A = | [ a | b | c ] |
[ d | e | f ] |
a + 2b + 3c = 1 2a + + c = 2 a + 2b + 4c = 1 |
d + 2e + 3f = 2 2d + f = 0 d + 2e + 4f = 1 |
A := | [ 1 | 2 | 3 | 1 ] |
[ 2 | 0 | 1 | 2 ] | |
[ 1 | 2 | 4 | 1 ] |
[ 1 | 0 | 0 | 1 ] |
[ 0 | 1 | 0 | 0 ] |
[ 0 | 0 | 1 | 0 ] |
B := | [ 1 | 2 | 3 | 2 ] |
[ 2 | 0 | 1 | 0 ] | |
[ 1 | 2 | 4 | 1 ] |
[ 1 | 0 | 0 | 1/2 ] |
[ 0 | 1 | 0 | 9/4 ] |
[ 0 | 0 | 1 | -1 ] |
C := | [ 1 | 0 | 0 ] |
[ 1/2 | 9/4 | -1 ] |
d := | [ 1 ] |
[ 2 ] | |
[ 3 ] |
[ 1 ] |
[ 2 ] |
d := | [ 2 ] |
[ 0 ] | |
[ 1 ] |
[ 2 ] |
[ 0 ] |
d := | [ 1 ] |
[ 2 ] | |
[ 4 ] |
[ 1 ] |
[ 1 ] |
X := | [ cos(Theta) | - sin(Theta) ] |
[ sin(Theta) | cos(Theta) ] |
[ 2 ] [ 1 - k k ] [ ------ 2 ------ ] [ 2 2 ] [ 1 + k 1 + k ] Y := [ ] [ 2 ] [ k k - 1 ] [ 2 ------ ------ ] [ 2 2 ] [ 1 + k 1 + k ]projection on a line is given by
[ 1 k ] [ ------ ------ ] [ 2 2 ] [ 1 + k 1 + k ] [ ] Z := [ 2 ] [ k k ] [ ------ ------ ] [ 2 2 ] [ 1 + k 1 + k ]Substituting Pi/3 for theta in the rotation standard matrix, 5 for k in the reflection standard matrix, and -2 for k in the projection standard matrix:
x := | [ 1/2 | -1/2*31/2 ] |
[ 1/2*31/2 | 1/2 ] |
y := | [ -12/13 | 5/13 ] |
[ 5/13 | 12/13 ] |
2 := | [ -13 | 2/3 ] |
[ 2/3 | 4/3 ] |
[ (11/39) + (19/78)*31/2 | (-11/39)*31/2 + (19/78) ] |
[ (-2/39) + (29/39)*31/2 | (2/39)*31/2 + (29/39) ] |