Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups

Cornelia Druțu and Mark Sapir

くロン く得り くほり くほう

= √Q(~

Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R} -tree.

Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R} -tree.

The word many means that the translation numbers d_{ϕ} are unbounded.

Х

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

〈曰〉〈曰〉〈己〉〈之〉〈之〉

〈ロ〉 〈聞〉 〈言〉 〈言〉

5990

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

5900

<ロ> < 四> < 四> < 四> < 三> < 三>

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

ヘロト ヘ週ト くほと くぼう

5900

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

イロト イ押ト イヨト イヨト

Jac.

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

Then we can divide the metric in X by d_{ϕ} , obtaining X_{ϕ} , $\phi \colon \Lambda \to G$.

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

Then we can divide the metric in X by d_{ϕ} , obtaining X_{ϕ} , $\phi: \Lambda \to G$. The \mathbb{R} -tree is the limit $\operatorname{Con}(X, (d_{\phi}), (x_{\phi}))$.

। २०००

< □ > < 🗇 >

<ロ> < 四> < 四> < 三> < 三> < 三> < 三> のへで

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

(ロ) (四) (三) (三) (三) (四) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

Sac

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

(ロ) (同) (三) (三) (三) (0) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded,

Sac

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded

(ロ) (同) (三) (三) (三) (0) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators s).

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

- ロ > - 4 回 > - 4 三 > - 4 三 > - 1 = - りへで

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators s). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Sar

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Sar

2. Out(G) is infinite;

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

- There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;
- 2. Out(G) is infinite;
- 3. *G* is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ ;

(ㅁ) (큔) (흔) (흔) [흔]

Sac

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

- There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;
- 2. Out(G) is infinite;
- 3. *G* is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ ;

4. *G* is not Hopfian, i.e. it has a non-injective but surjective endomorphism ϕ .

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

5990

But in many cases they are tree-graded spaces. Recall the definition.

 (T_1) Every two different pieces have at most one common point.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

(*T*₁) Every two different pieces have at most one common point.
(*T*₂) Every simple geodesic triangle (a simple loop composed of three geodesics) in F is contained in one piece.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

 (T_1) Every two different pieces have at most one common point.

 (T_2) Every simple geodesic triangle (a simple loop composed of three geodesics) in \mathbb{F} is contained in one piece.

Then we say that the space \mathbb{F} is *tree-graded with respect to* \mathcal{P} .

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

•b

〈曰〉〈曰〉〈己〉〈之〉〈之〉

▶ two points *a*, *b* in *X*,

500

< 口 > < 同 > .

For every:

- ▶ two points *a*, *b* in *X*,
- ▶ geodesic [*a*, *b*], and

< 口 > < 同 >

Jac.

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- ▶ piece intersected by [*a*, *b*],

< □ →

- < 🗗 >

Jac.

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- ▶ piece intersected by [*a*, *b*],

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

For every:

- two points a, b in X,
- ▶ geodesic [*a*, *b*], and
- piece intersected by [a, b],

every arc connecting a and b passes through the entry and exit points of this geodesic in this piece.

< 口 > < 同 >

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure:

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point.

くロン く得り くほり くほう

Sar

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

ヘロン 人間 とく思い 人間と

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

・ロット (雪) (山) (日)

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity:

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of geodesics

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of geodesics

(日) (四) (王) (王)

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of geodesics

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of geodesics

소리가 소리가 소문가 소문가

The length of the blue arc should be > O(R).

(ロ) (四) (三) (三) (三) (四) (0)

Recall that hyperbolicity \equiv

Recall that hyperbolicity \equiv superlinear divergence of any pair of geodesic rays with common origin.

Definition. For every point x in a tree-graded space $(\mathbb{F}, \mathcal{P})$, the union of geodesics [x, y] intersecting every piece by at most one point is an \mathbb{R} -tree called a *transversal* tree of \mathbb{F} .

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Definition. For every point x in a tree-graded space $(\mathbb{F}, \mathcal{P})$, the union of geodesics [x, y] intersecting every piece by at most one point is an \mathbb{R} -tree called a *transversal* tree of \mathbb{F} .

The geodesics [x, y] from transversal trees are called *transversal* geodesics.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Transversal trees, an example

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 < のへの

Transversal trees, an example

• • • •

5900

A tree-graded space. Pieces are the circles and the points on the line.

