a) Show that f is a linear transformation.

For a linear transformation, it must also be shown:

b) Show that the column-vectors in the standard matrix A of f are pairwise
orthogonal and their lengths are equal to 1.
Looking at the x-y plane, the x-axis rotates to x', and the y-axis rotates to y'. x' and y' are still perpendicular to each other, and they still form a plane. Thus, the first and second column vectors are orthogonal. This procedure also holds for x and z, as well as y and z, so the column-vectors are pairwise orthogonal, and equal to one.

a
t = ---------
(a2+b2+c2)
a2 ab ac
U = (-------, --------, --------)
a2+b2+c2 a2+b2+c2 a2+b2+c2
a2 ab ac
P = V-U = (1- -------, - --------, - --------)
a2+b2+c2 a2+b2+c2 a2+b2+c2
2a2 2ab 2ac
V' = -U+P = (1- -------, - --------, - --------)
a2+b2+c2 a2+b2+c2 a2+b2+c2
1
V' = ------- (b2+c2-a2, -2ab, -2ac)
a2+b2+c2
This is the first column of the standard matrix A.
Now let V= (0,1,0). Similarly,
1
V' = ------- (-2ab, a2+c2-b2, -2bc)
a2+b2+c2
is the second column of A.
Finally, let V= (0,0,1).
1
V' = ------- (-2ac, -2bc, a2+b2-c2)
a2+b2+c2
is the third column of A. So the standard Matrix A is:
1 ( b2+c2-a2 -2ab -2ac )
A = ------- ( -2ab a2+c2-b2 -2bc )
a2+b2+c2 ( -2ac -2bc a2+b2-c2)