w is a right ideal morphism, $\text{ev}^C_{(q)}$ is also a right ideal morphism.

Prop. Suppose q satisfies $q(n) > c n^2 + c$
(for an appropriate constant $c > 1$ that depends on the model of computation). Then
\[
\text{ev}^C_{(q)} \in \mathsf{fP}^{(q)}, \quad \text{and}
\]
\[
\text{ev}^C_{(q)} \text{ is a one-way function if one-way functions exist}.
\]
For any fixed word $v \in \{0, 1\}^*$ we define

$$\pi_v : x \in \{0, 1\}^* \mapsto vx ;$$

and for any fixed integer $k > 0$ we define

$$\pi'_k : zx \in \{0, 1\}^* \mapsto x, \text{ where } |z| = k$$

($\pi_k(t)$ undefined if $|t| < k$).

π_v is a composite of the maps π_0 and π_1.

π'_k is the kth power of π'_1.

We define the padding map,

$$\text{expand}(w, x) = (e(w), (0^{|x|^2}, x))$$

where $e(w)$ is such that

$$f_{e(w)}(0^k, x) = (0^k, f_w(x)), \text{ for all } k.$$

Encoding:

$$\text{expand} (\text{code}(w) \ 11 \ x) =$$

$$\text{code} (\text{ex}(w)) \ 11 \ 0^{|x|^2} \ 11 \ x, \text{ now with } \text{ex}(w) \text{ such that}$$

$$f_{\text{ex}(w)}(0^k \ 11 \ x) = 0^k \ 11 \ f_w(x) \text{ for all } k \geq 0.$$

We define a repeated padding map,

$$\text{reexpand}(\text{code}(\text{ex}(w)) \ 11 \ 0^k \ 11 \ x) =$$

$$\text{code}(\text{ex}(w)) \ 11 \ 0^{|x|^2} \ 11 \ x,$$

with $\text{ex}(w)$ as above.
Unpaddings map:

\[
\text{contr}(\text{ex}(w), (0^{|y|^2}, y)) = (w, y)
\]
(undefined on other inputs).

Encoding:

\[
\text{contr}(\text{code}(\text{ex}(w)) \ 11 \ 0^{|y|^2} \ 11 \ y) = w \ 11 \ y
\]
(undefined on other inputs).

Repeated unpaddings:

\[
\text{recontr}(\text{code}(\text{ex}(w)) \ 11 \ 0^{|y|^2} \ 11 \ y) = \text{code}(\text{ex}(w)) \ 11 \ 0^{|y|^2} \ 11 \ y
\]
(undefined on other inputs).
Prop. fP is finitely generated.

Proof. The following is a generating set of fP:

$$\{\text{expand, reexpand, contr, recontr, } \pi_0, \pi_1, \pi'_1, \text{ ev}^C_{(q_2)}\},$$

where $q_2(n) = cn^2 + c$.

For any $f_w \in fP(q)$, let m be an integer $\geq \log_2$ of the sum of the degrees and the positive coefficients of q.

$$f_w(x) = \pi'_2|w|+2 \circ \text{contr} \circ \text{recontr}^m \circ \text{ev}^C_{(q_2)} \circ \text{reexpand}^m \circ \text{expand} \circ \pi_{\text{code}(w)11}(x).$$

Now we have two ways to describe a function by a word.

Prop. (Program vs. generator string).
The maps $s \mapsto w$ and $w \mapsto s$ are in fP, where s is over the generators of fP, w is a polynomial program, with $\Pi s = f_w$.

(Compiler maps.)

Prop. fP is not finitely presented. Its word problem is co-r.e. but not r.e.

(Undecidability of word probl.:
The problem $L = A^*$ for context-free languages is undecidable. Context-free languages are in P.)

25
Q. Is \mathcal{RM}_2^P finitely generated?
The maps π_0, π_1, π'_1, reexpand, contr, recontr are in \mathcal{RM}_2^P. There exists an evaluation map that works just for \mathcal{RM}_2^P. But the first padding map expand is not in \mathcal{RM}_2^P.

Prop. fP is finitely generated by regular elements.