Transversal trees, an example

< 口 > < 同

SQ C

A tree-graded space. Pieces are the circles and the points on the line.

The line is a transversal tree, the other transversal trees are points on the circles.

Cut points continued

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space.

Cut points continued

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $C = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points

<ロ> <同> <三> <三> <三> <三> <三> のQ(や)
Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Jac.

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Statement 2. Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of tree-graded spaces, ω be a ultrafilter.

(ロ) (同) (三) (三) (三) (0) (0)

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Statement 2. Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of tree-graded spaces, ω be a ultrafilter.Let $\lim^{\omega} (X_n, o_n)$ be the ω -limit of X_n with observation points o_n .

(ロ) (同) (三) (三) (三) (0) (0)

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Statement 2. Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of tree-graded spaces, ω be a ultrafilter.Let $\lim^{\omega} (X_n, o_n)$ be the ω -limit of X_n with observation points o_n . Let $\tilde{\mathcal{P}}$ be the set of ω -limits $\lim^{\omega} (M_n)$ where $M_n \in \mathcal{P}_n$. Then $\tilde{\mathcal{P}}$ is tree-graded with respect to $\tilde{\mathcal{P}}$.

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Statement 2. Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of tree-graded spaces, ω be a ultrafilter.Let $\lim^{\omega} (X_n, o_n)$ be the ω -limit of X_n with observation points o_n . Let $\tilde{\mathcal{P}}$ be the set of ω -limits $\lim^{\omega} (M_n)$ where $M_n \in \mathcal{P}_n$. Then $\tilde{\mathcal{P}}$ is tree-graded with respect to $\tilde{\mathcal{P}}$.

Statement 3 Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of homogeneous unbounded tree-graded metric spaces with observation points o_n .

Statement 1. (M.Kapovich-B. Kleiner-B.Leeb) Let (X, dist) be a geodesic metric space. The asymptotic cone $\mathcal{C} = \text{Con}^{\omega}(X, (o_n), (d_n))$ has cut points if X contains a sequence of geodesics \mathfrak{g}_n , n = 1, 2, ... with $|\mathfrak{g}_n| = O(d_n)$, $\operatorname{dist}(\mathfrak{g}_n, o_n) = O(d_n)$, and superlinear divergence.

Statement 2. Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of tree-graded spaces, ω be a ultrafilter.Let $\lim^{\omega} (X_n, o_n)$ be the ω -limit of X_n with observation points o_n . Let $\tilde{\mathcal{P}}$ be the set of ω -limits $\lim^{\omega} (M_n)$ where $M_n \in \mathcal{P}_n$. Then $\tilde{\mathcal{P}}$ is tree-graded with respect to $\tilde{\mathcal{P}}$.

Statement 3 Let $\mathbb{F} = (X_n, \mathcal{P}_n)$ be a sequence of homogeneous unbounded tree-graded metric spaces with observation points o_n . Let ω be an ultrafilter. Then the ultralimit $\lim^{\omega} (\mathbb{F}, (o_n))$ has a tree-graded structure with a non-trivial transversal tree at every point.

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point.

〈ロ〉 〈問〉 〈言〉 〈言〉 二言

5990

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

くロン く得り くほり くほう

5990

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones

Sac

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Groups and other metric spaces whose asymptotic cones have cut-points:

Groups and other metric spaces whose asymptotic cones have cut-points:

5990

 relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);

3

Sac

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

RAAGs (J. Behrstock, C. Drutu, L. Mosher);

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(ロ) (同) (三) (三) (三) (0) (0)

 Conjecture (S): any non-trivial amalgamated product and HNN-extension except for the obvious cases.

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- Conjecture (S): any non-trivial amalgamated product and HNN-extension except for the obvious cases.
- (Olshanskii- S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).

Groups and other metric spaces whose asymptotic cones have cut-points:

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- Conjecture (S): any non-trivial amalgamated product and HNN-extension except for the obvious cases.
- (Olshanskii- S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).

Sac

 (Olshanskii - S.) There exists a f.g. group such that one asymptotic cone has cut points and another one does not.

Actions on tree-graded spaces

Thus it is important to study actions of groups on tree-graded spaces.

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで

Thus it is important to study actions of groups on tree-graded spaces.

