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Uniform Spanning Trees

Algorithm of Aldous (1990) and Broder (1989): if you start a simple random walk at
any vertex of a graph G and draw every edge it traverses except when it would complete
a cycle (i.e., except when it arrives at a previously-visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn is a uniformly chosen
spanning tree of G.
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Infinite Graphs

FUSF WUSF

Pemantle (1991) showed that these weak limits of the uniform spanning tree measures
always exist. These limits are now called the free uniform spanning forest on G

and the wired uniform spanning forest. They are different, e.g., when G is itself a
regular tree of degree at least 3.
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(David Wilson)
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Uniform Spanning Forests on Zd

Pemantle (1991) discovered the following interesting properties, among others:

• The free and the wired uniform spanning forest measures are the same on all euclidean
lattices Zd.

• Amazingly, on Zd, the uniform spanning forest is a single tree a.s. if d ≤ 4; but when
d ≥ 5, there are infinitely many trees a.s.

• If 2 ≤ d ≤ 4, then the uniform spanning tree on Zd has a single end a.s.; when d ≥ 5,
each of the infinitely many trees a.s. has at most two ends. Benjamini, Lyons, Peres,
and Schramm (2001) showed that each tree has only one end a.s.
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Theorem (Lyons, Pichot, and Vassout, 2008). Let G be a Cayley graph of a
finitely generated infinite group Γ with respect to a finite generating set S. For every
finite K ⊂ Γ, we have

|∂K|
|K| > 2β1(Γ) .

In particular, this proves that finitely generated groups Γ with β1(Γ) > 0 have uniform
exponential growth. In fact, it shows uniform successive growth of balls, i.e., if

S̄ := {identity} ∪ S ∪ S−1 ,

then
|S̄n+1|/|S̄n| > 1 + 2β1(Γ) ,

so
|S̄n| > [1 + 2β1(Γ)]n .
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Trees, Forests, and Determinants

If E is finite and H ⊆ `2(E) is a subspace, it defines the determinantal measure

∀T ⊆ E with |T | = dim H PH(T ) := det[PH ]T ,T ,

where the subscript T , T indicates the submatrix whose rows and columns belong to
T . This representation has a useful extension, namely,

∀D ⊆ E PH [D ⊆ T ] = det[PH ]D,D .

In case E is infinite and H is a closed subspace of `2(E), the determinantal probability
measure PH is defined via the requirement that this equation hold for all finite D ⊂ E.

Theorem (Lyons, 2003). Let E be finite or infinite and let H ⊆ H ′ be closed
subspaces of `2(E). Then PH 4 PH′

, with equality iff H = H ′.

This means that there is a probability measure on the set
{
(T , T ′) ; T ⊆ T ′

}
that

projects in the first coordinate to PH and in the second to PH′
.
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Trees, Forests, and Determinants

Let G = (V, E) be a finite graph. Choose one orientation for each edge e ∈ E. Let
F = B1(G) denote the subspace in `2(E) spanned by the stars (coboundaries) and let
♦ = Z1(G) denote the subspace spanned by the cycles. Then `2(E) = F⊕♦.

For a finite graph, Burton and Pemantle (1993) showed that the uniform spanning
tree is the determinantal measure corresponding to orthogonal projection on F = ♦⊥.
(Precursors due to Kirchhoff (1847) and Brooks, Smith, Stone, and Tutte (1940).)

For an infinite graph, let F := B̄1
c (G) be the closure in `2(E) of the span of the stars.

For an infinite graph, Benjamini, Lyons, Peres, and Schramm (2001) showed that WUSF

is the determinantal measure corresponding to orthogonal projection on F, while FUSF

is the determinantal measure corresponding to ♦⊥.

Thus, WUSF 4 FUSF, with equality iff F = ♦⊥.
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CW-Complexes

How do we extend the foregoing to higher dimensions? The higher-dimensional ana-
logue of a graph is a CW-complex. A CW-complex is formed by sticking together
cells:

(T. Robb via Mathematica)
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Sándor Kabai and Lajos Szilassi via Mathematica

11



From Cayley to Kalai

What is the analogue of a spanning tree?

Cayley (1889) showed that the number of spanning trees in a complete graph on n

vertices is nn−2. Cayley’s theorem was extended to higher dimensions by Kalai (1983),
who showed that a certain enumeration of k-dimensional subcomplexes in a simplex on
n vertices resulted in

n

(
n−2

k

)
.

