Cut-points in asymptotic cones of groups
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R-trees

Observation due to Bestvina and Paulin: if a group has many
actions on a Gromov-hyperbolic metric space then it acts

non-trivially (i.e. without a global fixed point) by isometries on the
asymptotic cone of that space which is an R-tree.
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What does “many” means?

CO¢X

G = (a,b,c), x € X, dy = min, d(x).

The word many means that the translation numbers d; are
unbounded.

Then we can divide the metric in X by dy, obtaining X,
¢: N — G. The R-tree is the limit Con(X, (dy), (x5)).
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Indeed, triangles in X become thinner and thinner and in the limit
all geodesic triangles are tripods:
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What if G is not hyperbolic?

Note that in all four cases, the group acts non-trivially on the
asymptotic cone of the metric space even if the metric space is not
hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

But in many cases they are tree-graded spaces. Recall the
definition.
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Tree-graded spaces

Definition Let F be a complete geodesic metric space and let P
be a collection of closed geodesic subsets (called pieces). Suppose
that the following two properties are satisfied:
(T1) Every two different pieces have at most one common point.
(T2) Every simple geodesic triangle (a simple loop composed of
three geodesics) in F is contained in one piece.

Then we say that the space F is tree-graded with respect to P.
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Cut points and tree-graded structures

Note (Drutu, S.). Any complete geodesic metric space with
cut-points has non-trivial canonical tree-graded structure: pieces
are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of

hyperbolicity: it is equivalent to having super-linear divergence of
pairs of points

R _R

The length of the blue arc should be > O(R).
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Cut points and tree-graded structures

Recall that hyperbolicity =
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Cut points and tree-graded structures

Recall that hyperbolicity =superlinear divergence of any pair of
geodesic rays with common origin.
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Transversal trees

Definition.

For every point x in a tree-graded space (F, P), the
union of geodesics [x, y] intersecting every piece by at most one
point is an R-tree called a transversal tree of FF.
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Transversal trees

Definition. For every point x in a tree-graded space (I, P), the
union of geodesics [x, y] intersecting every piece by at most one
point is an R-tree called a transversal tree of FF.

The geodesics [x, y] from transversal trees are called transversal
geodesics.
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Transversal trees, an example

A tree-graded space. Pieces are the circles and the points on the
line.

The line is a transversal tree, the other transversal trees are points
on the circles.
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CAT(0) group G acting on (CAT(0)) X does not have cut points
in its asymptotic cones iff every bi-infinite geodesic bounds a
half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic
with ends on g is close to g.

n}
o)
1
u
it
N)
o
i)



The description

Proposition. Let X be a homogeneous geodesic metric space such
that one of the asymptotic cones of X has a cut point. Then X
contains a sequence of geodesics g, with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A
CAT(0) group G acting on (CAT(0)) X does not have cut points
in its asymptotic cones iff every bi-infinite geodesic bounds a
half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic
with ends on g is close to g.

Observation. (D+S)
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The description

Proposition. Let X be a homogeneous geodesic metric space such
that one of the asymptotic cones of X has a cut point. Then X
contains a sequence of geodesics g, with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A
CAT(0) group G acting on (CAT(0)) X does not have cut points
in its asymptotic cones iff every bi-infinite geodesic bounds a
half-plane.

Morse geodesics: a geodesic g such that every quasi-geodesic
with ends on g is close to g.

Observation. (D+S) A bi-infinite geodesic in the Cayley graph is
Morse iff its limit in every asymptotic cone is a transversal
geodesic.
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Actions on tree-graded spaces

Thus it is important to study actions of groups on
tree-graded spaces.
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Thus it is important to study actions of groups on
tree-graded spaces.

Our main result shows that a group acting “nicely” on a
tree-graded space also acts “nicely” on an R-tree.
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Stabilizers

Notation: For every group G acting on a tree-graded space (F, P),

» C1(G) is the set of subgroups stabilizing pairs of distinct
pieces in P,

» C2(G) is the set of stabilizers of pairs of points of ' not from
the same piece,

» C3(G) is the set of stabilizers of triples of points of I neither
from the same piece nor on the same transversal geodesic.
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The main result

Theorem Let G be a finitely generated group acting on a
tree-graded space (IF, P). Suppose that the following hold:
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The main result

Theorem Let G be a finitely generated group acting on a
tree-graded space (IF, P). Suppose that the following hold:

(i) Every isometry g € G permutes the pieces;

(ii) No piece or point in I is stabilized by the whole group G;
Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete R-tree
non-trivially, with stabilizers of non-trivial arcs in C2(G), and
with stabilizers of non-trivial tripods in C3(G).