Our main result shows that a group acting "nicely" on a tree-graded space also acts "nicely" on an \mathbb{R} -tree.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

< ロ > < 回 > < 言 > < 言 > く 言 > く 言 > う < ぐ

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

(ロ) (四) (三) (三) (三) (四) (0)

 C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,
- C₂(G) is the set of stabilizers of pairs of points of 𝔅 not from the same piece,

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- ► C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,
- C₂(G) is the set of stabilizers of pairs of points of 𝔅 not from the same piece,
- C₃(G) is the set of stabilizers of triples of points of 𝔅 neither from the same piece nor on the same transversal geodesic.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

(i) Every isometry $g \in G$ permutes the pieces;

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Then one of the following four situations occurs.

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

(1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.
- (IV) The group G acts on a complete \mathbb{R} -tree by isometries, non-trivially, stabilizers of non-trivial arcs are locally inside $C_1(G)$ -by-Abelian subgroups, and stabilizers of tripods are locally inside subgroups in $C_1(G)$.

Theorem Let G be a finitely presented group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.
- (IV) The group G acts on a complete \mathbb{R} -tree by isometries, non-trivially, stabilizers of non-trivial arcs are in $C_1(G)$, and stabilizers of tripods are locally inside subgroups in $C_1(G)$.

990

Splitting

Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Splitting

Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc stabilizer properly contains a conjugate of itself, and every stabilizer of a non-stable arc is finitely generated.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()
Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc stabilizer properly contains a conjugate of itself, and every stabilizer of a non-stable arc is finitely generated.

Then one of the following three situations occurs:

Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc stabilizer properly contains a conjugate of itself, and every stabilizer of a non-stable arc is finitely generated.

Then one of the following three situations occurs:

 the group G splits over the stabilizer of a non-super-stable arc or over the stabilizer of a tripod;

(ロ) (同) (三) (三) (三) (0) (0)

Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc stabilizer properly contains a conjugate of itself, and every stabilizer of a non-stable arc is finitely generated.

Then one of the following three situations occurs:

- the group G splits over the stabilizer of a non-super-stable arc or over the stabilizer of a tripod;
- (2) *G* splits over a virtually cyclic extension of the stabilizer of a super-stable arc;

(ロ) (同) (三) (三) (三) (0) (0)

Theorem (V. Guirardel) Let G be a finitely generated group and let T be a real tree on which G acts minimally.

Suppose that the set of arc stabilizers satisfies ACC and no arc stabilizer properly contains a conjugate of itself, and every stabilizer of a non-stable arc is finitely generated.

Then one of the following three situations occurs:

- the group G splits over the stabilizer of a non-super-stable arc or over the stabilizer of a tripod;
- (2) *G* splits over a virtually cyclic extension of the stabilizer of a super-stable arc;
- (3) T is a line and G has a subgroup of index at most 2 that is an extension of the kernel of that action by a finitely generated free Abelian group.

Statement. Let *G* be a finitely generated group acting on an \mathbb{R} -tree *T* with finite of size at most *D* tripod stabilizers,

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで

Statement. Let G be a finitely generated group acting on an \mathbb{R} -tree T with finite of size at most D tripod stabilizers, and (finite of size at most D)-by-Abelian arc stabilizers,

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Statement. Let *G* be a finitely generated group acting on an \mathbb{R} -tree *T* with finite of size at most *D* tripod stabilizers, and (finite of size at most *D*)-by-Abelian arc stabilizers, for some constant *D*.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Statement. Let G be a finitely generated group acting on an \mathbb{R} -tree T with finite of size at most D tripod stabilizers, and (finite of size at most D)-by-Abelian arc stabilizers, for some constant D.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Then an arc with stabilizer of size > (D + 1)! is super-stable.

Statement. Let G be a finitely generated group acting on an \mathbb{R} -tree T with finite of size at most D tripod stabilizers, and (finite of size at most D)-by-Abelian arc stabilizers, for some constant D.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Then an arc with stabilizer of size > (D + 1)! is super-stable. Hence the action has finite height.

