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The word many means that the translation numbers dφ are
unbounded.
Then we can divide the metric in X by dφ, obtaining Xφ,
φ : Λ → G . The R-tree is the limit Con(X , (dφ), (xφ)).
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But in many cases they are tree-graded spaces. Recall the
definition.
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(T2) Every simple geodesic triangle (a simple loop composed of
three geodesics) in F is contained in one piece.

Then we say that the space F is tree-graded with respect to P.
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Note (Druţu, S.). Any complete geodesic metric space with
cut-points has non-trivial canonical tree-graded structure: pieces
are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of
hyperbolicity: it is equivalent to having super-linear divergence of
geodesics



Cut points and tree-graded structures
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Note (Druţu, S.). Any complete geodesic metric space with
cut-points has non-trivial canonical tree-graded structure: pieces
are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of
hyperbolicity: it is equivalent to having super-linear divergence of
geodesics

r

≥ R

R R

The length of the blue arc should be > O(R).
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Cut points and tree-graded structures

Recall that hyperbolicity ≡superlinear divergence of any pair of
geodesic rays with common origin.
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Definition. For every point x in a tree-graded space (F,P), the
union of geodesics [x , y ] intersecting every piece by at most one
point is an R-tree called a transversal tree of F.

The geodesics [x , y ] from transversal trees are called transversal

geodesics.
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l
j

A tree-graded space. Pieces are the circles and the points on the
line.
The line is a transversal tree, the other transversal trees are points
on the circles.
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Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X , dist) be a
geodesic metric space.The asymptotic cone
C = Con

ω(X , (on), (dn)) has cut points if X contains a sequence
of geodesics gn, n = 1, 2, ... with |gn| = O(dn),
dist(gn, on) = O(dn), and superlinear divergence.

Statement 2. Let F = (Xn,Pn) be a sequence of tree-graded
spaces, ω be a ultrafilter.Let limω (Xn, on) be the ω-limit of Xn

with observation points on. Let P̃ be the set of ω-limits limω (Mn)
where Mn ∈ Pn. Then P̃ is tree-graded with respect to P̃.

Statement 3 Let F = (Xn,Pn) be a sequence of homogeneous
unbounded tree-graded metric spaces with observation points on.
Let ω be an ultrafilter. Then the ultralimit limω (F, (on)) has a
tree-graded structure with a non-trivial transversal tree at every
point.
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The description

Proposition. Let X be a homogeneous geodesic metric space such
that one of the asymptotic cones of X has a cut point. Then X

contains a sequence of geodesics gn with superlinear divergence.

Proposition. (M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G

acting on (CAT(0)) X does not have cut points in its asymptotic
cones iff every bi-infinite geodesic bounds a half-plane.
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◮ Mapping class groups of punctured surfaces (J. Behrstock);

◮ Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

◮ RAAGs (J. Behrstock, C. Drutu, L. Mosher);

◮ Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).



Examples
Groups and other metric spaces whose asymptotic cones have
cut-points:

◮ relatively hyperbolic groups and metrically relatively
hyperbolic spaces (Druţu, Osin, Sapir);
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Groups and other metric spaces whose asymptotic cones have
cut-points:

◮ relatively hyperbolic groups and metrically relatively
hyperbolic spaces (Druţu, Osin, Sapir);

◮ Mapping class groups of punctured surfaces (J. Behrstock);

◮ Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

◮ RAAGs (J. Behrstock, C. Drutu, L. Mosher);

◮ Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

◮ Conjecture (S): any non-trivial amalgamated product and
HNN-extension except for the obvious cases.

◮ (Olshanskii- S.) There exists a torsion group with cut points
in every asymptotic cone (no bounded torsion groups with this
property exist).

