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separators in planar graphs

Lipton and Tarjan (1980) showed that every n-vertex planar graph has a set
of O(y/n) nodes that separates the graph into two roughly equal pieces.

A B

Useful for divide & conquer algorithms: E.g. there exist linear-time
(1+¢€)-approximations to the INDEPENDENT SET problem in planar graphs.



spectral partitioning

So we know good cuts exist. In practice, spectral partitioning does exceptionally well. ..

A ® Ve

a) Heart. (b) Dolphin. ¢) Bird. (d) Dino-pet. “Snake”.

T Bat Y

(f) Bowl. g) Machine part. h) Horse.




spectral partitioning

So we know good cuts exist. In practice, spectral partitioning does exceptionally well. ..

Given a graph G=(V,E), the Laplacian of G is

Lo=D-A
d 0 0 - 0 A =0 o) =(1,1,...,1)
H—|0 d 0 - 0 ,
: : : : Z(vz_vj)
0 0 .- 0 dn ) . jEE
> = In 5
A = adjacency matrix of G v70, |||

vl
Arrange the vertices according to the 2" eigenvector and sweep...

—_————— -
——— - -
’— ~ ”

\~~
-
—
—~—— ——
e e e - = ———— T




spectral partioning works

Spielman and Teng (1996) showed that spectral partioning will recover
the Lipton-Tarjan O(\/n) separator in bounded degree planar graphs.

If G is an n-vertex planar graph with maximum degree A, then

A (G) = O (é)

n
Cheeger’s inequality implies that G has a cut with ratio O(\/%),
so iteratively making spectral cuts yields a separator of size O(v/An)
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previous results

separator size

eigenvalues (graphs) | eigenvalues (surfaces)

Planar graphs vn
Lipton-Tarjan 1980

NG

Gilbert-Hutchinson-Tarjan 1984

GTH conjectured to be

N

Excluded-minor graphs
(excluding K,)

D

h3/2\/ﬁ

Alon-Seymour-Thomas 1990

A _1__
n vol(M)
Spielman-Teng 1996 Hersch 1970
ly(A _ 9 _
gpoly(4) VoI(A)
Kelner 2004 Yang-Yau 1980
m m

ST conjectured to be
Apoly(h) N/A
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conformal mappings and circle packings

A conformal map preserves angles and their orientation.

Koebe-Andreev-Thurston: (Discrete conformal uniformization)
Every planar graph can be realized as the adjacency graph of a circle packing on the sphere.




conformal mappings and circle packings

Main idea of previous bounds: These nice conformal representations can be used to produce
a test vector for the Rayleight quotient, thus bounding the second eigenvalue.

It seems that we're out of luck without a conformal structure...

Riemann-Roch: Every genus g surface admits a “nice” 0(g)-to-1 conformal mapping onto the Riemann sphere.

Yang-Yau

Kelner

Koebe-Andreev-Thurston: (Discrete conformal mapping)
Every planar graph can be realized as the adjacency graph of a circle packing on the sphere.

Spielman-Teng




our results

(no conformal maps)

Planar graphs vn

our results
(unbounded degree)

Genus o oranhs

V/gnmin(g,logn) Van

hynmin(h2,logn)  h3/2/n
(excluding K;)

separator size eigenvalues (graphs) our results
a A
n n
Lipton-Tarjan 1980 Spielman-Teng 1996
gpoly(A) 9> A
n n
Gilbert-Hutchinson-Tarjan 1984 Kelner 2004
GTH conjectured to be " g>A
gn PR RY n
ST conjectured to be
poly(h)A hoA
n n

@ Alon-Seymour-Thomas 1990




higher spectra (Kelner-L-Price-Teng)

separator size eigenvalues (graphs) kth eigenvalue
A
Planar graphs vn n kS
Lipton-Tarjan 1980 Spielman-Teng 1996
Genus g graphs g gpoly(A) LA
( it ] n n
: Gilbert-Hutchinson-Tarjan 1984 Kelner 2004

GTH conjectured to be " e g3A
gn PR RY n
: 5 ST conjectured to be
Excluded-minor graphs h3/2./n
(excluding K,) poly () & oA

@ Alon-Seymour-Thomas 1990 n n



metric deformations

Let G=(V,E) be any graph with n vertices.

> (fFw) = f(v))?

A2(G) . . weEE k\
2n

TVERY (F(w) — F(0))2

u,vEV Bourgain’s theorem [every n-point metric space
S d(u, v)? embeds in a Hilbfert space with O(log n) distgrtion]
nin  WEE says these only differ by a factor of O(log n)-.
metrics d Z d(u, ,0)2 4
u,veV

We’ll consider the special class of vertex weighted shortest-path metrics:
Given w :V = R, let
dist,(u,v) = min { w(u,)+w(u)+---+w(u) : (u=u,u,,...,u.=v) is a u-v path in G }
> disty(u, v)? > Goal: Show there exists a w :¥ —> R,
weE < 24 for which this is 0(1/n?)

