Cut-points in asymptotic cones of groups

Mark Sapir

With J. Behrstock, C. Druțu, S. Mozes, A.Olshanskii, D. Osin
Asymptotic cones

Definition.
Asymptotic cones

Definition. Let X be a metric space,
Asymptotic cones

Definition. Let X be a metric space, o be an observation point,
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*,
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of \emph{scaling constants}, ω be an ultrafilter. The asymptotic cone of X
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_\omega \left(\frac{\text{dist}(x_n,o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_\omega \left(\frac{\text{dist}(x_n,y_n)}{d_n} \right) = 0$.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_{\omega} \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_{\omega} \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0$.

Example.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n, i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_{\omega} \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_{\omega} \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2.
Asymptotic cones

Definition. Let \(X \) be a metric space, \(o \) be an observation point, \(d = d_n \) be a sequence of *scaling constants*, \(\omega \) be an ultrafilter. The asymptotic cone of \(X \) is the \(\omega \)-limit of \(X/d_n \) i.e. the set of sequences \((x_n), x_n \in X \) such that \(\lim_\omega \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty \) modulo the equivalence \((x_n) \sim (y_n) \) iff \(\lim_\omega \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0. \)

Example. The a.c. of \(\mathbb{Z}^2 \) is \(\mathbb{R}^2 \), the a.s. of a binary tree is an \(\mathbb{R} \)-tree.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_\omega \left(\frac{\text{dist}(x_n,o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_\omega \left(\frac{\text{dist}(x_n,y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_{\omega} \left(\frac{\text{dist}(x_n,o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_{\omega} \left(\frac{\text{dist}(x_n,y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $\text{SL}(n, \mathbb{R})$ is a building.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_{\omega} \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_{\omega} \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_\omega \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_\omega \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

Kramer, Shelah, Tent, Thomas: many a.c. assuming CH is not true.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_{\omega} \left(\frac{\text{dist}(x_n, o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_{\omega} \left(\frac{\text{dist}(x_n, y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

Kramer, Shelah, Tent, Thomas: many a.c. assuming CH is not true.

Druțu, S.
Asymptotic cones

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω-limit of X/d_n i.e. the set of sequences (x_n), $x_n \in X$ such that $\lim_\omega \left(\frac{\text{dist}(x_n,o)}{d_n} \right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim_\omega \left(\frac{\text{dist}(x_n,y_n)}{d_n} \right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2, the a.s. of a binary tree is an \mathbb{R}-tree the a.c. of a uniform lattice in $\text{SL}(n, \mathbb{R})$ is a building.

Kramer, Shelah, Tent, Thomas: many a.c. assuming CH is *not* true.

Druțu, S. a f.g. group with continuum a.c.
Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R}-tree.
Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R}-tree.
What does “many” means?

The word *many* means that the translation numbers d_ϕ are unbounded.
What does “many” means?

\[G = \langle a, b, c \rangle, \ x \in X, \]

The word many means that the translation numbers \(d_\phi \) are unbounded.
The word *many* means that the translation numbers d_ϕ are unbounded.
What does “many” mean?

The word *many* means that the translation numbers d_ϕ are unbounded.
What does “many” means?

\[G = \langle a, b, c \rangle, \ x \in X, \]

The word \textit{many} means that the translation numbers \(d_\phi\) are unbounded.
What does “many” mean?

\[G = \langle a, b, c \rangle, \ x \in X, \ d\phi = \min_x d(x). \]

The word many means that the translation numbers \(d\phi \) are unbounded.
What does “many” mean?

The word *many* means that the translation numbers d_ϕ are unbounded.

Then we can divide the metric in X by d_ϕ, obtaining X_ϕ, $\phi: \Lambda \to G$.

$$G = \langle a, b, c \rangle, \ x \in X, \ d_\phi = \min_x d(x).$$
What does “many” means?

The word many means that the translation numbers d_ϕ are unbounded.

