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Then we can divide the metric in X by dφ, obtaining Xφ,
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Note (Druţu, S.). Any complete geodesic metric space with
cut-points has non-trivial canonical tree-graded structure: pieces
are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of
hyperbolicity: it is equivalent to having super-linear divergence of
pairs of points

r

≥ R

R R

The length of the blue arc should be > O(R).
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Cut points and tree-graded structures

Recall that hyperbolicity ≡superlinear divergence of any pair of
geodesic rays with common origin.
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l

j

A tree-graded space. Pieces are the circles and the points on the
line.
The line is a transversal tree, the other transversal trees are points
on the circles.
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The description

Proposition. Let X be a homogeneous geodesic metric space such
that one of the asymptotic cones of X has a cut point. Then X

contains a sequence of geodesics gn with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A
CAT(0) group G acting on (CAT(0)) X does not have cut points
in its asymptotic cones iff every bi-infinite geodesic bounds a
half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic
with ends on g is close to g.

Observation. (D+S) A bi-infinite geodesic in the Cayley graph is
Morse iff its limit in every asymptotic cone is a transversal
geodesic.
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Thus it is important to study actions of groups on
tree-graded spaces.

Our main result shows that a group acting “nicely” on a
tree-graded space also acts “nicely” on an R-tree.
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Stabilizers

Notation: For every group G acting on a tree-graded space (F,P),

◮ C1(G ) is the set of subgroups stabilizing pairs of distinct
pieces in P,

◮ C2(G ) is the set of stabilizers of pairs of points of F not from
the same piece,

◮ C3(G ) is the set of stabilizers of triples of points of F neither
from the same piece nor on the same transversal geodesic.
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The main result
Theorem Let G be a finitely presented group acting on a
tree-graded space (F,P). Suppose that the following hold:

(i) Every isometry g ∈ G permutes the pieces;

(ii) No piece or point in F is stabilized by the whole group G ;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete R-tree
non-trivially, with stabilizers of non-trivial arcs in C2(G ), and
with stabilizers of non-trivial tripods in C3(G ).

(II) The group G acts on a simplicial tree with stabilizers of pieces
or points of F as vertex stabilizers, and stabilizers of pairs (a
piece, a point inside the piece) as edge stabilizers.

(III) The group G acts non-trivially on a simplicial tree with edge
stabilizers from C1(G ).

(IV) The group G acts on a complete R-tree by isometries,
non-trivially, stabilizers of non-trivial arcs are in C1(G ), and
stabilizers of tripods are locally inside subgroups in C1(G ).
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Groups and other metric spaces whose asymptotic cones do not
have cut-points:

◮ (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).

◮ (D+S) Groups with infinite centers.

◮ (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups
of R-rank at least 2.

Question What about non-classical Lie groups?
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k-acylindrically.
◮ (Olshanskii, Osin, S.) There exists a torsion group with cut

points in every asymptotic cone (no bounded torsion groups
with this property exist).

◮ (O+O+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree and another has no cut points.

◮ (O+O+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.

Question. Is there a f.g. (f.p.) amenable group with cut points in
every a.c.?
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Dahmani’s result

Definition Following Dahmani, we say that a homomorphism φ
from a group Λ into a relatively hyperbolic group G has an
accidental parabolic if either φ(Λ) is parabolic or Λ splits over a
subgroup C such that φ(C ) is either parabolic or finite.

Theorem (Dahmani) If Λ is finitely presented, and G is relatively
hyperbolic then there are finitely many subgroups of G , up to
conjugacy, that are images of Λ in G by homomorphisms without
accidental parabolics.
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Homomorphisms into groups

Instead of homomorphic images, we consider the set of
homomorphisms.

Note that if a group G splits over an Abelian subgroup C , say,
G = A ∗C B, then it typically has many outer automorphisms that
are identity on A and conjugate B by elements of C . Hence we
need to modify the definition of accidental parabolics as follows.
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Weakly accidental parabolics

Definition. A homomorphism φ : Λ → G has a weakly accidental

parabolic if either φ(Λ) is parabolic or Λ splits over a subgroup C

such that φ(C ) is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively
hyperbolic group and parabolic subgroups are small (no free
non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective
homomorphisms Λ → G without weakly accidental parabolics is
finite.
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Out(G )

Theorem (Druţu, S.) Suppose that the peripheral subgroups of
G are not relatively hyperbolic with respect to proper subgroups

If Out(G ) is infinite then one of the followings cases occurs.

◮ G splits over a virtually cyclic subgroup;

◮ G splits over a parabolic (finite of uniformly bounded
size)-by-Abelian-by-(virtually cyclic) subgroup;

◮ G can be represented as a non-trivial amalgamated product or
HNN extension with one of the vertex groups a maximal
parabolic subgroup of G .
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co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not
co-Hopfian.

Let φ be an injective but not surjective homomorphism G → G .

Then one of the following holds:

◮ φk(G ) is parabolic for some k .

◮ G splits over a parabolic or virtually cyclic subgroup.
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