- ロ > ・ 信 > ・ 言 > ・ 言 - り へ ()・

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 < のへの

< □ >

P

 $H_1 = \operatorname{Stab}(\mathfrak{g}_1)$

 $\begin{aligned} &H_1/U \text{ is Abelian, } |U| \leq D. \\ &|H_1: C(U)| \leq D! \\ &|C(U) \cap H| > D \end{aligned}$

5900

 hHh^{-1} fixes $h\mathfrak{g}$

< D >

P

 $H_1 = \operatorname{Stab}(\mathfrak{g}_1)$

 $\begin{aligned} &H_1/U \text{ is Abelian, } |U| \leq D. \\ &|H_1: C(U)| \leq D! \\ &|C(U) \cap H| > D \end{aligned}$

< □ >

 hHh^{-1} fixes hg $|H \cap hHh^{-1}| < D$ since this subgroup fixes a tripod.

 $H_1 = \operatorname{Stab}(\mathfrak{g}_1)$

 $\begin{aligned} &H_1/U \text{ is Abelian, } |U| \leq D. \\ &|H_1: C(U)| \leq D! \\ &|C(U) \cap H| > D \end{aligned}$

< 🗆

 hHh^{-1} fixes hg $|H \cap hHh^{-1}| < D$ since this subgroup fixes a tripod. If $h \in U$, $C(U) \cap H \subseteq H \cap hHh^{-1}$.

Sac

ベロ> <目> < 目> < 目> < 目> < 目> < 目><</p>

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group *G* has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.

Theorem (Dahmani) If Λ is finitely presented, and *G* is relatively hyperbolic then there are finitely many subgroups of *G*, up to conjugacy, that are images of Λ in *G* by homomorphisms without accidental parabolics.

(ロ) (同) (三) (三) (三) (0) (0)

Homomorphisms into groups

Instead of homomorphic images, we consider the set of homomorphisms.

Instead of homomorphic images, we consider the set of homomorphisms.

Note that if a group G splits over an Abelian subgroup C, say, $G = A *_C B$, then it typically has many outer automorphisms that are identity on A and conjugate B by elements of C. Hence we need to modify the definition of accidental parabolics as follows.

(ロ) (同) (三) (三) (三) (0) (0)

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or

(ロ) (四) (三) (三) (三) (四) (0)

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective homomorphisms $\Lambda \to G$ without weakly accidental parabolics is finite.

(ロ) (同) (三) (三) (三) (0) (0)

$\operatorname{Out}(G)$

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)

Jac.

$\operatorname{Out}(G)$

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)

$\operatorname{Out}(G)$

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)
Theorem (Druţu, S.) Suppose that the peripheral subgroups of *G* are not relatively hyperbolic with respect to proper subgroups

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

〈曰〉〈母〉〈言〉〈言〉

5990

€

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

〈曰〉〈曰〉〈己〉〈之〉〈之〉

3

5990

Theorem (Druţu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups (otherwise we can replace peripheral subgroups by smaller peripheral subgroups).

くロン く得り くほり くほう

Sac

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

くロン く得り くほり くほう

5990

If Out(G) is infinite then one of the followings cases occurs.

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

くロン く得り くほり くほう

5990

If Out(G) is infinite then one of the followings cases occurs.

• G splits over a virtually cyclic subgroup;

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

If Out(G) is infinite then one of the followings cases occurs.

- ► G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;

Jac.

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

If Out(G) is infinite then one of the followings cases occurs.

- ► G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;
- G can be represented as a non-trivial amalgamated product or HNN extension with one of the vertex groups a maximal parabolic subgroup of G.

(ロ) (同) (三) (三) (三) (0) (0)

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで

- **Theorem** Suppose that a relatively hyperbolic group G is not co-Hopfian.
- Let ϕ be an injective but not surjective homomorphism $G \to G$.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

- **Theorem** Suppose that a relatively hyperbolic group G is not co-Hopfian.
- Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

5990

• $\phi^k(G)$ is parabolic for some k.

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

- $\phi^k(G)$ is parabolic for some k.
- *G* splits over a parabolic or virtually cyclic subgroup.

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

- $\phi^k(G)$ is parabolic for some k.
- *G* splits over a parabolic or virtually cyclic subgroup.

Given an action of G on $\mathbb F,$ we need to extract an action of G on a tree.

Given an action of G on \mathbb{F} , we need to extract an action of G on a tree.

The most natural tree, associated with any tree-graded space is essentially the union of all transversal trees, and can be described as a certain factor-space \mathbb{F}/\approx . The action of *G* on \mathbb{F} induces an action of *G* on \mathbb{F}/\approx .