Then we can divide the metric in X by d_ϕ, obtaining X_ϕ, $\phi: \Lambda \to G$. The \mathbb{R}-tree is the limit $\text{Con}(X, (d_\phi), (x_\phi))$.

$$G = \langle a, b, c \rangle, \ x \in X, \ d_\phi = \min_x d(x).$$
Indeed, triangles in X_ϕ become thinner and thinner and in the limit all geodesic triangles are tripods:
Indeed, triangles in X_ϕ become thinner and thinner and in the limit all geodesic triangles are tripods:
Indeed, triangles in X_ϕ become thinner and thinner and in the limit all geodesic triangles are tripods:
Indeed, triangles in X_ϕ become thinner and thinner and in the limit all geodesic triangles are tripods:
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina - Feighn - Levitt - Sela - Guirardel... and split the group into a graph of groups.
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \rightarrow G$;
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina -Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \to G$;

Indeed, if the translation numbers d_ϕ of $\phi: \Lambda \to G$ are bounded,
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina -
Feighn - Levitt -Sela - Guirardel... and split the group into a graph
of groups.

The Bestvina-Paulin’s observation applies, for example, when the
group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate
homomorphisms from a finitely generated group Λ into G;
then there are “many” actions of Λ on the Cayley graph of G:
$g \cdot x = \phi(g)x$ for every $\phi: \Lambda \rightarrow G$;

Indeed, if the translation numbers d_ϕ of $\phi: \Lambda \rightarrow G$ are
bounded, then $\text{dist}(\phi(s)x_\phi, x_\phi)$ is bounded
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips-Bestvina-Feighn-Levitt-Sela-Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \rightarrow G$;

Indeed, if the translation numbers d_ϕ of $\phi: \Lambda \rightarrow G$ are bounded, then $\text{dist}(\phi(s)x_\phi, x_\phi)$ is bounded which means that $|x_\phi^{-1}\phi(s)x_\phi|$ is bounded (for all generators s).
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina -Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \to G$;

Indeed, if the translation numbers d_ϕ of $\phi: \Lambda \to G$ are bounded, then $\text{dist}(\phi(s)x_\phi, x_\phi)$ is bounded which means that $|x_\phi^{-1}\phi(s)x_\phi|$ is bounded (for all generators s). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ’s up to conjugacy.
Applications

Given an action on an \(\mathbb{R} \)-tree, we can apply Rips -Bestvina -Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group \(G \) is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group \(\Lambda \) into \(G \); then there are “many” actions of \(\Lambda \) on the Cayley graph of \(G \): \(g \cdot x = \phi(g)x \) for every \(\phi : \Lambda \rightarrow G \);

Indeed, if the translation numbers \(d_\phi \) of \(\phi : \Lambda \rightarrow G \) are bounded, then \(\text{dist}(\phi(s)x_\phi, x_\phi) \) is bounded which means that \(|x_\phi^{-1}\phi(s)x_\phi| \) is bounded (for all generators \(s \)). So up to conjugacy \(\phi \) maps the generating set of \(\Lambda \) to a ball of bounded radius, hence there are only finitely many \(\phi \)'s up to conjugacy.
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips - Bestvina - Feighn - Levitt - Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G:
 \[g \cdot x = \phi(g)x \text{ for every } \phi : \Lambda \to G; \]

 Indeed, if the translation numbers d_ϕ of $\phi : \Lambda \to G$ are bounded, then $\text{dist}(\phi(s)x_\phi, x_\phi)$ is bounded which means that $|x_\phi^{-1}\phi(s)x_\phi|$ is bounded (for all generators s). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ’s up to conjugacy.
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips-Bestvina-Feighn-Levitt-Sela-Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \to G$;

Indeed, if the translation numbers d_ϕ of $\phi: \Lambda \to G$ are bounded, then $\text{dist}(\phi(s)x_\phi, x_\phi)$ is bounded which means that $|x_\phi^{-1}\phi(s)x_\phi|$ is bounded (for all generators s). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ’s up to conjugacy.
Applications

