eigenvalue bounds and metric uniformization

Lipton and Tarjan (1980) showed that every n-vertex planar graph has a set of $O(\sqrt{n})$ nodes that separates the graph into two roughly equal pieces.

Useful for divide & conquer algorithms: E.g. there exist linear-time $(1+\varepsilon)$ -approximations to the INDEPENDENT SET problem in planar graphs.

spectral partitioning

So we know good cuts exist. In practice, spectral partitioning does exceptionally well...

spectral partitioning

So we know good cuts exist. In practice, spectral partitioning does exceptionally well... Given a graph G = (V, E), the Laplacian of G is

$$L_{G} = D - A$$

$$D = \begin{pmatrix} d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & d_{n} \end{pmatrix} \qquad \lambda_{1} = 0 \qquad v^{(1)} = (1, 1, \dots, 1)$$

$$A = \text{ adjacency matrix of } G \qquad \lambda_{2} = \min_{\substack{v \neq 0, \\ v \perp v^{(1)}}} \frac{\sum_{ij \in E} (v_{i} - v_{j})^{2}}{\|v\|^{2}}$$

Arrange the vertices according to the 2nd eigenvector and sweep...

D

Spielman and Teng (1996) showed that spectral partioning will recover the Lipton-Tarjan $O(\sqrt{n})$ separator in bounded degree planar graphs.

If **G** is an **n**-vertex planar graph with maximum degree Δ , then

$$\lambda_2(G) = O\left(\frac{\Delta}{n}\right)$$

Cheeger's inequality implies that **G** has a cut with ratio $O(\sqrt{\frac{\Delta}{n}})$, so iteratively making spectral cuts yields a separator of size $O(\sqrt{\Delta n})$.

previous results

	separator size	eigenvalues (graphs)	eigenvalues (surfaces)
Planar graphs	\sqrt{n} Lipton-Tarjan 1980	$rac{\Delta}{n}$ Spielman-Teng 1996	$rac{1}{\operatorname{vol}(M)}$ Hersch 1970
Genus g graphs (orientable)	\sqrt{gn} Gilbert-Hutchinson-Tarjan 1984	$\frac{g \operatorname{poly}(\Delta)}{n}$ Kelner 2004	$rac{g}{ extsf{vol}(M)}$ Yang-Yau 1980
Non-orientable surfaces	GTH conjectured to be \sqrt{gn}	???	???
Excluded-minor graphs (excluding K _h)	$h^{3/2}\sqrt{n}$ Alon-Seymour-Thomas 1990	ST conjectured to be $\Delta poly(h)$ n	N/A

conformal mappings and circle packings

A conformal map preserves angles and their orientation.

Riemann-Roch: Every genus g surface admits a "nice" O(g)-to-1 conformal mapping onto the Riemann sphere.

Koebe-Andreev-Thurston: (Discrete conformal uniformization) Every planar graph can be realized as the adjacency graph of a circle packing on the sphere.

conformal mappings and circle packings

Main idea of previous bounds: These nice conformal representations can be used to produce a test vector for the Rayleight quotient, thus bounding the second eigenvalue.

It seems that we're out of luck without a conformal structure...

Riemann-Roch: Every genus g surface admits a "nice" O(g)-to-1 conformal mapping onto the Riemann sphere.

Koebe-Andreev-Thurston: (Discrete conformal mapping) Every planar graph can be realized as the adjacency graph of a circle packing on the sphere.

our results

	separator size	eigenvalues (graphs)	(no conformal maps) Our results
Planar graphs our results	\sqrt{n} Lipton-Tarjan 1980	$rac{\Delta}{n}$ Spielman-Teng 1996	$\frac{\Delta}{n}$
Genus σ granhs $\sqrt{gn} \min(g, \log n)$	\sqrt{gn} ilbert-Hutchinson-Tarjan 1984	$rac{g \operatorname{poly}(\Delta)}{n}$ Kelner 2004	$\frac{g^3\Delta}{n}$
Non ariant la surfaces $\sqrt{gn} \min(g, \log n)$	GTH conjectured to be \sqrt{gn}	???	$\frac{g^3\Delta}{n}$
$\frac{h\sqrt{n}\min(h^2,\log n)}{(\text{excluding } K_h)}$	$h^{3/2}\sqrt{n}$ Alon-Seymour-Thomas 1990	ST conjectured to be $\frac{\text{poly}(h)\Delta}{n}$	$\frac{h^6\Delta}{n}$