Kalai did not look at it this way, but we take the defining property of a spanning tree
to be its property as a base of the graphical matroid, i.e., maximal without cycles.
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Chain Groups and Bases for Finite CW-Complexes

Consider each cell of a CW-complex X to be oriented (except the 0-cells). Write ΞkX

for the set of k-cells of X. Identify cells with the corresponding basis elements of the
chain and cochain groups, so that ΞkX forms a basis of Ck(X;R) and Ck(X;R). The
boundary map

∂k : Ck(X;R) → Ck−1(X;R)

has kernel Zk(X;R) and image Bk−1(X;R), while the coboundary map

δk = ∂∗k+1 : Ck(X;R) → Ck+1(X;R)

has kernel Zk(X;R) and image Bk+1(X;R).

Given a finite CW-complex X and a subset T ⊆ ΞkX of its k-cells, write XT for the
subcomplex

XT := T ∪
k−1⋃

j=0

ΞjX

We call T a k-base if it is maximal with Zk(XT ) = 0.
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Lower Matroidal Measures

Let X be a finite CW-complex. The determinantal probability measure Pk on the set
of k-bases defined by orthogonal projection of Ck(X) onto the space of coboundaries
Bk(X) = Zk(X)⊥ is called the kth lower matroidal measure on X. If X is
connected, then P1 is the law of the uniform spanning tree of the 1-skeleton of X. Let
tj(T ) denote the order of the torsion subgroup of Hj(XT ;Z) := Zj(XT ;Z)/Bj(XT ;Z).

Proposition. Let X be a finite CW-complex. For each k, there exists ak such that
for all k-bases T of X,

Pk(T ) = aktk−1(T )2 .

The theorem of Kalai (1983) is that when X is an (n − 1)-dimensional simplex and
1 ≤ k ≤ n− 1,

∑

T

tk−1(T )2 = n

(
n−2

k

)
,

where the sum is over all k-bases of X.
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Example

Simplex on 6 vertices contains the projective plane, whose first homology group is Z2:

The projective plane can be embedded in R4.
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Weights

Lemma. Let V be a subspace of Qn of dimension r. Let B0 ⊂ V ∩ Zn be a set of
cardinality r that generates the group V ∩ Zn. For any basis B of V that lies in Zn,
identify B with the matrix whose columns are B in the standard basis of Qn and write
〈B〉 for the subgroup of Zn generated by B. Write [G] for the torsion subgroup of a
group G. Then for all such B, we have

det B∗B = |[Zn/〈B〉]|2 det B0
∗B0 .

Proof. By hypothesis on B0, there exists an r×r integer matrix A such that B = B0A.
We have

detB∗B = det A∗B0
∗B0A = det A∗ det B0

∗B0 detA = (det A)2 detB0
∗B0 .

Also, 0 → 〈B0〉/〈B〉 → [Zn/〈B〉] → [Zn/〈B0〉] → 0 is exact, whence

|[Zn/〈B〉]| = |[Zn/〈B0〉]| · [〈B0〉 : 〈B〉] = [〈B0〉 : 〈B〉] = |det A| .

Comparing these identities gives the result.
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Proof of Proposition

Given a set T of k-cells and S of (k − 1)-cells, we write ∂S,T for the submatrix of ∂k

whose rows are indexed by S and columns by T . Now

Pk(T ) =
det ∂∗S,T ∂S,T

det ∂S,ΞkX∂∗S,ΞkX

for any fixed S indexing a basis of Bk(X). If we multiply this formula by det ∂S,ΞkX∂∗S,ΞkX

and sum over S, then the Cauchy-Binet formula yields

Pk(T ) =
det ∂∗Ξk−1X,T ∂Ξk−1X,T∑

S det ∂S,ΞkX∂∗S,ΞkX

.

That is, Pk(T ) is proportional to

det ∂∗Ξk−1X,T ∂Ξk−1X,T .
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Proof of Proposition

That is, Pk(T ) is proportional to

det ∂∗Ξk−1X,T ∂Ξk−1X,T .