Proof. Use $E(q)(w, x) = (w, f_w(x), x)$; clearly, $E(q)$ is not one-way. But $ev(q)$ can be expressed as a composition of $E(q)$ and the other generators. □

Prop. There are elements of fP that are non-regular (if $P \neq NP$), whose product is regular.
Reductions

The usual reduction between partial functions:

\[f_1 \preceq f_2 \iff (\exists \beta, \alpha, \text{polyn.-time computable}) \left[f_1 = \beta \circ f_2 \circ \alpha \right]. \]

“\(f_1 \) is simulated by \(f_2 \)”

For languages, recall polyn.-time many-to-one reduction:

\[L_1 \preceq_{m:1} L_2 \iff (\exists \text{polyn.-time computable function } \alpha)(\forall x \in A^*) \left[x \in L_1 \iff \alpha(x) \in L_2 \right]. \]

Fact. \(L_1 \preceq_{m:1} L_2 \) with \(\alpha \) as above \iff \(L_1 = \alpha^{-1}(L_2) \) \iff \(\chi_{L_1} = \chi_{L_2} \circ \alpha \) (i.e., \(\chi_{L_1} \) is simulated by \(\chi_{L_2} \)).

For monoids \(M_0 \leq M_1 \) in general:
simulation is \(\preceq_{J(M_0)} \) within \(M_1 \) (submonoid \(J \)-order, using multipliers in the submonoid \(M_0 \)).

We want an “inversive reduction” such that

if a one-way function \(f_1 \) reduces to a function \(f_2 \in fP \),

then \(f_2 \) is also one-way.
Idea:
\(f_1 \) reduces “inversely” to \(f_2 \) iff
1. \(f_1 \) is simulated by \(f_2 \), and
2. the “easiest inverses” of \(f_1 \) are simulated by the “easiest inverses” of \(f_2 \).
(The “easiest inverses” are the “minimal inverses” for the simulation preorder. But do minimal inverses exist?)

Def. (inversive reduction).
\(f_1 \leq_{\text{inv}} f_2 \) ("\(f_1 \) reduces inversively to \(f_2 \)"") iff
1. \(f_1 \leq f_2 \), and
2. for every inverse \(f_2' \) of \(f_2 \) there exists an inverse \(f_1' \) of \(f_1 \) such that \(f_1' \leq f_2' \).

Here, \(f_1, f_2, f_1', f_2' \) range over all partial functions on strings.

The relation \(\leq_{\text{inv}} \) can be defined on monoids.

Assume \(M_0 \leq M_1 \leq M_2 \), with \(f_1, f_2 \) ranging over \(M_1 \), inverses \(f_1', f_2' \) ranging over \(M_2 \), and simulation being \(\leq_J(M_0) \) (i.e., multipliers are in \(M_0 \)).

We should assume that \(M_1 \) is regular within \(M_2 \), to avoid empty ranges for the quantifiers \((\forall f_2') (\exists f_1')\) (otherwise, \(f_1 \leq_{\text{inv}} f_2 \) is trivially equivalent to \(f_1 \leq f_2 \), when \(f_2 \) has no inverse in \(M_2 \)).
Prop. \(\preceq_{\text{inv}} \) is transitive and reflexive (pre-order).

Prop. If \(f_1 \preceq_{\text{inv}} f_2, \ f_2 \in \mathcal{fP} \), and \(f_2 \) is regular, then \(f_1 \in \mathcal{fP} \) and \(f_1 \) is regular.
Contrapositive: If \(f_1, f_2 \in \mathcal{fP} \) and \(f_1 \) is one-way, then \(f_2 \) is one-way.

Prop. The evaluation map \(\text{ev}_{\langle q_2 \rangle} \) is complete in \(\mathcal{fP} \) with respect to inversive reduction.

Proof. For any \(f_w \in \mathcal{fP} \) with \(q \)-polynomial program \(w \),
\[
 f_w(x) = \pi'_{2|w|+2} \circ \text{contr} \circ \text{recontr}^m \circ \text{ev}_{\langle q_2 \rangle} \\
 \circ \text{reexpand}^m \circ \text{expand} \circ \pi_{\text{code}(w)11}(x).
\]
Let \(e' \) be any inverse of \(\text{ev}_{\langle q_2 \rangle} \). Then for any string of the form \(\text{code}(w)11y \) with \(y \in \text{Im}(f_w) \) we have:
\[
e'(\text{code}(w)11y) = \text{code}(w)11x_i,
\]
for some \(x_i \in f_w^{-1}(y) \).
So \(e' \) simulates the inverse of \(f_w \), defined by \(f'_w(y) = x_i \),
where \(x_i \) is as above (when \(y \in \text{Im}(f_w) \)). \(\square \)

Prop. Levin’s critical map \(\text{ev}_{\text{Levin}} \) is \(\preceq_{\text{inv}} \)-complete in \(\mathcal{fP}_{\text{lp}} \) (length-preserving partial functions in \(\mathcal{fP} \)).