Squeezing apples

Given an action of G on \mathbb{F} , we need to extract an action of G on a tree.

The most natural tree, associated with any tree-graded space is essentially the union of all transversal trees, and can be described as a certain factor-space \mathbb{F}/\approx . The action of *G* on \mathbb{F} induces an action of *G* on \mathbb{F}/\approx .

Squeezing apples

Given an action of G on \mathbb{F} , we need to extract an action of G on a tree.

The most natural tree, associated with any tree-graded space is essentially the union of all transversal trees, and can be described as a certain factor-space \mathbb{F}/\approx . The action of *G* on \mathbb{F} induces an action of *G* on \mathbb{F}/\approx .

Squeezing apples

Given an action of G on \mathbb{F} , we need to extract an action of G on a tree.

The most natural tree, associated with any tree-graded space is essentially the union of all transversal trees, and can be described as a certain factor-space \mathbb{F}/\approx . The action of *G* on \mathbb{F} induces an action of *G* on \mathbb{F}/\approx .

Squeezing apples

Given an action of G on \mathbb{F} , we need to extract an action of G on a tree.

The most natural tree, associated with any tree-graded space is essentially the union of all transversal trees, and can be described as a certain factor-space \mathbb{F}/\approx . The action of *G* on \mathbb{F} induces an action of *G* on \mathbb{F}/\approx .

Squeezing apples

《曰》 《國》 《言》 《言》

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

(ロ) (四) (三) (三) (三) (四) (0)

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

<ロ> <同> <三> <三> <三> <三> <三> のQ(や)

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

くロン く得り くほり くほう

= √Q(~

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

くロン く得り くほり くほう

= √Q(~

An example of a non-trivial tree-graded structure: X is a unit interval, pieces are "mid thirds" used to obtain the Cantor set, and single points.

3

Sac

Note that pieces do not intersect.

Suppose that the action of G on $T = \mathbb{F}/\approx$ is non-trivial.

< ロ > < 団 > < 三 > < 三 > < 三 > シ へ 回 > < 三 > の へ ()

Case A.

Suppose that the action of G on $T = \mathbb{F}/\approx$ is non-trivial. Then the stabilizer of an arc in T is from C_2 .

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 < のへの

Case A.

Suppose that the action of G on $T = \mathbb{F}/\approx$ is non-trivial. Then the stabilizer of an arc in T is from C_2 .

Indeed, every arc in T contains an arc from a transverse tree of \mathbb{F} .

<ロ> < 同> < 三> < 三> < 三> < 三> 三 の < ()

Suppose that the action of G on $T = \mathbb{F}/\approx$ is non-trivial. Then the stabilizer of an arc in T is from C_2 .

Indeed, every arc in T contains an arc from a transverse tree of \mathbb{F} .

Thus in this case G acts non-trivially on an \mathbb{R} -tree with arc stabilizers from \mathcal{C}_2 .

Suppose that G fixes a point in T.

Suppose that G fixes a point in T.

The corresponding \approx -class is a union of pieces and is a tree-graded space (R, \mathcal{R}) with trivial transversal trees. *G* acts on *R*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(\mathbb{F}, \mathcal{P})$ be a tree-graded space.

Let $(\mathbb{F}, \mathcal{P})$ be a tree-graded space.

We define $a \sim b$ iff [a, b] is covered by finitely many pieces.

Let $(\mathbb{F}, \mathcal{P})$ be a tree-graded space.

We define $a \sim b$ iff [a, b] is covered by finitely many pieces.

Then we define pieces of \mathcal{P}' as closures of the $\sim\text{-equivalence}$ classes.

5990

Let $(\mathbb{F}, \mathcal{P})$ be a tree-graded space.

We define $a \sim b$ iff [a, b] is covered by finitely many pieces.

Then we define pieces of \mathcal{P}' as closures of the \sim -equivalence classes.

A transfinite sequence of tree-graded structures

We have a sequence:

$$\mathcal{P}_0 = \mathcal{R} < \mathcal{P}_1 = \mathcal{P}_0' < \mathcal{P}_2 = \mathcal{P}_1'...$$

- ロ > ・ 信 > ・ 言 > ・ 言 - り へ ()・

A transfinite sequence of tree-graded structures

We have a sequence:

$$\mathcal{P}_0 = \mathcal{R} < \mathcal{P}_1 = \mathcal{P}_0' < \mathcal{P}_2 = \mathcal{P}_1'...$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It must stabilize at \mathcal{P}_{α} .