Given an action on an \(\mathbb{R} \)-tree, we can apply Rips-Bestvina-Feighn-Levitt-Sela-Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group \(G \) is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group \(\Lambda \) into \(G \); then there are “many” actions of \(\Lambda \) on the Cayley graph of \(G \):
 \[g \cdot x = \phi(g)x \text{ for every } \phi : \Lambda \to G; \]
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips - Bestvina - Feighn - Levitt - Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \to G$;

2. $\text{Out}(G)$ is infinite;
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips -Bestvina - Feighn - Levitt - Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi : \Lambda \to G$;
2. $\text{Out}(G)$ is infinite;
3. G is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ;
Applications

Given an action on an \mathbb{R}-tree, we can apply Rips - Bestvina - Feighn - Levitt - Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin’s observation applies, for example, when the group G is hyperbolic and one of the following holds:

1. There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are “many” actions of Λ on the Cayley graph of G: $g \cdot x = \phi(g)x$ for every $\phi: \Lambda \to G$;
2. $\text{Out}(G)$ is infinite;
3. G is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ;
4. G is not Hopfian, i.e. it has a non-injective but surjective endomorphism ϕ.
What if G is not hyperbolic?

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.
What if G is not hyperbolic?

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.
What if G is not hyperbolic?

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

But in many cases they are tree-graded spaces. Recall the definition.
Definition Let F be a complete geodesic metric space and let P be a collection of closed geodesic subsets (called pieces). Suppose that the following two properties are satisfied:
Tree-graded spaces

Definition Let \mathbb{F} be a complete geodesic metric space and let \mathcal{P} be a collection of closed geodesic subsets (called *pieces*). Suppose that the following two properties are satisfied:

(T_1) Every two different pieces have at most one common point.
Tree-graded spaces

Definition Let \mathbb{F} be a complete geodesic metric space and let \mathcal{P} be a collection of closed geodesic subsets (called *pieces*). Suppose that the following two properties are satisfied:

- (T_1) Every two different pieces have at most one common point.
- (T_2) Every simple geodesic triangle (a simple loop composed of three geodesics) in \mathbb{F} is contained in one piece.
Definition Let \mathbb{F} be a complete geodesic metric space and let \mathcal{P} be a collection of closed geodesic subsets (called *pieces*). Suppose that the following two properties are satisfied:

(T_1) Every two different pieces have at most one common point.
(T_2) Every simple geodesic triangle (a simple loop composed of three geodesics) in \mathbb{F} is contained in one piece.

Then we say that the space \mathbb{F} is *tree-graded with respect to* \mathcal{P}.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure:
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point.
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

(T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

(T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

\((T_1)\) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

\((T_1)\) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \(T_2 \) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

\(T_1 \) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

\[
\begin{array}{c}
 \text{Diagram: Two circles with a common point.} \\
 b^* \quad a \quad c
\end{array}
\]
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

(T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

\((T_1)\) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, \((T_2)\) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

\((T_1)\) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.
Cut points and tree-graded structures

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity:
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points.
Cut points and tree-graded structures

Note (Drutu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points.
Cut points and tree-graded structures

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points.

The length of the blue arc should be $> O(R)$.

![Diagram showing a blue arc with length greater than $O(R)$]
Cut points and tree-graded structures

Recall that hyperbolicity \equiv
Recall that hyperbolicity \equiv superlinear divergence of any pair of geodesic rays with common origin.
Transversal trees

Definition. For every point x in a tree-graded space (F, P), the union of geodesics $[x, y]$ intersecting every piece by at most one point is an \mathbb{R}-tree called a *transversal* tree of F.
Transversal trees

Definition. For every point x in a tree-graded space $(\mathbb{F}, \mathcal{P})$, the union of geodesics $[x, y]$ intersecting every piece by at most one point is an \mathbb{R}-tree called a transversal tree of \mathbb{F}.

