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1. VERBAL EMBEDDINGS AND A CONSTRUCTION

OF OL’SHANSKII

The aim of this talk is to give an example of an application of the

method built by Professor Ol’shanskii in the well known paper

A. Yu. Ol’shanskii, On the problem of finite base of identities in groups, Izv. AN

SSSR, ser. matem. 34 (1970), 376—384.

(in which the continual cardinality of the set of the varieties of groups

was proved) in combination with the methods of verbal embeddings of

groups.

The embedding ϕ : H → G of the groupH into the group G is V -verbal

for the given word set V ⊆ F∞ if the isomorphic copy ϕ(H) lies in the
verbal subgroup V (G). If there is no misunderstanding with V , we will

just term “verbal embedding ϕ”. The verbal embedding constructions

can have various properties, such as:

1. the embedding can be normal or subnormal, which means that

the isomorphic image ϕ(H) of H is normal or subnormal in G;

2. the embedding can preserve the properties of H, which means

that G is a nilpotent, soluble, ordered, finitely generated, etc.

group if the group H has that propert(ies).

3. also, the embedding can “depend on the identities” of the group

H, which means that if the groups H1 and H2 do not have the
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same identities, that is, if var (H1) W= var (H2), then the corre-

sponding overgoups G1 and G2 also do not have the same iden-

tities: var (G1) W= var (G2).

Roughly, here is the main point of how we are going to use Ol’shanskii’s

idea with verbal embeddings. In the mentioned paper he constructed

a countably infinite set of groups Θ = {S1, S2, . . . , Sn, . . . } with the
following properties:

1. Θ ⊆ W = G5 ∩ B24p, where p > 3 is a prime number, Gl is
the variety of soluble groups of length at most l, and Be is the

Burnside variety of groups of exponents dividing e;

2. Si /∈ var (Θ\{Si}) for any i = 1, 2, . . . .

The first condition guarantees, that the variety generated by any subset

of Θ still is inside the varietyW, and the second condition guarantees,
that the varieties generated by any two distinct subsets Θ1 and Θ2 of

Θ are distinct:

if Θ1 W= Θ2 then var (Θ1) W= var (Θ2)

Thus, to get continuum varieties of groups one only needs to take the

varieties generated by all subsets of Θ.

We are using this idea with verbal embeddings in the following way:

we take an infinite subset Θ1 ⊆ Θ such that the set ΘI1 = Θ\Θ1 aso is
infinite, and build a V -verbal embedding construction for:

H =

Si∈Θ1
Si

and for V is the word set corresponding to the variety:

var (Si|Si ∈ ΘI1) .
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2. THREE THEOREMS

The first result is that we show that soluble finitely generated non-

Hopfian groups are ‘many’.

Theorem 1. There exists a continuum of 3-generator soluble non-

Hopfian groups which generate pairwise distinct varieties of groups.

The solubility length of these groups is bounded by 9.

Let us recall that a group G is a Hopfian group if every ependomor-

phism on G is an automorphism, that is, if G is not isomorphic to its

proper factor group. Every finitely generated residually finite group (in

particular, every free group of finite rank or every free polynilpotent

group of finite rank) is a Hopfian group. On the other hand it is easy

to see that the free group of infinite rank or the free abelien group of

infinite rank are non-Hopfian groups. This contrast makes the finitely

generated non-Hopfian groups important (in fact, the original problem

of Heinz Hopf was posed by him in 1930’s on existence of such groups.

Further:

Theorem 2. Each countable group N is embeddable into a 3-generator

non-Hopfian group K. Moreover, this embedding can be subnormal, and

if N is a soluble group of length l, then K is a soluble group of length

l + 4.

Another property that we can add to our embedding is verbality:

Theorem 3. For any non-trivial word set V ⊆ F∞ each countable

group N is embeddable into a 3-generator non-Hopfian group K, and

this embedding is V -verbal. Moreover, this embedding can be subnor-

mal, and if N is a soluble group of length l, then K is a soluble group

of length l + c + 4, where c is the smallest integer such that the vari-

ety Nc of nilpotent groups of class c is not contained in the variety V
corresponding to V .

Actually all three theorems are results of one large embedding con-

struction built to proof Theorem 3.
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3. SOME OF THE PROOF STEPS

The first step is verbal embedding of countable groups:

Lemma 1. Let H be any countable group, and V be any non-trivial

word set. Then there is a group R(H, V ) and embedding Ψ : H →
R(H, V ) with the following properties:

i. if H generates the variety U, then R(H, V ) generates the variety
UNcA;

ii. in particular, if var(H1) W= var(H2) for the groups H1 and H2,

then also var(R(H1, V )) W= var(R(H2, V ));

iii. the embedding Ψ is subnormal: Ψ(H)YYR(H, V );

iv. the embedding Ψ is V1-verbal: Ψ(H) ⊆ V1(R(H, V )), where V1 is
the word set corresponding to the product variety V1 = VA.

The second step is the embedding into a 2-generator group:

Lemma 2. Let R be a countable group not generating the variety of

all groups. Then there is a group K(R) and an isomorphic embedding

∆ : R→ K(R) with the following properties:

i. if R generates the variety W, then K(R) generates the variety
WA;

ii. in particular, if var(R1) W= var(R2) for the groups R1 and R2,

then also var(K(R1)) W= var(K(R2));
iii. the embedding ∆ is subnormal: ∆(R)YYK(R).

The third step is embedding of each 2-generator group into a 3-generator

non-Hopfian group:

Lemma 3. For every 2-generator group K there exists a 3-generator

group G(K), and an isomorphic embedding Φ :K → G(K) with the

following properties:

i. G(K) is a non-Hopfian group;

ii. if var (K1) W= var (K2), then also var (G(K1)) W= var (G(K2));

iii. the embedding Φ is subnormal: Φ(K)YYG(K).
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The proofs are long, and we refer to the article for details. Here we

restrict us with consideration of a new notion of N I-similarity of the
elements of nested (Cartesian) wreath products of type

(XWrY )WrZ

introduced in this work for technical reasons. When the “active group”

Y of a wreath product XWrY is a direct product of finitely many

copies of the free abelian group, then the base subgroup of that wreath

product has some “geometrical” meaning. For example if Y = �c1X�c2X
is 2-generator, then the base subgroup XY is the Cartesian product of

the copies of X indexed by elements of Y . It can be understood as

copies of X standing on a “net” build by elements of Y (Picture 1):

Definition. Let X be any group and Y , Z be any finite direct powers

of the infinite cycle C:

Y = �c1X�c2X · · · �cuX and Z = �c1X�c2X · · · �cvX, with �ciX ∼= �cX
for all i = 1, . . . ,max{u, v}. Then:

1. For the given positive integer N the elements y1ψ1 and y2ψ2 of the

Cartesian wreath product XWrY (with y1, y2 ∈ Y and ψ1,ψ2 ∈ XY )

are called N-similar in XWrY if y1 = y2 and if ψ1(y) = ψ2(y) for any

y = cl11 · · · cluu ∈ Y such that |li| ≤ N , 1 = 1, . . . , u.

2. For the given positive integer N the elements z1ϕ1 and z2ϕ2
of the Cartesian wreath product (XWrY )WrZ (with z1, z2 ∈ Z and

ϕ1,ϕ2 ∈ (XWrY )Z) are called N I-similar in (XWrY )WrZ if z1 = z2
and if ϕ1(y) is N-similar to ϕ2(y) for any z = c

l1
1 · · · clvv ∈ Z such that

|li| ≤ N , 1 = 1, . . . , v.


