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separators in planar graphs 

Lipton and Tarjan (1980) showed that every n-vertex planar graph has a set 

  of          nodes that separates the graph into two roughly equal pieces. O(
p
n)

A B 

S 

Useful for divide & conquer algorithms: E.g. there exist linear-time 

  (1+)-approximations to the INDEPENDENT SET problem in planar graphs. 



spectral partitioning 

So we know good cuts exist. In practice, spectral partitioning does exceptionally well… 



spectral partitioning 

So we know good cuts exist. In practice, spectral partitioning does exceptionally well… 

Given a graph G=(V,E), the Laplacian of G is 

Arrange the vertices according to the 2nd eigenvector and sweep… 

S 
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spectral partioning works 

Spielman and Teng (1996) showed that spectral partioning will recover 

  the Lipton-Tarjan          separator in bounded degree planar graphs. O(
p
n)

If G is an n-vertex planar graph with maximum degree , then 

Cheeger’s inequality implies that G has a cut with ratio          ,  

so iteratively making spectral cuts yields a separator of size           .  



previous results 

separator size eigenvalues (graphs) eigenvalues (surfaces) 

Planar graphs 
p
n ¢

n

1
vol(M)

Lipton-Tarjan 1980 Spielman-Teng 1996 

Genus g graphs 

 (orientable) 

Gilbert-Hutchinson-Tarjan 1984 Kelner 2004 

p
gn g poly(¢)

n

g
vol(M)

Hersch 1970 

Yang-Yau 1980 

Non-orientable surfaces GTH conjectured to be p
gn

??? ??? 

Excluded-minor graphs 

   (excluding Kh) 
h3=2

p
n

Alon-Seymour-Thomas 1990 

ST conjectured to be 

N/A ¢poly(h)
n



conformal mappings and circle packings 

A conformal map preserves angles and their orientation. 

Riemann-Roch: Every genus g surface admits a “nice” O(g)-to-1 conformal mapping onto the Riemann sphere. 

Koebe-Andreev-Thurston:  (Discrete conformal uniformization) 

Every planar graph can be realized as the adjacency graph of a circle packing on the sphere. 



conformal mappings and circle packings 

Riemann-Roch: Every genus g surface admits a “nice” O(g)-to-1 conformal mapping onto the Riemann sphere. 

Koebe-Andreev-Thurston:  (Discrete conformal mapping) 

Every planar graph can be realized as the adjacency graph of a circle packing on the sphere. 

Main idea of previous bounds:  These nice conformal representations can be used to produce 

  a test vector for the Rayleight quotient, thus bounding the second eigenvalue. 

It seems that we’re out of luck without a conformal structure… 

Spielman-Teng 

Yang-Yau 

Kelner 



our results 

separator size eigenvalues (graphs) our results 

Planar graphs 
Lipton-Tarjan 1980 Spielman-Teng 1996 

Genus g graphs 

 (orientable) 

Gilbert-Hutchinson-Tarjan 1984 Kelner 2004 

Non-orientable surfaces GTH conjectured to be 
??? 

Excluded-minor graphs 

   (excluding Kh) 
Alon-Seymour-Thomas 1990 

ST conjectured to be 

(no conformal maps) 

our results 
(unbounded degree) 



higher spectra (Kelner-L-Price-Teng) 

separator size eigenvalues (graphs) kth eigenvalue 

Planar graphs 
Lipton-Tarjan 1980 Spielman-Teng 1996 

Genus g graphs 

 (orientable) 

Gilbert-Hutchinson-Tarjan 1984 Kelner 2004 

Non-orientable surfaces GTH conjectured to be 
??? 

Excluded-minor graphs 

   (excluding Kh) 
Alon-Seymour-Thomas 1990 

ST conjectured to be 



metric deformations 

Let G=(V,E) be any graph with n vertices. 

Bourgain’s theorem [every n-point metric space 

embeds in a Hilbert space with O(log n) distortion] 

says these only differ by a factor of O(log n)2. 

We’ll consider the special class of vertex weighted shortest-path metrics: 

Given w : V  R+, let 

       distw(u,v) = min { w(u1)+w(u2)++w(uk) : hu=u1,u2,…,uk=vi is a u-v path in G } 

Goal: Show there exists a w : V  R+ 

      for which this is O(1/n2) 



metric deformations 

Two examples: X

v2V
w(v)2

X

u;v2V
distw(u; v)

2
.