> disty(u, v)? ~

u,veV




metric deformations

Two examples:

v

> w(w)?
veV <
> distey(u, v)? ™ n?
w(v)=1 Vv €V meey
> w(v)? =n
veV

> disty(u, v)2 ~n?. (\/E)Q = pn3

u,veV

w(root)=1, w(v)=0 Vv # root

> w(v)? =1

velV

> disty(u,v)2 ~n2 .1 = n?
u,veV



metric deformations

> w(v)?

_ veV feels like it should have a flow-ish dual...

w VSR + Y disty (u, v)2 but our objective function is not convex.
u,veV
> w(v)?
Instead, consider: A (w) = — 5"
Z disty (u, v)
u,veV
Notation:

For uy €V, let PP, be the set of u-v paths in G.
let P = U,y P, be the set of all paths in G.

.
min [ w3
veV

min  Ag(w st ) dw=1
wZV—>R+ G( )< u,veV
durg S Z Wy Vp € pfu,v

L vEDP

By Cauchy-Schwarz, we have:

N w(v)?
Zvegi/istw(u,v)Q = nz/\G(w)Q

u,veV

So our goal is now:

1

min A — O(—)
U):V—>R_|_ G(?U) n2



duality

Notation: .
For uv €V, let P, be the set of u-v paths in G. > w()
let P =U,, .y P, be the set of all paths in G. Aey(w) = —EY
’ Z disty(u,v)
A flow is an assignment F : P —> R, uweEV

For v € V, the congestion of v under F is

Cr(v)= >  F(p)

pEPvED

The 2-congestion of F is

cona(F) = |3 Cp(v)?

veV
F is a complete flow every u,vEV satisfy

> F(p)>1

pEPuy

DUALITY

-1
min Aq~(w) = min cono(F
w—R a(w) (F:P—>R+ 2( ))

where the minimum is over all complete flows

S0 now our goal is to show that:

For any complete flow F in G,
we must have con,(F) = (n?).



congestion lower bounds

Two examples: 5
cono(F) = | > Cp(v)

\/ﬁ veV

A complete flow has “total length” about 712.2+/7
? To minimize con,(F), we would spread this out evenly,
and we get:
VN | <i g VY
<) cony(F) =~ y|n - ( ) = n?
(
/\\'r\\

\ In any complete flow, this guy suffers €(n?) congestion.

cons(F) > Cp(root) = 2(n?)




congestion lower bounds

THEOREM: If G=(V,E) is an n-vertex planar graph, then for any complete flow F in G,
we have [con,(F)]* = 2,y G(v)! = Q(nf).

PROOF: By randomized rounding, we may assume that F is an integral flow.

Let’s imagine a drawing of G in the plane...

ical results of Leighton (1984) and
hvatal-Newborn-Szemeredi (1982) say
e crossing number of of the complete

at least Q(n?).

a drawing of the complete graph K_in the plane. ..
wriere edges of K cross only at vertices of G.

How many edge crossings of K at v€¥? At most C(v).
S0 2 ey G(v)! > (# edge crossings of K) > Q(nf)



H-minor free graphs

A graph H is a minor of G if H can be obtained from G by contracting edges and
deleting edges and isolated nodes.
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H-minor free graphs

A graph H is a minor of G if H can be obtained from G by contracting edges and
deleting edges and isolated nodes.

H G

IS a minor of

vertices of H — disjoint connected subgraphs of G
edges of H — subgraphs that touch

A graph G is H-minor-free if it does not contain H as a minor
(e.g. planar graphs = graphs which are K; and K; ;-minor-free)



H-flows

Def: An H-flow in G is an integral flow in G whose “demand graph” is isomorphic to H.

H G

If @ is an H-flow, let @; be the i-j path in G, for (i,j) € E(H), and define
nter(@) = #{ (i) (7) € E() : Kiji}=4 and @ N 9% 0 )

Theorem: If H is bipartite and @ is an H-flow in G with inter(q)=0,
then G contains an H minor.

Corollary: If G is K -minor-free and @ is a K;,-flow in G, then inter(p) > 0.
[If @ is a Ky-flow in G with inter(qp)=0, then it is also a K, ,-flow
in G, so G contains a K., minor, so G contains a K, minor.]



congestion in minor-free graphs

THEOREM:  If G=(V,E) is an n-vertex K -minor-free graph, then for any complete flow
(i.e. any K -flow) F in G, we have [con(F))* = 2.,y G(v)} = Q(n'/K).

PROOF: It suffices to prove that inter(F) = C(n*/h’), because for any integral flow @,

veV \(i,9),(,7)eE(H) veV

inter(go) < Z ( Z ]-UE(,D@'j : 1"’6%’3") — Z C(P(U)Q

Since inter(p) > 0 for any Ky,-flow ¢, we have inter(®) > r-2h+1 for any K-flow o.
Let §, €V be a random subset where each vertex occurs independently with probability p.

flow F, induced by restricting to the terminals in § .

Let n, = [§,. We can consider the K; p

p
Now, we have p* inter(F) = Efinter(F)] > E[n-2h+1] = pn — 20 + 1.

Setting p = 4h/n yields inter(F) = Q(n*/k’).