higher spectra (Kelner-L-Price-Teng)

	separator size	eigenvalues (graphs)	kth eigenvalue
Planar graphs	\sqrt{n} Lipton-Tarjan 1980	$rac{\Delta}{n}$ Spielman-Teng 1996	$k \frac{\Delta}{n}$
Genus g graphs (orientable)	\sqrt{gn} Gilbert-Hutchinson-Tarjan 1984	$rac{g \operatorname{poly}(\Delta)}{n}$ Kelner 2004	$k \frac{g^3 \Delta}{n}$
Non-orientable surfaces	GTH conjectured to be \sqrt{gn}	???	$k \frac{g^3 \Delta}{n}$
Excluded-minor graphs (excluding K _h)	$h^{3/2}\sqrt{n}$ Alon-Seymour-Thomas 1990	ST conjectured to be $\underline{poly(h)\Delta}_n$	$k \frac{h^6 \Delta}{n}$

metric deformations

Let G = (V, E) be any graph with **n** vertices.

$$\frac{\lambda_2(G)}{2n} = \min_{f:V \to \mathbb{R}} \frac{\sum_{uv \in E} (f(u) - f(v))^2}{\sum_{u,v \in V} (f(u) - f(v))^2}$$
Bourgain's theorem [every n-point metric space
embeds in a Hilbert space with O(log n) distortion]
says these only differ by a factor of O(log n)^2.

We'll consider the special class of vertex weighted shortest-path metrics:

Given $w : V \to \mathbb{R}_+$, let $dist_w(u,v) = min \{ w(u_1)+w(u_2)+\dots+w(u_k) : \langle u=u_1,u_2,\dots,u_k=v \rangle \text{ is a u-v path in G} \}$

$$\frac{\sum_{uv \in E} \operatorname{dist}_w(u,v)^2}{\sum_{u,v \in V} \operatorname{dist}_w(u,v)^2} \le 2\Delta \underbrace{\sum_{v \in V} w(v)^2}_{u,v \in V} \operatorname{Goal: Show there exists a } w: V \to \mathbb{R}_+ \text{for which this is } O(1/n^2)$$

metric deformations

metric deformations

$$\min_{w:V \to \mathbb{R}_+} \frac{\sum_{v \in V} w(v)^2}{\sum_{u,v \in V} \mathsf{dist}_w(u,v)^2}$$

feels like it should have a flow-ish dual... but our objective function is **not convex**.

Instead, consider:
$$\Lambda_G(w) = \frac{\sqrt{\sum_{v \in V} w(v)^2}}{\sum_{u,v \in V} \text{dist}_w(u,v)}$$

Notation:

For $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, let $\mathcal{P}_{\mathbf{u}\mathbf{v}}$ be the set of \mathbf{u} - \mathbf{v} paths in \mathbf{G} . Let $\mathcal{P} = \bigcup_{\mathbf{u}, \mathbf{v} \in \mathbf{V}} \mathcal{P}_{\mathbf{u}\mathbf{v}}$ be the set of all paths in \mathbf{G} .

$$\min_{w:V \to \mathbb{R}_{+}} \Lambda_{G}(w) \begin{cases} \min & \sqrt{\sum_{v \in V} w_{v}^{2}} \\ \text{s.t.} & \sum_{u,v \in V} d_{uv} = 1 \\ & d_{uv} \leq \sum_{v \in p} w_{v} \quad \forall p \in \mathcal{P}_{uv} \end{cases}$$

By Cauchy-Schwarz, we have:

$$\frac{\sum_{v \in V} w(v)^2}{\sum_{u,v \in V} \text{dist}_w(u,v)^2} \le n^2 \Lambda_G(w)^2$$

So our goal is now:

 $\min_{w:V\to\mathbb{R}_+} \Lambda_G(w) = O\left(\frac{1}{n^2}\right)$

duality

Notation:

For $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, let \mathcal{P}_{uv} be the set of \mathbf{u} - \mathbf{v} paths in \mathbf{G} . Let $\mathcal{P} = \bigcup_{u,v \in \mathbf{V}} \mathcal{P}_{uv}$ be the set of all paths in \mathbf{G} .

