> with(linalg);
> A:=matrix([[a11, a12, a13],\
[b21+c21,b22+c22, b23+c23],\
[a31,a32,a33]]);
A := |
[ a11 |
a12 |
a13 ] |
[ b21 + c21 |
b22 + c22 |
b23 + c23 ] |
[ a31 |
a32 |
a33 ] |
You see that the second row of this matrix is the sum of two row vectors. Now let us define matrices B and C:
> B:=matrix([[a11,a12,a13],[b21,b22,b23],[a31,a32,a33]]);
B := |
[ a11 |
a12 |
a13 ] |
[ b21 |
b22 |
b23 ] |
[ a31 |
a32 |
a33 ] |
> C:=matrix([[a11,a12,a13],[c21,c22,c23],[a31,a32,a33]]);
C := |
[ a11 |
a12 |
a13 ] |
[ c21 |
c22 |
c23 ] |
[ a31 |
a32 |
a33 ] |
Find the determinant of C, A, B:
> da:=det(A); db:=det(B); dc:=det(C);
da := a11 a33 b22 + a11 a33 c22 - a11 a32 b23 - a11 a32 c23 - b21 a12 a33
+ b21 a13 a32 - c21 a12 a33 + c21 a13 a32 + a31 a12 b23 + a31 a12 c23
- a31 a13 b22 - a31 a13 c22
db := a11 a33 b22 - a11 a32 b23 - b21 a12 a33 + b21 a13 a32 + a31 a12 b23
- a31 a13 b22
dc := a11 a33 c22 - a11 a32 c23 - c21 a12 a33 + c21 a13 a32 + a31 a12 c23
- a31 a13 c22
You can now see that each term occurring in det(A) or det(B) occurs also in
det(A) and vice versa. So indeed det(C)=det(A)+det(B).
Let us ask Maple to check that:
> dc-(da+db);
0