◮ (Olshanskii - S.) There exists a f.g. group such that one
asymptotic cone has cut points and another one does not.
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tree-graded space also acts “nicely” on an R-tree.
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Stabilizers

Notation: For every group G acting on a tree-graded space (F,P),

◮ C1(G ) is the set of subgroups stabilizing pairs of distinct
pieces in P,

◮ C2(G ) is the set of stabilizers of pairs of points of F not from
the same piece,

◮ C3(G ) is the set of stabilizers of triples of points of F neither
from the same piece nor on the same transversal geodesic.
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The main result
Theorem Let G be a finitely presented group acting on a
tree-graded space (F,P). Suppose that the following hold:

(i) Every isometry g ∈ G permutes the pieces;

(ii) No piece or point in F is stabilized by the whole group G ;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete R-tree
non-trivially, with stabilizers of non-trivial arcs in C2(G ), and
with stabilizers of non-trivial tripods in C3(G ).

(II) The group G acts on a simplicial tree with stabilizers of pieces
or points of F as vertex stabilizers, and stabilizers of pairs (a
piece, a point inside the piece) as edge stabilizers.

(III) The group G acts non-trivially on a simplicial tree with edge
stabilizers from C1(G ).

(IV) The group G acts on a complete R-tree by isometries,
non-trivially, stabilizers of non-trivial arcs are in C1(G ), and
stabilizers of tripods are locally inside subgroups in C1(G ).
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Splitting

Theorem (V. Guirardel) Let G be a finitely generated group and
let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc
stabilizer properly contains a conjugate of itself, and every
stabilizer of a non-stable arc is finitely generated.

Then one of the following three situations occurs:

(1) the group G splits over the stabilizer of a non-super-stable arc
or over the stabilizer of a tripod;

(2) G splits over a virtually cyclic extension of the stabilizer of a
super-stable arc;

(3) T is a line and G has a subgroup of index at most 2 that is an
extension of the kernel of that action by a finitely generated
free Abelian group.
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When an action satisfies Guirardel’s condition?

Statement. Let G be a finitely generated group acting on an
R-tree T with finite of size at most D tripod stabilizers, and (finite
of size at most D)-by-Abelian arc stabilizers, for some constant D.

Then an arc with stabilizer of size > (D + 1)! is super-stable.
Hence the action has finite height.
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H1 = Stab(g1)

|C (U) ∩ H| > Dh
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since this subgroup fixes a tripod.
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H1/U is Abelian, |U| ≤ D.

H = Stab(g)

|H| > (D + 1)!

H1 = Stab(g1)

q qg1

hg

|H ∩ hHh−1| < D

since this subgroup fixes a tripod.

Hence U ⊆ H.

Hence H ′ < H, H is normal in H1.

Hence D > |H ∩ hHh−1| = |H| > (D + 1)!.
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Dahmani’s result

Definition Following Dahmani, we say that a homomorphism φ
from a group Λ into a relatively hyperbolic group G has an
accidental parabolic if either φ(Λ) is parabolic or Λ splits over a
subgroup C such that φ(C ) is either parabolic or finite.

Theorem (Dahmani) If Λ is finitely presented, and G is relatively
hyperbolic then there are finitely many subgroups of G , up to
conjugacy, that are images of Λ in G by homomorphisms without
accidental parabolics.
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Homomorphisms into groups

Instead of homomorphic images, we consider the set of
homomorphisms.

Note that if a group G splits over an Abelian subgroup C , say,
G = A ∗C B, then it typically has many outer automorphisms that
are identity on A and conjugate B by elements of C . Hence we
need to modify the definition of accidental parabolics as follows.
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Weakly accidental parabolics

Definition. A homomorphism φ : Λ → G has a weakly accidental

parabolic if either φ(Λ) is parabolic or Λ splits over a subgroup C

such that φ(C ) is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively
hyperbolic group and parabolic subgroups are small (no free
non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective
homomorphisms Λ → G without weakly accidental parabolics is
finite.
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Out(G )

Theorem (Druţu, S.) Suppose that the peripheral subgroups of
G are not relatively hyperbolic with respect to proper subgroups

If Out(G ) is infinite then one of the followings cases occurs.