(I1) The group G acts on a simplicial tree with stabilizers of pieces
or points of F as vertex stabilizers, and stabilizers of pairs (a
piece, a point inside the piece) as edge stabilizers.

(1) The group G acts non-trivially on a simplicial tree with edge
stabilizers from C1(G).
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The main result

Theorem Let G be a finitely generated group acting on a
tree-graded space (IF, P). Suppose that the following hold:

(i) Every isometry g € G permutes the pieces;
(ii) No piece or point in I is stabilized by the whole group G;
Then one of the following four situations occurs.

(I) The group G acts by isometries on a complete R-tree
non-trivially, with stabilizers of non-trivial arcs in C2(G), and
with stabilizers of non-trivial tripods in C3(G).

(I1) The group G acts on a simplicial tree with stabilizers of pieces
or points of F as vertex stabilizers, and stabilizers of pairs (a
piece, a point inside the piece) as edge stabilizers.

(1) The group G acts non-trivially on a simplicial tree with edge
stabilizers from C1(G).

(IV) The group G acts on a complete R-tree by isometries,
non-trivially, stabilizers of non-trivial arcs are locally inside
C1(G)-by-Abelian subgroups, and stabilizers of tripods are
locally inside subgroups in C1(G).
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The main result
Theorem Let G be a finitely presented group acting on a
tree-graded space (IF, P). Suppose that the following hold:
(i) Every isometry g € G permutes the pieces;
(i) No piece or point in [ is stabilized by the whole group G;
Then one of the following four situations occurs.
(I) The group G acts by isometries on a complete R-tree

non-trivially, with stabilizers of non-trivial arcs in C2(G), and
with stabilizers of non-trivial tripods in C3(G).

(1) The group G acts on a simplicial tree with stabilizers of pieces
or points of ' as vertex stabilizers, and stabilizers of pairs (a
piece, a point inside the piece) as edge stabilizers.

(1) The group G acts non-trivially on a simplicial tree with edge
stabilizers from C1(G).

(IV) The group G acts on a complete R-tree by isometries,
non-trivially, stabilizers of non-trivial arcs are in C1(G), and
stabilizers of tripods are locally inside subgroups in C1(G).
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Groups and other metric spaces whose asymptotic cones do not
have cut-points:

» (Drutu, S.) Groups satisfying laws (solvable, Burnside, etc.).
» (D+S) Groups with infinite centers.

» (Drutu, Mozes, S.) Lattices in classical semi-simple Lie groups
of R-rank at least 2.

Question What about non-classical Lie groups?
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» Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

» RAAGs (J. Behrstock, C. Drutu, L. Mosher);
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Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(Drutu, Mozes, S.) Any group acting on a simplicial tree
k-acylindrically.

(Olshanskii, Osin, S.) There exists a torsion group with cut
points in every asymptotic cone (no bounded torsion groups
with this property exist).

n}
o)

1
u
it
N)
o
i)



Examples (with cut points)

>

vvyyvyy

relatively hyperbolic groups and metrically relatively
hyperbolic spaces (Drutu, Osin, Sapir);

Mapping class groups of punctured surfaces (J. Behrstock);
Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
RAAGs (J. Behrstock, C. Drutu, L. Mosher);

Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(Drutu, Mozes, S.) Any group acting on a simplicial tree
k-acylindrically.

(Olshanskii, Osin, S.) There exists a torsion group with cut
points in every asymptotic cone (no bounded torsion groups
with this property exist).

(O+0+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree and another has no cut points.

n}
o)

1

u
it
N)
o
i)



Examples (with cut points)

>

vvyyvyy

relatively hyperbolic groups and metrically relatively
hyperbolic spaces (Drutu, Osin, Sapir);

Mapping class groups of punctured surfaces (J. Behrstock);
Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
RAAGs (J. Behrstock, C. Drutu, L. Mosher);

Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(Drutu, Mozes, S.) Any group acting on a simplicial tree
k-acylindrically.

(Olshanskii, Osin, S.) There exists a torsion group with cut
points in every asymptotic cone (no bounded torsion groups
with this property exist).

(O+0+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree and another has no cut points.

