| A = | [ a | b | c ] |
| [ d | e | f ] |
a + 2b + 3c = 1 2a + + c = 2 a + 2b + 4c = 1 |
d + 2e + 3f = 2 2d + f = 0 d + 2e + 4f = 1 |
| A := | [ 1 | 2 | 3 | 1 ] |
| [ 2 | 0 | 1 | 2 ] | |
| [ 1 | 2 | 4 | 1 ] |
| [ 1 | 0 | 0 | 1 ] |
| [ 0 | 1 | 0 | 0 ] |
| [ 0 | 0 | 1 | 0 ] |
| B := | [ 1 | 2 | 3 | 2 ] |
| [ 2 | 0 | 1 | 0 ] | |
| [ 1 | 2 | 4 | 1 ] |
| [ 1 | 0 | 0 | 1/2 ] |
| [ 0 | 1 | 0 | 9/4 ] |
| [ 0 | 0 | 1 | -1 ] |
| C := | [ 1 | 0 | 0 ] |
| [ 1/2 | 9/4 | -1 ] |
| d := | [ 1 ] |
| [ 2 ] | |
| [ 3 ] |
| [ 1 ] |
| [ 2 ] |
| d := | [ 2 ] |
| [ 0 ] | |
| [ 1 ] |
| [ 2 ] |
| [ 0 ] |
| d := | [ 1 ] |
| [ 2 ] | |
| [ 4 ] |
| [ 1 ] |
| [ 1 ] |
| X := | [ cos(Theta) | - sin(Theta) ] |
| [ sin(Theta) | cos(Theta) ] |
[ 2 ]
[ 1 - k k ]
[ ------ 2 ------ ]
[ 2 2 ]
[ 1 + k 1 + k ]
Y := [ ]
[ 2 ]
[ k k - 1 ]
[ 2 ------ ------ ]
[ 2 2 ]
[ 1 + k 1 + k ]
projection on a line is given by
[ 1 k ]
[ ------ ------ ]
[ 2 2 ]
[ 1 + k 1 + k ]
[ ]
Z := [ 2 ]
[ k k ]
[ ------ ------ ]
[ 2 2 ]
[ 1 + k 1 + k ]
Substituting Pi/3 for theta in the rotation standard matrix, 5 for k in the reflection standard matrix, and -2 for k in the projection standard matrix:| x := | [ 1/2 | -1/2*31/2 ] |
| [ 1/2*31/2 | 1/2 ] |
| y := | [ -12/13 | 5/13 ] |
| [ 5/13 | 12/13 ] |
| 2 := | [ -13 | 2/3 ] |
| [ 2/3 | 4/3 ] |
| [ (11/39) + (19/78)*31/2 | (-11/39)*31/2 + (19/78) ] |
| [ (-2/39) + (29/39)*31/2 | (2/39)*31/2 + (29/39) ] |