Levin’s map \(\text{ev}_{\text{Levin}} \) is \(\preceq_{\text{inv},T} \)-complete in \(\mathcal{fP} \), where \(\preceq_{\text{inv},T} \) is polynomial inversive Turing reduction.

Prop. For each \(f \in \mathcal{fP} \) there exists \(\ell_f \in \mathcal{fP}_{\text{lp}} \) such that \(f \preceq_{\text{inv},T} \ell_f \).
Inversification of any simulation:

For any \(\preceq_X \), define \(f_1 \preceq_{\text{inv},X} f_2 \) iff

\[
f_1 \preceq_X f_2, \text{ and } \forall \text{ inverse } f_2' \text{ of } f_2 \exists \text{ inverse } f_1' \text{ of } f_1 \text{ } f_1' \preceq_X f_2'.
\]

Prop. If \(\preceq_X \) is transitive then \(\preceq_{\text{inv},X} \) is transitive.

Prop. For every \(f, r \in \mathcal{RM}_2^P \) with \(r \) regular and \(f \) non-empty, we have \(r \preceq_{\text{inv}} f \).

Prop. The \(\equiv_D \)-relation is a refinement of \(\preceq_{\text{inv}} \)-equivalence.
The polynomial hierarchy

The classical polynomial hierarchy for languages:

\[\Sigma_1^P = \text{NP}, \quad \Pi_1^P = \text{coNP} ; \quad \text{and for } k > 0 : \]

\[\Sigma_{k+1}^P = \text{NP}^{\Sigma_k^P} , \]

i.e., all languages accepted by non-det. Turing machines with oracle in \(\Sigma_k^P \) (equivalently, with oracle in \(\Pi_k^P \));

\[\Pi_{k+1}^P = (\text{coNP})^{\Sigma_k^P} \quad (= \text{co}(\text{NP}^{\Sigma_k^P})); \]

\[\text{PH} = \bigcup_k \Sigma_k^P \quad (\subseteq \text{PSpace}). \]

Polynomial hierarchy for functions:

\(fP^{\Sigma_k^P} \) consists of all polynomially balanced partial functions (on \(A^* \)) computed by det. polyn.-time Turing machines with oracle in \(\Sigma_k^P \) (equivalently, with oracle in \(\Pi_k^P \)).

\(fP^{\text{PH}} \) consists of all polynomially balanced partial functions (on \(A^* \)) computed by det. polyn.-time Turing machines with oracle in \(\text{PH} \).

\(fP^{\text{Space}} \) consists of all polynomially balanced partial functions (on \(A^* \)) computed by det. polyn.-space Turing machines.
Prop. Every $f \in \mathbb{fP}$ has an inverse in \mathbb{fP}^{NP}.

Every $f \in \mathbb{fP}^{\Sigma_k}$ has an inverse in $\mathbb{fP}^{\Sigma_{k+1}}$.

The monoids \mathbb{fP}^{PH} and $\mathbb{fP}^{\text{Space}}$ are regular.

Proof. The following is an inverse of f:

$$f'(y) = \begin{cases} \min(f^{-1}(y)) & \text{if } y \in \text{Im}(f), \\ y & \text{otherwise}, \end{cases}$$

where \min refers to dictionary order. □

If $\mathbb{P} = \text{NP}$ then $\mathbb{P} = \text{PH}$ and $\mathbb{fP}^{\text{PH}} = \mathbb{fP}$; so \mathbb{fP}^{PH} is a “minimal” regular extension of \mathbb{fP}.

Prop.

For each $k \geq 1$, \mathbb{fP}^{Σ_k} is finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.

$\mathbb{fP}^{\text{Space}}$ is also finitely generated, but not finitely presented. The word problem is co-r.e. but not r.e.

The monoid \mathbb{fP}^{PH} is not finitely generated, unless the polyn. hierarchy collapses.