Chain groups have integral coefficients for the duration of this proof. The columns of
∂Ξk−1X,T generate the group Bk−1(XT ) and span the Q-vector space QΞk−1X . Thus,
the lemma shows that Pk(T ) is proportional to |[Ck−1(XT )/Bk−1(XT )]|2. Therefore,
it suffices to show that

[Ck−1(XT )/Bk−1(XT )] = [Zk−1(XT )/Bk−1(XT )]

in order to complete the proof. Let u ∈ [Ck−1(XT )/Bk−1(XT )]. Write

u = v + Bk−1(XT )

with v ∈ Ck−1(XT ). Let n ∈ Z+ be such that nu = 0, i.e., nv ∈ Bk−1(XT ). Since
Bk−1(XT ) ⊆ Zk−1(XT ), we have ∂(nv) = 0, which implies that ∂v = 0, i.e., that
v ∈ Zk−1(XT ). Therefore u ∈ [Zk−1(XT )/Bk−1(XT )].
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Upper Matroidal Measures

Another natural probability measure Pk on subsets of ΞkX is the determinantal prob-
ability measure corresponding to the subspace of k-cocycles, Zk(X) = Bk(X)⊥. We
call this measure the kth upper matroidal measure on X. Since Bk(X) ⊆ Zk(X),
it follows that the upper measure Pk stochastically dominates the lower measure Pk,
with equality iff Hk(X;R) = 0. As usual, let bk(X) denote the kth Betti number of X,
the dimension of Hk(X;R). One can add bk(X) k-cells to a sample from Pk to get a
sample from Pk.

Topological invariants for X reside in the difference between the measures.
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Example

The torus:
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Infinite Complexes

When X is infinite, there are natural extensions of the probability measures Pk and Pk.
We will usually assume that X is locally finite. In fact, the lower and upper measures
each have two extensions, making four measures in all.

The k-cells form an orthonormal basis for the Hilbert space C
(2)
k (X) := `2(ΞkX), which

is identified with its dual, the space of `2-cochains Ck
(2)(X). Note: Ck(X), Zk(X), and

Bk(X) denote spaces of k-chains with finite support. Let Ck
c (X), Zk

c (X), Bk
c (X) denote

spaces of k-cochains with finite (compact) support.

measure ! subspace

Pk
W ! Z̄k

c (X), Pk
F ! Bk(X)⊥

PW
k ! B̄k

c (X), PF
k ! Zk(X)⊥

{
free

wired
}{upper

lower

}
matroidal measures

21



Examples

Pk
W ! Z̄k

c (X), Pk
F ! Bk(X)⊥

PW
k ! B̄k

c (X), PF
k ! Zk(X)⊥

Always, PW
1 = WUSF, while PF

1 = FUSF.

In the cubical k-complex formed by the direct product F2 × · · · × F2 of k free groups,
PW

k 6= PF
k (and the upper measures equal the lower).

Here, P1 6= P1:

22



Stochastic Dominations

Pk
W ! Z̄k

c (X), Pk
F ! Bk(X)⊥

PW
k ! B̄k

c (X), PF
k ! Zk(X)⊥

Since Bk
c (X) ⊥ Zk(X), we have B̄k

c (X) ⊆ Zk(X)⊥, whence PW
k 4 PF

k . Since Zk
c (X) ⊆

Bk(X)⊥, we also have Pk
W 4 Pk

F. Similarly, since Bk
c (X) ⊆ Zk

c (X), we have PW
k 4 Pk

W

and since Bk(X) ⊆ Zk(X), we have PF
k 4 Pk

F. Thus, all measures stochastically
dominate the wired lower measure PW

k , while all are dominated by the free upper
measure Pk

F.

Hence, all four measures coincide iff PW
k = Pk

F.

We have Hk(X) = 0 iff Zk(X) = Bk(X) iff Zk(X)⊥ = Bk(X)⊥ iff PF
k = Pk

F. Likewise,
Z̄k

c (X) = B̄k
c (X) iff PW

k = Pk
W, which is implied by (but is not equivalent to) Hk

c (X) =
0.
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Group Complexes

Suppose that Γ is a countable group acting freely on X by permuting the cells and the
quotient X/Γ is compact. (Freeness here means that the stabilizer of each unoriented
cell consists of only the identity of Γ.) In this case, we call X a cocompact Γ-CW-

complex. Define H
(2)
k (X) := Z

(2)
k (X)/B̄

(2)
k (X), the reduced kth `2-homology group

of X. The kth `2-Betti number of X is the von Neumann dimension of H
(2)
k (X)

with respect to Γ:
βk(X; Γ) := dimΓ H

(2)
k (X) .

This is 0 iff H
(2)
k (X) = 0. The `2-Betti numbers of X are Γ-equivariant homotopy

invariants of X by a theorem of Cheeger and Gromov (1986).
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Amenable Groups

Recall that a countable group Γ is amenable if it has a Følner exhaustion, i.e., an
increasing sequence of finite subsets Vn whose union is Γ such that for all finite V ⊂ Γ,
we have limn→∞ |(VVn)4Vn|/|Vn| = 0.