◮ G splits over a virtually cyclic subgroup;

◮ G splits over a parabolic (finite of uniformly bounded
size)-by-Abelian-by-(virtually cyclic) subgroup;

◮ G can be represented as a non-trivial amalgamated product or
HNN extension with one of the vertex groups a maximal
parabolic subgroup of G .
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co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not
co-Hopfian.

Let φ be an injective but not surjective homomorphism G → G .

Then one of the following holds:

◮ φk(G ) is parabolic for some k .

◮ G splits over a parabolic or virtually cyclic subgroup.



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.

The most natural tree, associated with any tree-graded space is
essentially the union of all transversal trees, and can be described
as a certain factor-space F/ ≈. The action of G on F induces an
action of G on F/ ≈.

Squeezing apples



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.

The most natural tree, associated with any tree-graded space is
essentially the union of all transversal trees, and can be described
as a certain factor-space F/ ≈. The action of G on F induces an
action of G on F/ ≈.

Squeezing apples



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.

The most natural tree, associated with any tree-graded space is
essentially the union of all transversal trees, and can be described
as a certain factor-space F/ ≈. The action of G on F induces an
action of G on F/ ≈.

µ´
¶³

±°
²¯

Squeezing apples



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.

The most natural tree, associated with any tree-graded space is
essentially the union of all transversal trees, and can be described
as a certain factor-space F/ ≈. The action of G on F induces an
action of G on F/ ≈.

h
h l

f

Squeezing apples



Plan of the proof
Given an action of G on F, we need to extract an action of G on a
tree.

The most natural tree, associated with any tree-graded space is
essentially the union of all transversal trees, and can be described
as a certain factor-space F/ ≈. The action of G on F induces an
action of G on F/ ≈.

Squeezing apples



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.



An example

An example of a non-trivial tree-graded structure: X is a unit
interval, pieces are “mid thirds” used to obtain the Cantor set, and
single points.

Note that pieces do not intersect.
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Case A.

Suppose that the action of G on T = F/ ≈ is non-trivial.
Then the stabilizer of an arc in T is from C2.

Indeed, every arc in T contains an arc from a transverse tree of F.

Thus in this case G acts non-trivially on an R-tree with arc
stabilizers from C2.



Case B.

Suppose that G fixes a point in T .



Case B.

Suppose that G fixes a point in T .

The corresponding ≈-class is a union of pieces and is a tree-graded
space (R,R) with trivial transversal trees. G acts on R.
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We have a sequence:

P0 = R < P1 = P0
′ < P2 = P ′

1...

It must stabilize at Pα.
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Case B1.

G fixes a piece in Pα.

Consider minimal δ such that G fixes a piece in Pδ.

We prove that δ is not a limit cardinal.

Then we define a simplicial tree having pieces of Pδ−1 and
intersections of these pieces as vertices, and edges connecting a
piece and a vertex inside it.
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The stabilizers of edges depend on whether δ = 1 or not.

If δ = 1, the stabilizers of edges are inside stabilizers of pieces in P.

In case δ > 1, the edge stabilizers are in C1.
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Case B2.

G does not fix a point in Pα.

Then G acts on the set X of Pα-pieces.

We define the structure of a pre-tree (Bowditch) on X .
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Pretrees

Definition A pretree is a set equipped with a ternary betweenness

relation xyz satisfying the following conditions:

◮ (PT0) (∀x , y)(¬xyx).

◮ (PT1) xzy ⇔ yzx .

◮ (PT2) (∀x , y , z)(¬(xyz ∧ xzy)).

◮ (PT3) xzy and z 6= w then (xzw ∨ yzw).
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If x, y , z are pieces of Pα then we say xyz iff there exists a
geodesic in F starting in x , ending in z and crossing y .

That pre-tree embeds equivariantly into an R-tree,

So G acts on that R-tree by non-nested automorphisms of the
pretree structure, the arc stabilizers are from C1.

We apply a version of Levitt’s theorem and complete the proof.
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