>
with(linalg);
Using the four equations given, we get this matrix:
>
A:=matrix(4,4, [[3,2,-1,-15], [5,3,2,0], [3,1,3,11], [-6,-4,2,30]]);
A := |
[ 3 |
2 |
-1 |
-15 ] |
[ 5 |
3 |
2 |
0 ] |
[ 3 |
1 |
3 |
11 ] |
[ -6 |
-4 |
2 |
30 ] |
>
B:=mulrow(A, 1, 1/3);
B := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 5 |
3 |
2 |
0 ] |
[ 3 |
1 |
3 |
11 ] |
[ -6 |
-4 |
2 |
30 ] |
>
C:=addrow(B, 1,2, -5);
C := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
-1/3 |
11/3 |
25 ] |
[ 3 |
1 |
3 |
11 ] |
[ -6 |
-4 |
2 |
30 ] |
>
D:=addrow(C, 1, 3, -3);
D := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
-1/3 |
11/3 |
25 ] |
[ 0 |
-1 |
4 |
26 ] |
[ -6 |
-4 |
2 |
30 ] |
>
A:=addrow(D, 1,4,6);
A := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
-1/3 |
11/3 |
25 ] |
[ 0 |
-1 |
4 |
26 ] |
[ 0 |
0 |
0 |
0 ] |
>
B:=mulrow(A, 2, -3);
B := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
1 |
-11 |
75 ] |
[ 0 |
-1 |
4 |
26 ] |
[ 0 |
0 |
0 |
0 ] |
>
C:=addrow(B, 2, 3, 1);
C := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
1 |
-11 |
75 ] |
[ 0 |
0 |
-7 |
-49 ] |
[ 0 |
0 |
0 |
0 ] |
>
D:=mulrow(C, 3, -1/7);
D := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
1 |
-11 |
75 ] |
[ 0 |
0 |
1 |
7 ] |
[ 0 |
0 |
0 |
0 ] |
>
A:=addrow(D, 3, 2, 11);
A := |
[ 1 |
2/3 |
-1/3 |
-5 ] |
[ 0 |
1 |
0 |
2 ] |
[ 0 |
0 |
1 |
7 ] |
[ 0 |
0 |
0 |
0 ] |
>
B:=addrow(A, 3, 1, 1/3);
B := |
[ 1 |
2/3 |
0 |
8/3 ] |
[ 0 |
1 |
0 |
2 ] |
[ 0 |
0 |
1 |
7 ] |
[ 0 |
0 |
0 |
0 ] |
>
C:=addrow(B, 2, 1, -2/3);
C := |
[ 1 |
0 |
0 |
-4 ] |
[ 0 |
1 |
0 |
2 ] |
[ 0 |
0 |
1 |
7 ] |
[ 0 |
0 |
0 |
0 ] |
Therefore: x1= -4
x2= 2
x3= 7
Using the given equations, we get the following matrix
>
A:=matrix(5,5,[[0,10,-4,1,1],[1,4,-1,1,2],[3,2,1,2,5],[-2,-8,2,-2,-4],[1,-6,3,0,1]]);
A := |
[ 0 |
10 |
-4 |
1 |
1 ] |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 3 |
2 |
1 |
2 |
5 ] |
[ -2 |
-8 |
2 |
-2 |
-4 ] |
[ 1 |
-6 |
3 |
0 |
1 ] |
>
B:=swaprow(A, 1,2);
B := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
10 |
-4 |
1 |
1 ] |
[ 3 |
2 |
1 |
2 |
5 ] |
[ -2 |
-8 |
2 |
-2 |
-4 ] |
[ 1 |
-6 |
3 |
0 |
1 ] |
>
C:=addrow(B, 1,3, -3);
C := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
10 |
-4 |
1 |
1 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
[ -2 |
-8 |
2 |
-2 |
-4 ] |
[ 1 |
-6 |
3 |
0 |
1 ] |
>
D:=addrow(C, 1,4,2);
D := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
10 |
-4 |
1 |
1 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 1 |
-6 |
3 |
0 |
1 ] |
>
A:=addrow(D, 1,5,-1);
A := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
10 |
-4 |
1 |
1 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
>
B:=mulrow(A, 2, 1/10);
B := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
1 |
-2/5 |
1/10 |
1/10 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
>
C:=addrow(B, 2, 3, 10);
C := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
1 |
-2/5 |
1/10 |
1/10 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
-10 |
4 |
-1 |
-1 ] |
>
D:=addrow(C, 2, 5, 10);
D := |
[ 1 |
4 |
-1 |
1 |
2 ] |
[ 0 |
1 |
-2/5 |
1/10 |
1/10 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
>
A:=addrow(D, 2,1,-4);
A := |
[ 1 |
0 |
3/5 |
3/5 |
8/5 ] |
[ 0 |
1 |
-2/5 |
1/10 |
1/10 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
[ 0 |
0 |
0 |
0 |
0 ] |
Since we get rows that are completely zeroes, we know that z and w are constants. Therefore:
x= 8/5 - 3/5z - 3/5w
y=1/10 + 2/5z - 1/10w
Number 17: using the given equations gives us this matrix
>
A:=matrix(3, 4,[ [1,2,-3,4],[3,-1,5,2],[4,1,a2-14,a+2]]);
A := |
[ 1 |
2 |
-3 |
4 ] |
[ 3 |
-1 |
5 |
2 ] |
[ 4 |
1 |
a2-14 |
a+2 ] |
>
B:=addrow(A,1,2,-3);
B := |
[ 1 |
2 |
-3 |
4 ] |
[ 0 |
-7 |
14 |
-10 ] |
[ 4 |
1 |
a2-14 |
a+2 ] |
>
C:=addrow(B, 1,3,-4);
C := |
[ 1 |
2 |
-3 |
4 ] |
[ 0 |
-7 |
14 |
-10 ] |
[ 0 |
-7 |
-2+a2 |
-14+a ] |
>
D:=mulrow(C,2,-1/7);
D := |
[ 1 |
2 |
-3 |
4 ] |
[ 0 |
1 |
-2 |
10/7 ] |
[ 0 |
-7 |
-2+a2 |
-14+a ] |
>
A:=addrow(D, 2,3,7);
A := |
[ 1 |
2 |
-3 |
4 ] |
[ 0 |
1 |
-2 |
10/7 ] |
[ 0 |
0 |
-16+a2 |
-4+a ] |
This gives us three equations:
x + 2y - 3z = 4
y - 2z = 10/7
(a2-16)z = -4 + a
If a is equal to 4, then the last equation becomes 0=0, and there will be infinitely many solutions.
If a=-4, the equation will be 0=4 which is not true, so there will be no solutions.
All other values for a will give only one solution.