The geodesics $[x, y]$ from transversal trees are called *transversal geodesics*.
Transversal trees, an example
Transversal trees, an example

A tree-graded space. Pieces are the circles and the points on the line.
Transversal trees, an example

A tree-graded space. Pieces are the circles and the points on the line.
The line is a transversal tree, the other transversal trees are points on the circles.
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point.
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B. Kleiner-B. Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics:
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic with ends on g is close to g.
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic with ends on g is close to g.

Observation. (D+S)
Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B. Kleiner-B. Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic with ends on g is close to g.

Observation. (D+S) A bi-infinite geodesic in the Cayley graph is Morse iff its limit in every asymptotic cone is a transversal geodesic.
Actions on tree-graded spaces

Thus it is important to study actions of groups on tree-graded spaces.
Actions on tree-graded spaces

Thus it is important to study actions of groups on tree-graded spaces.

Our main result shows that a group acting “nicely” on a tree-graded space also acts “nicely” on an \mathbb{R}-tree.
Stabilizers

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

Stabilizers

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- $\mathcal{C}_1(G)$ is the set of subgroups stabilizing pairs of distinct pieces in \mathcal{P},
Stabilizers

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- $\mathcal{C}_1(G)$ is the set of subgroups stabilizing pairs of distinct pieces in \mathcal{P},
- $\mathcal{C}_2(G)$ is the set of stabilizers of pairs of points of \mathbb{F} not from the same piece,
Stabilizers

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- $\mathcal{C}_1(G)$ is the set of subgroups stabilizing pairs of distinct pieces in \mathcal{P},
- $\mathcal{C}_2(G)$ is the set of stabilizers of pairs of points of \mathbb{F} not from the same piece,
- $\mathcal{C}_3(G)$ is the set of stabilizers of triples of points of \mathbb{F} neither from the same piece nor on the same transversal geodesic.
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space (F, P). Suppose that the following hold:
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space (\mathbb{F}, P). Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;
(ii) No piece or point in \mathbb{F} is stabilized by the whole group G;
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space (F, P). Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;

(ii) No piece or point in F is stabilized by the whole group G;

Then one of the following four situations occurs.
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space (F, P). Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;
(ii) No piece or point in F is stabilized by the whole group G;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete \mathbb{R}-tree non-trivially, with stabilizers of non-trivial arcs in $C_2(G)$, and with stabilizers of non-trivial tripods in $C_3(G)$.

The main result

Theorem Let G be a finitely generated group acting on a tree-graded space (F, P). Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;
(ii) No piece or point in F is stabilized by the whole group G;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete \mathbb{R}-tree non-trivially, with stabilizers of non-trivial arcs in $C_2(G)$, and with stabilizers of non-trivial tripods in $C_3(G)$.

(II) The group G acts on a simplicial tree with stabilizers of pieces or points of F as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
The main result

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;
(ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete \mathbb{R}-tree non-trivially, with stabilizers of non-trivial arcs in $C_2(G)$, and with stabilizers of non-trivial tripods in $C_3(G)$.

(II) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.

(III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.
The main result

Theorem Let \(G \) be a finitely generated group acting on a tree-graded space \((\mathbb{F}, \mathcal{P})\). Suppose that the following hold:

(i) Every isometry \(g \in G \) permutes the pieces;
(ii) No piece or point in \(\mathbb{F} \) is stabilized by the whole group \(G \);

Then one of the following four situations occurs.

(I) The group \(G \) acts by isometries on a complete \(\mathbb{R} \)-tree non-trivially, with stabilizers of non-trivial arcs in \(C_2(G) \), and with stabilizers of non-trivial tripods in \(C_3(G) \).

(II) The group \(G \) acts on a simplicial tree with stabilizers of pieces or points of \(\mathbb{F} \) as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.

(III) The group \(G \) acts non-trivially on a simplicial tree with edge stabilizers from \(C_1(G) \).