(O+0+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.

n}
o)
1
u
it



Examples (with cut points)

>

vvyyvyy

relatively hyperbolic groups and metrically relatively
hyperbolic spaces (Drutu, Osin, Sapir);

Mapping class groups of punctured surfaces (J. Behrstock);
Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
RAAGs (J. Behrstock, C. Drutu, L. Mosher);

Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(Drutu, Mozes, S.) Any group acting on a simplicial tree
k-acylindrically.

(Olshanskii, Osin, S.) There exists a torsion group with cut
points in every asymptotic cone (no bounded torsion groups
with this property exist).

(O+0+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree and another has no cut points.

(O+0+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.

Question.

n}
o)
1
u
it



Examples (with cut points)

>

vvyyvyy
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Mapping class groups of punctured surfaces (J. Behrstock);
Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
RAAGs (J. Behrstock, C. Drutu, L. Mosher);

Fundamental groups of graph-manifolds which are not Sol or
Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(Drutu, Mozes, S.) Any group acting on a simplicial tree
k-acylindrically.

(Olshanskii, Osin, S.) There exists a torsion group with cut
points in every asymptotic cone (no bounded torsion groups
with this property exist).

(O+0+S.) There exists a f.g. (amenable) group such that
one a.s. is a tree and another has no cut points.

(O+0+S.) There exist a f.g. infinite group with all periodic
quasi-geodesics Morse and all proper subgroups cyclic.

Question. |s there a f.g. (f.p.) amenable group with cut points in

everv a.c.?
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Dahmani’s result

Definition Following Dahmani, we say that a homomorphism ¢
from a group A into a relatively hyperbolic group G has an
accidental parabolic if either ¢(A) is parabolic or A splits over a
subgroup C such that ¢(C) is either parabolic or finite.

Theorem (Dahmani) If A is finitely presented, and G is relatively
hyperbolic then there are finitely many subgroups of G, up to
conjugacy, that are images of A in G by homomorphisms without
accidental parabolics.
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Homomorphisms into groups

Instead of homomorphic images, we consider the set of
homomorphisms.
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Homomorphisms into groups

Instead of homomorphic images, we consider the set of
homomorphisms.

Note that if a group G splits over an Abelian subgroup C, say,

G = A x¢ B, then it typically has many outer automorphisms that
are identity on A and conjugate B by elements of C. Hence we
need to modify the definition of accidental parabolics as follows.
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parabolic if either ¢(A) is parabolic or A splits over a subgroup C
such that ¢(C) is either virtually cyclic or parabolic.

Theorem Let A be a finitely generated group, G be a relatively

hyperbolic group and parabolic subgroups are small (no free
non-Abelian subgroups).
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Weakly accidental parabolics

Definition. A homomorphism ¢: A — G has a weakly accidental
parabolic if either ¢(A) is parabolic or A splits over a subgroup C
such that ¢(C) is either virtually cyclic or parabolic.

Theorem Let A be a finitely generated group, G be a relatively
hyperbolic group and parabolic subgroups are small (no free
non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective
homomorphisms A — G without weakly accidental parabolics is
finite.
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Out(G)

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf
relatively hyperbolic groups have been studied extensively (Paulin,

Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and |. Belegradek -
A. Szczepaniski.)
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Out(G)

A. Szczeparniski.)

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf
Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and |. Belegradek -

relatively hyperbolic groups have been studied extensively (Paulin,
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Theorem (Drutu, S.) Suppose that the peripheral subgroups of
G are not relatively hyperbolic with respect to proper subgroups

(otherwise we can replace peripheral subgroups by smaller
peripheral subgroups).
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» G splits over a virtually cyclic subgroup;

» G splits over a parabolic (finite of uniformly bounded
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Out(G)

Theorem (Drutu, S.) Suppose that the peripheral subgroups of
G are not relatively hyperbolic with respect to proper subgroups

If Out(G) is infinite then one of the followings cases occurs.
» G splits over a virtually cyclic subgroup;
» G splits over a parabolic (finite of uniformly bounded
size)-by-Abelian-by-(virtually cyclic) subgroup;
» G can be represented as a non-trivial amalgamated product or

HNN extension with one of the vertex groups a maximal
parabolic subgroup of G.
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Theorem Suppose that a relatively hyperbolic group G is not
co-Hopfian.
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co-Hopfian groups

Theorem Suppose that a relatively hyperbolic group G is not
co-Hopfian.

Let ¢ be an injective but not surjective homomorphism G — G.
Then one of the following holds:

> ¢*(G) is parabolic for some k.

» G splits over a parabolic or virtually cyclic subgroup.
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