Suppose X is a Γ-CW-complex with finite fundamental domain D and Γ is amenable
with Følner exhaustion 〈Vn〉. Set An := VnD̄. By a theorem of Dodziuk and Mathai
(1998), we have

lim
n→∞

bk(An)
|Vn| = βk(X; Γ)

for all k.

Using a new proof of this, we show that PW
k = PF

k and Pk
W = Pk

F.
If bk(X) = 0, then all 4 measures are equal.
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Euclidean Complexes

Write Xd for the natural d-dimensional CW-complex determined by the hyperplanes
of Rd passing through points of Zd and parallel to the coordinate hyperplanes (so the
0-cells are the points of Zd).

Using the Euler-Poincaré formula, we show that the Pk-probability that a given k-cell
belongs to F in Xd is k/d.

This is suggested by duality.
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General Groups

Proposition. Suppose that Γ is a countable group and X is a Γ-CW-complex with
finite fundamental domain D. Then

Ek
F

[|F ∩D|]−EW
k

[|F ∩D|] = βk(X; Γ) .

Again, `2-topological invariants for X reside in the difference between the measures.

27



`2-Betti numbers for Groups

Corollary. If K is a K(Γ, 1) CW-model with finite k-skeleton and X is its universal
cover with fundamental domain D, then on X, we have

EF
k

[|F ∩D|]−EW
k

[|F ∩D|] = βk(Γ) .

Version for Cayley graphs:

Proposition. In every Cayley graph of a group Γ, we have

EFUSF[degF o] = 2β1(Γ) + 2 .
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For A ⊆ X, write bnd A for the topological boundary of A in X.

Corollary. Fix k ≥ 1. For a countable group Γ, every contractible Γ-CW-complex
X with fundamental domain D and for which ΞkX/Γ is finite satisfies

inf
{ |Ξk−1bnd (VD̄)|

|V| ; V ⊂ Γ is finite
}
≥ βk(Γ) .

This gives an extension of a result of Lyons, Pichot, and Vassout (2008), which is the
case k = 1 and |Ξ1X/Γ| = 1 (with slight differences).

In dimension 1, we can improve this inequality to be sharp as follows.

Theorem (Lyons, Pichot, and Vassout, 2008). Let G be a Cayley graph of a
finitely generated infinite group Γ with respect to a finite symmetric generating set S.
For every finite K ⊂ Γ, we have

|(KS) \K|
|K| > 2β1(Γ) .
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Questions on Xd

• What is the (k − 1)-dimensional (co)homology of the random k-subcomplex? In
the case k = 1 of spanning forests, this asks how many trees there are, the question
answered by Pemantle (1991).

• If one takes the 1-point compactification of the random subcomplex, what is the
k-dimensional (co)homology? In the case of spanning forests, this asks how many
ends there are in the tree(s), the question answered partially by Pemantle (1991) and
completely by Benjamini, Lyons, Peres, and Schramm (2001).

By translation-invariance of (co)homology and ergodicity of Pk, we have that the values
of the (co)homology groups are constants a.s. From the Alexander duality theorem,
for k = d−1, we have Hk−1(F) = 0 Pk-a.s., while Pk-a.s., the Čech-Alexander-Spanier
cohomology group Ȟk(F∪∞) is 0 for 2 ≤ d ≤ 4 and is a direct sum of infinitely many
copies of Z for d ≥ 5. It also follows from the Alexander duality theorem and from
equality of free and wired limits that if d = 2k, then the a.s. values of Ȟk(F ∪∞) and
Hk−1(F) are the same, so that the two bulleted questions above are dual in that case.
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Alternative Formula

For subsets A ⊆ [1, s], B ⊆ E, let MA,B denote the matrix determined by the rows of
M indexed by A and the columns of M indexed by B. Let H be the row space of M .
One definition of the determinantal probability measure PH corresponding to M is

PH(T ) = | detMA,T |2/ det
(
MA,E(MA,E)∗

)

whenever the rows indexed by A span H, where the superscript ∗ denotes adjoint. (One
way to see that this defines a probability measure is to use the Cauchy-Binet formula.)
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Examples