A flow is an assignment $F : \mathcal{P} \to \mathbb{R}_+$ For $v \in V$, the congestion of v under F is

$$C_F(v) = \sum_{p \in \mathcal{P}: v \in p} F(p)$$

The **2-congestion of F** is

$$\operatorname{con}_2(F) = \sqrt{\sum_{v \in V} C_F(v)^2}$$

F is a **complete flow** every **u**,**v**∈**V** satisfy

$$\sum_{p \in \mathcal{P}_{uv}} F(p) \ge 1$$

$$\Lambda_G(w) = \frac{\sqrt{\sum_{v \in V} w(v)^2}}{\sum_{u,v \in V} \operatorname{dist}_w(u,v)}$$

DUALITY
$$\min_{w \to \mathbb{R}_+} \Lambda_G(w) = \left(\min_{F: \mathcal{P} \to \mathbb{R}_+} \operatorname{con}_2(F)\right)^{-1}$$
where the minimum is over all complete flows

So now our goal is to show that: For any complete flow F in G, we must have $con_2(F) = \Omega(n^2)$.

congestion lower bounds

- **THEOREM:** If G = (V, E) is an n-vertex planar graph, then for any complete flow F in G, we have $[con_2(F)]^2 = \sum_{v \in V} C_F(v)^2 = \Omega(n^4)$.
- **PROOF:** By randomized rounding, we may assume that **F** is an **integral** flow. Let's imagine a drawing of **G** in the plane...

H-minor free graphs

A graph **H** is a **minor** of **G** if **H** can be obtained from **G** by **contracting** edges and **deleting** edges and isolated nodes.

H-minor free graphs

A graph **H** is a **minor** of **G** if **H** can be obtained from **G** by **contracting** edges and **deleting** edges and isolated nodes.

vertices of $H \rightarrow$ disjoint connected subgraphs of G edges of $H \rightarrow$ subgraphs that touch

A graph G is H-minor-free if it does **not** contain H as a minor (e.g. planar graphs = graphs which are K_5 and $K_{3,3}$ -minor-free)

H-flows

Def: An **H-flow** in **G** is an **integral** flow in **G** whose "demand graph" is isomorphic to **H**.

If φ is an H-flow, let φ_{ij} be the i-j path in G, for (i,j) $\in E(H)$, and define inter(φ) = #{ (i,j), (i',j') $\in E(H) : |\{i,j,i',j'\}|=4$ and $\varphi_{ij} \cap \varphi_{i'j'} \neq \emptyset$ }

Theorem: If **H** is **bipartite** and φ is an **H**-flow in **G** with **inter**(φ)=0, then **G** contains an **H** minor.

Corollary: If **G** is K_h -minor-free and φ is a K_{2h} -flow in **G**, then inter(φ) > 0. [If φ is a K_{2h} -flow in **G** with inter(φ)=0, then it is also a $K_{h,h}$ -flow in **G**, so **G** contains a $K_{h,h}$ minor, so **G** contains a K_h minor.]

congestion in minor-free graphs

THEOREM: If G = (V, E) is an n-vertex K_h -minor-free graph, then for any complete flow (i.e. any K_n -flow) F in G, we have $[con_2(F)]^2 = \sum_{v \in V} C_F(v)^2 = \Omega(n^4/h^3)$.

PROOF: It suffices to prove that inter(F) = $\Omega(n^4/h^3)$, because for any integral flow φ ,

$$\operatorname{inter}(\varphi) \leq \sum_{v \in V} \left(\sum_{(i,j), (i',j') \in E(H)} \mathbf{1}_{v \in \varphi_{ij}} \cdot \mathbf{1}_{v \in \varphi_{i'j'}} \right) = \sum_{v \in V} C_{\varphi}(v)^2$$

Since inter(ϕ) > 0 for any K_{2h} -flow ϕ , we have inter(ϕ) \geq r-2h+1 for any K_r -flow ϕ . Let $S_p \subseteq V$ be a random subset where each vertex occurs independently with probability p. Let $n_p = |S_p|$. We can consider the K_{n_p} -flow F_p induced by restricting to the terminals in S_p . Now, we have p^4 inter(F) = $\mathbb{E}[inter(F_p)] \geq \mathbb{E}[n_p-2h+1] = pn - 2h + 1$. Setting $p \approx 4h/n$ yields inter(F) = $\Omega(n^4/h^3)$.