(IV) The group \(G \) acts on a complete \(\mathbb{R} \)-tree by isometries, non-trivially, stabilizers of non-trivial arcs are locally inside \(C_1(G) \)-by-Abelian subgroups, and stabilizers of tripods are locally inside subgroups in \(C_1(G) \).
The main result

Theorem Let G be a finitely presented group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

(i) Every isometry $g \in G$ permutes the pieces;

(ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete \mathbb{R}-tree non-trivially, with stabilizers of non-trivial arcs in $C_2(G)$, and with stabilizers of non-trivial tripods in $C_3(G)$.

(II) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.

(III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.

(IV) The group G acts on a complete \mathbb{R}-tree by isometries, non-trivially, stabilizers of non-trivial arcs are in $C_1(G)$, and stabilizers of tripods are locally inside subgroups in $C_1(G)$.
Examples (no cut points)

Groups and other metric spaces whose asymptotic cones do not have cut-points:
Examples (no cut points)

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
Examples (no cut points)

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- (D+S) Groups with infinite centers.
Examples (no cut points)

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- (D+S) Groups with infinite centers.
- (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of \mathbb{R}-rank at least 2.
Groups and other metric spaces whose asymptotic cones do not have cut-points:

- (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- (D+S) Groups with infinite centers.
- (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of \mathbb{R}-rank at least 2.

Question
Examples (no cut points)

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- (D+S) Groups with infinite centers.
- (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of \mathbb{R}-rank at least 2.

Question What about non-classical Lie groups?
Examples (with cut points)
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Drutu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmüller spaces with Weil-Petersson metric (J. Behrstock);
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Drută, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmüller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Drută, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druțu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druțu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druțu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druțu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druțu, Mozes, S.) Any group acting on a simplicial tree \(k \)-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.

Question.
Examples (with cut points)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree \(k \)-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.

Question. Is there a f.g. (f.p.) amenable group with cut points in every a.c.?
Dahmani’s result

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or
Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.
Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.

Theorem (Dahmani) If Λ is finitely presented, and G is relatively hyperbolic then there are finitely many subgroups of G, up to conjugacy, that are images of Λ in G by homomorphisms without accidental parabolics.
Homomorphisms into groups

Instead of homomorphic images, we consider the set of homomorphisms.
Homomorphisms into groups

Instead of homomorphic images, we consider the set of homomorphisms.

Note that if a group G splits over an Abelian subgroup C, say, $G = A \ast_C B$, then it typically has many outer automorphisms that are identity on A and conjugate B by elements of C. Hence we need to modify the definition of accidental parabolics as follows.
Weakly accidental parabolics

Definition. A homomorphism $\phi: \Lambda \rightarrow G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or
Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.
Definition. A homomorphism $\phi : \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).
Weakly accidental parabolics

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective homomorphisms $\Lambda \to G$ without weakly accidental parabolics is finite.
Out(G)

Relatively hyperbolic groups with infinite $\text{Out}(G)$ and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)
Relatively hyperbolic groups with infinite $\text{Out}(G)$ and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T. Delzant-L. Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)
Out(G)

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)
Theorem (Druţu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups.
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups.
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups (otherwise we can replace peripheral subgroups by smaller peripheral subgroups).
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups.

If $\text{Out}(G)$ is infinite then one of the followings cases occurs.
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups.

If $\text{Out}(G)$ is infinite then one of the followings cases occurs.

- G splits over a virtually cyclic subgroup;
Theorem (Druţu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

If $\text{Out}(G)$ is infinite then one of the followings cases occurs.

- G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;
Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups.

If $\text{Out}(G)$ is infinite then one of the followings cases occurs.

- G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;
- G can be represented as a non-trivial amalgamated product or HNN extension with one of the vertex groups a maximal parabolic subgroup of G.
co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.
co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

Let ϕ be an injective but not surjective homomorphism $G \to G$.
Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

Let ϕ be an injective but not surjective homomorphism $G \to G$.

Then one of the following holds:
co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

- $\phi^k(G)$ is parabolic for some k.
Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.
Let ϕ be an injective but not surjective homomorphism $G \to G$.
Then one of the following holds:

- $\phi^k(G)$ is parabolic for some k.
- G splits over a parabolic or virtually cyclic subgroup.