1

n2

w(v)=1 8v 2 V 

w(root)=1, w(v)=0 8v  root 



metric deformations 

min
w:V!R+

X

v2V
w(v)2

X

u;v2V
distw(u; v)

2

feels like it should have a flow-ish dual… 

but our objective function is not convex. 

Instead, consider: 

Notation: 

For u,v 2 V, let Puv be the set of u-v paths in G. 

Let P = u,v2V Puv be the set of all paths in G. 

By Cauchy-Schwarz, we have: 

So our goal is now: 



duality 

Notation: 

For u,v 2 V, let Puv be the set of u-v paths in G. 

Let P = u,v 2 V Puv be the set of all paths in G. 

A flow is an assignment F : P  R+ 

For v 2 V, the congestion of v under F is 

The 2-congestion of F is 

F is a complete flow every u,v2V satisfy 

DUALITY 

where the minimum is over all complete flows 

So now our goal is to show that: 

For any complete flow F in G, 

we must have con2(F) = (n2). 



congestion lower bounds 

Two examples: 

A complete flow has “total length” about          . 

To minimize con2(F), we would spread this out evenly, 

and we get: 

In any complete flow, this guy suffers (n2) congestion. 



congestion lower bounds 

THEOREM:  If G=(V,E) is an n-vertex planar graph, then for any complete flow F in G, 

          we have [con2(F)]
2 = v2V CF(v)

2 = (n4). 

PROOF: By randomized rounding, we may assume that F is an integral flow. 

Let’s imagine a drawing of G in the plane… 

Now F induces a drawing of the complete graph Kn in the plane… 
   where edges of Kn cross only at vertices of G. 

How many edge crossings of Kn at v2V? At most CF(v)
2. 

So v2V CF(v)
2 ¸ (# edge crossings of Kn) ¸ (n4) 

Classical results of Leighton (1984) and 

Ajtai-Chvatal-Newborn-Szemeredi (1982) say 

that the crossing number of of the complete 

graph is at least (n4). 



H-minor free graphs 

A graph H is a minor of G if H can be obtained from G by contracting edges and 

      deleting edges and isolated nodes. 

H 

is a minor of 

G 



H-minor free graphs 

A graph H is a minor of G if H can be obtained from G by contracting edges and 

      deleting edges and isolated nodes. 

H 

is a minor of 

G 

vertices of H ! disjoint connected subgraphs of G 

edges of H ! subgraphs that touch 

A graph G is H-minor-free if it does not contain H as a minor 

    (e.g. planar graphs = graphs which are K5 and K3,3-minor-free) 



H-flows 

Def: An H-flow in G is an integral flow in G whose “demand graph” is isomorphic to H. 

H G 

If  is an H-flow, let ij be the i-j path in G, for (i,j) 2 E(H), and define 

inter() = #{ (i,j), (i’,j’) 2 E(H) : |{i,j,i’,j’}|=4 and ij Å i’j’  ; } 

Theorem:  If H is bipartite and  is an H-flow in G with inter()=0, 

          then G contains an H minor. 

Corollary:  If G is Kh-minor-free and  is a K2h-flow in G, then inter() > 0. 

            [If  is a K2h-flow in G with inter()=0, then it is also a Kh,h-flow 

             in G, so G contains a Kh,h minor, so G contains a Kh minor.] 



congestion in minor-free graphs 

THEOREM:  If G=(V,E) is an n-vertex Kh-minor-free graph, then for any complete flow 

         (i.e. any Kn-flow) F in G, we have [con2(F)]
2 = v2V CF(v)

2 = (n4/h3). 

PROOF: It suffices to prove that inter(F) = (n4/h3), because for any integral flow ,  

Let Sp µ V be a random subset where each vertex occurs independently with probability p. 

Let np = |Sp|.  We can consider the Knp
-flow Fp induced by restricting to the terminals in Sp. 

Since inter() > 0 for any K2h-flow , we have inter() ¸ r-2h+1 for any Kr-flow . 

Now, we have p4 inter(F) = E[inter(Fp)] ¸ E[np-2h+1] = pn – 2h + 1. 

Setting p ¼ 4h/n yields inter(F) = (n4/h3). 