Suppose that X is the 2-complex defined by a connected graph G embedded in the
2-torus, all of whose faces are contractible. Let G† be the graph dual to G. Then P0

is concentrated on the empty set, while P0 is the law of a uniform random vertex of
G. The uniform spanning tree of G has law P1, while the edges of G that do not cross
a uniform spanning tree of G† have law P1. If T ∼ P1, then T has non-contractible
cycles, but no contractible cycles. The edges of such a T generate the homology Z2

of the 2-torus. This duality is shown in the random sample of the figure, where the
lavender edges have law P1 on a 50 × 50 square lattice graph G, and those edges
belonging to a cycle in G† for P1 are shown in black, the other edges not being shown
at all. Finally, P2 is the law of the complement of a uniform random face of G and
P2 is concentrated on the full set of all 2-cells of X. We conjecture that the expected
number of edges that belong to a cycle for the law P1 on an n × n square graph is
asymptotic to Cn5/4 for some constant C; cf. Kenyon (2000).
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Cells per Vertex

Denote the number of k-cells in X/Γ by fk = fk(X/Γ). Suppose that Γ is amenable
and bk(X) = 0. Then all four measures coincide. Write F for a sample from Pk. Using
the Euler-Poincaré formula, one can show that if the k-skeleton is cocompact, then the
Pk-expected number of k-cells in F per vertex of X equals

fk−1/f0 +
k−2∑

j=0

(−1)k+j−1
(
fj − βj(X; Γ)

)
/f0 .

This also equals the average number of k-cells in F per vertex of X Pk-a.s.

In this case of Xd, we have fj =
(
d
j

)
and βj(Xd;Zd) = 0, whence the Pk-expected

number of k-cells per vertex equals
(

d−1
k−1

)
. Since the number of k-cells of Xd per vertex

is
(

d
k

)
and all k-cells have the same probability by symmetry, the Pk-probability that

a given k-cell belongs to F in Xd is k/d.
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Proposition. Suppose that Γ is a countable group and X is a Γ-CW-complex with
finite fundamental domain D. Let H be a Γ-invariant closed subspace of C

(2)
k (X).

Then
EH

[|F ∩D|] = dimΓ H .

In particular,
Ek

F

[|F ∩D|]−EW
k

[|F ∩D|] = βk(X; Γ) .

Proof. Let the standard basis elements of C
(2)
k (X) be {fγ,e ; γ ∈ Γ, e ∈ ΞkD}. Let o

be the identity of Γ. Then

EH
[|F ∩D|] =

∑

e∈ΞkD

PH
[
e ∈ F

]
=

∑

e∈ΞkD

(PHfo,e, fo,e) = dimΓ H .
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A complex K is called a K(Γ, 1) CW-model if K is a CW-complex with fundamental
group equal to Γ and vanishing higher homotopy groups. If X is the universal cover of
K and the k-skeleton of K is finite, we define βk(Γ) := βk(X; Γ); it depends only on Γ
and not on K.

Corollary. If K is a K(Γ, 1) CW-model with finite k-skeleton and X is its universal
cover with fundamental domain D, then on X, we have

EF
k

[|F ∩D|]−EW
k

[|F ∩D|] = βk(Γ) .

Proof. Since the higher homotopy groups of X also vanish, so do its homology groups.
Thus, PF

k = Pk
F. By definition, βk(Γ) = βk(X; Γ).

Version for Cayley graphs:

Proposition. In any Cayley graph of a group Γ, we have

EFUSF[degF o] = 2β1(Γ) + 2 .
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For A ⊆ X, write bnd A for the topological boundary of A in X.

Proposition. Suppose that Γ is a countable group and X is a Γ-CW-complex whose
k-skeleton is cocompact for some fixed k ≥ 1. Let D be a fundamental domain for the
action of Γ on X. If bk(X) = 0, then

inf
{ |Ξk−1bnd (VD̄)|

|V| ; V ⊂ Γ is finite
}
≥ βk(X; Γ) .

36



von Neumann dimension

If H ⊆ `2(Γ) is invariant under Γ, then dimΓ H is a notion of dimension of H per
element of Γ: If Γ is finite, then it is just (dim H)/|Γ| = (trPH)/|Γ|. In general, it is
the common diagonal element of the matrix of PH . More generally, if H ⊆ `2(Γ)n is
Γ-invariant, then dimΓ H is the trace of the common diagonal n × n block element of
the matrix of PH .

Example: Let Γ := Z, so that `2(Z) ∼= L2[0, 1] and H becomes L2(A) for A ⊆ [0, 1].
Then dimZH = |A| since PL2(A)f = f1A, so dimZH =

∫ 1

0
(11A)1 = |A|.

When H ⊆ `2(Γ)n is Γ-invariant, the probability measure PH on subsets of Γn is
Γ-invariant.
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