Problem 1. Let \(\vec{v}_1 = (1, 2, 3)^T, \vec{v}_2 = (1, 1, -1)^T, \vec{v}_3 = (0, -1, -2)^T. \)
(a) Show that these vectors form a basis in \(\mathbb{R}^3 \).

Solution. The determinant of the matrix \(A \) whose columns are \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) is not zero, so the columns are linearly independent. Since the dimension of \(\mathbb{R}^3 \) is 3, these vectors form a basis of \(\mathbb{R}^3 \).

(b) Find the transition matrix from the standard basis to that basis.

Solution. Let \(\mathcal{B} \) be that basis. Then the matrix \(A \) is the transition matrix \([\mathcal{B} \to \mathcal{S}].\)

(c) Use the transition matrix to find coordinates of the vector \((2, 3, 1)^T\) in that basis.

Problem 2. How many solutions will the linear system \(Ax = b \) have
(a) if \(b \) is in the column space of \(A \) and the columns of \(A \) are linearly independent?
(b) if \(b \) is not in the column space of \(A \)
Explain your answer.

Solution. (a) Since \(b \) is in the column space of \(A \), it is a linear combination of columns of \(A \), hence there is a solution of the system \(Ax = b \). Since the columns of \(A \) are linearly independent in the reduced row echelon form of \(A \) every column will have a pivot. Therefore the system \(Ax = b \) does not have free unknowns, hence it has exactly one solution.

(b) Since \(b \) is not in the column space of \(A \), it is not a linear combination of columns of \(A \), hence \(Ax = b \) has no solutions.

Problem 3. Find the matrix of the projection of \(\mathbb{R}^3 \) onto the the plane \(x - y - z = 0 \).

Solution. A normal vector of the plane is \(\vec{n} = (1, -1, -1)^T \). The vectors \(\vec{a} = (1, 1, 0)^T, \) \(\vec{b} = (1, 0, 1)^T \) are parallel to the plane. These three vectors \(\vec{n}, \vec{a}, \vec{b} \) form a basis \(\mathcal{B} \) of \(\mathbb{R}^3 \). Let \([\mathcal{B} \to \mathcal{S}]\) be the corresponding transition matrix. In the basis \(\mathcal{B} \), the matrix of the projection is \(P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \) (because the projection of \(\vec{n} \) is \(\vec{0} \), the projection of \(\vec{a} \) is \(\vec{a} \),

the projection of \(\vec{b} \) is \(\vec{b} \). Then the matrix of the projection is \([\mathcal{B} \to \mathcal{S}]P[\mathcal{B} \to \mathcal{S}]^{-1}\).

Problem 4. (a) Is it possible for a matrix to have the vector \((1, 2, 3)\) in its row space and the vector \((2, -1, -1)^T\) in its null space?

Solution. No, it is not possible. If a vector \(\vec{a} \) in the row space of a matrix, then it is a linear combination \(\alpha_1 \vec{r}_1 + \ldots + \alpha_n \vec{r}_n \) of the rows of the matrix. If \(\vec{b}^T \) is in the null space of the matrix, then \(\vec{r}_i \vec{b}^T = 0 \) for each \(i \). Therefore \(\vec{a} \vec{b}^T \) should be equal to 0, but \((1, 2, 3)/(2, -1, -1)^T = -3 \neq 0 \).

(b) Give an example of a matrix having \((1, 2, 3)\) in its row space and \((2, -1, 0)^T\) in its null space.

Solution. Let \(A \) be the \(1 \times 3 \) matrix consisting of one row \((1, 2, 3)\). Then \(A(2, -1, 0)^T = 0 \), hence \((2, -1, 0)^T\) is in the null space of \(A \). Clearly, \((1, 2, 3)\) is in the row space of \(A \).

Problem 5. Find the matrix of the linear transformation of \(\mathbb{R}^2 \) which is the composition of dilation by 1/2, rotation through 60 degrees and reflection about the line \(y = x \).
Solution. The basic vectors \((1, 0)\), and \((0, 1)\) are mapped by this linear transformation as follows (we first apply the dilation, then the rotation, then the reflection):

\[
(1, 0)^T \rightarrow \left(\frac{\sqrt{3}}{4}, 0\right) \rightarrow \left(\frac{1}{4}, -\frac{\sqrt{3}}{4}\right)
\]

\[
(0, 1)^T \rightarrow \left(0, \frac{1}{2}\right)^T \rightarrow \left(\frac{1}{4}, -\frac{\sqrt{3}}{4}\right)
\]

Therefore the matrix of this linear transformation is

\[
\begin{pmatrix}
\frac{\sqrt{3}}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{\sqrt{3}}{4}
\end{pmatrix}
\]

Problem 6. Prove that if \(A, B, C\) are square matrices of the same size, and \(A\) is similar to \(B\), \(B\) is similar to \(C\), then \(A\) is similar to \(C\).

Solution. Since \(A\) is similar to \(B\), there exists a matrix \(S\) such that \(A = S^{-1}BS\). Since \(B\) is similar to \(C\), there exists a matrix \(T\) such that \(B = T^{-1}CT\). Therefore \(A = S^{-1}T^{-1}CTS = (TS)^{-1}C(TS)\). Thus \(A\) is similar to \(C\).

Problem 7. Consider functions \(1 + x^2, x - 1, x^2 + x + 1\) as elements of the vector space \(C[0, 1]\). Are these functions linearly independent? Explain your answer.

Solution. The Wronskian of these functions is the determinant of the matrix

\[
\begin{pmatrix}
1 + x^2 & x - 1 & x^2 + x + 1 \\
2x & 1 & 2x + 1 \\
2 & 0 & 2
\end{pmatrix}
\]

which is equal to \(-2\). Since it is not equal to 0, the functions are linearly independent.