G fixes a piece in \mathcal{P}_{α} .

G fixes a piece in \mathcal{P}_{α} .

Consider minimal δ such that G fixes a piece in \mathcal{P}_{δ} .

G fixes a piece in \mathcal{P}_{α} .

Consider minimal δ such that G fixes a piece in \mathcal{P}_{δ} .

We prove that δ is not a limit cardinal.

G fixes a piece in \mathcal{P}_{α} .

Consider minimal δ such that G fixes a piece in \mathcal{P}_{δ} .

We prove that δ is not a limit cardinal.

Then we define a simplicial tree having pieces of $\mathcal{P}_{\delta-1}$ and intersections of these pieces as vertices, and edges connecting a piece and a vertex inside it.

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

The stabilizers of edges depend on whether $\delta = 1$ or not.

The stabilizers of edges depend on whether $\delta = 1$ or not.

If $\delta = 1$, the stabilizers of edges are inside stabilizers of pieces in \mathcal{P} .

The stabilizers of edges depend on whether $\delta = 1$ or not.

If $\delta = 1$, the stabilizers of edges are inside stabilizers of pieces in \mathcal{P} .

<ロ> < 同> < 同> < 三> < 三> < 三> 三 の < ()

In case $\delta > 1$, the edge stabilizers are in C_1 .

G does not fix a point in \mathcal{P}_{α} .

G does not fix a point in \mathcal{P}_{α} .

Then G acts on the set X of \mathcal{P}_{α} -pieces.

< ロ > < 圖 > < 클 > < 클 > <

€

G does not fix a point in \mathcal{P}_{α} .

Then G acts on the set X of \mathcal{P}_{α} -pieces.

We define the structure of a pre-tree (Bowditch) on X.

〈曰〉〈曰〉〈己〉〈之〉〈之〉

3

Definition A *pretree* is a set equipped with a ternary *betweenness* relation *xyz* satisfying the following conditions:

〈ロ〉 〈聞〉 〈注〉 〈注〉 三言。

Definition A *pretree* is a set equipped with a ternary *betweenness* relation *xyz* satisfying the following conditions:

▶ (PT0) $(\forall x, y)(\neg xyx)$.

Definition A *pretree* is a set equipped with a ternary *betweenness* relation *xyz* satisfying the following conditions:

〈ロ〉 〈聞〉 〈注〉 〈注〉 三言。

$$\blacktriangleright (\mathsf{PT0}) (\forall x, y) (\neg xyx).$$

▶ (PT1)
$$xzy \Leftrightarrow yzx$$
.

Definition A *pretree* is a set equipped with a ternary *betweenness* relation *xyz* satisfying the following conditions:

〈ロ〉 〈聞〉 〈注〉 〈注〉 三言。

• (PT0)
$$(\forall x, y)(\neg xyx)$$
.

$$\blacktriangleright (\mathsf{PT1}) xzy \Leftrightarrow yzx.$$

• (PT2)
$$(\forall x, y, z)(\neg(xyz \land xzy)).$$

Definition A *pretree* is a set equipped with a ternary *betweenness* relation *xyz* satisfying the following conditions:

= √Q(~

• (PT0)
$$(\forall x, y)(\neg xyx)$$
.

- ▶ (PT1) $xzy \Leftrightarrow yzx$.
- (PT2) $(\forall x, y, z)(\neg(xyz \land xzy)).$
- (PT3) *xzy* and $z \neq w$ then (*xzw* \lor *yzw*).

〈曰〉〈曰〉〈己〉〈之〉〈之〉

3

= √Q(~

That pre-tree embeds equivariantly into an \mathbb{R} -tree,

That pre-tree embeds equivariantly into an \mathbb{R} -tree,

So *G* acts on that \mathbb{R} -tree by non-nested automorphisms of the pretree structure, the arc stabilizers are from C_1 .

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

That pre-tree embeds equivariantly into an \mathbb{R} -tree,

So G acts on that \mathbb{R} -tree by non-nested automorphisms of the pretree structure, the arc stabilizers are from C_1 .

We apply a version of Levitt's theorem and complete the proof.

Jac.