Cut-points in asymptotic cones of groups

Mark Sapir

With J. Behrstock, C. Druțu, S. Mozes, A.Olshanskii, D. Osin

(ロ) (四) (三) (三) (三) (四) (0)

Asymptotic cones **Definition**.

Definition. Let X be a metric space,

Definition. Let X be a metric space, o be an observation point,

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*,

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Sar

Example.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Sar

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 ,

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree

Sar

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

(日) (四) (王) (王)

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

(日) (四) (王) (王)

Kramer, Shelah, Tent, Thomas:

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

Kramer, Shelah, Tent, Thomas: many a.c. assuming CH is not true.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of scaling constants, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

・ロン ・ 「 ・ ・ ミン・ ・ 日 ・ ・ 日 ・

Druțu, S.

Definition. Let X be a metric space, o be an observation point, $d = d_n$ be a sequence of *scaling constants*, ω be an ultrafilter. The asymptotic cone of X is the ω -limit of X/d_n i.e. the set of sequences (x_n) , $x_n \in X$ such that $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, o)}{d_n}\right) < \infty$ modulo the equivalence $(x_n) \sim (y_n)$ iff $\lim^{\omega} \left(\frac{\operatorname{dist}(x_n, y_n)}{d_n}\right) = 0$.

Example. The a.c. of \mathbb{Z}^2 is \mathbb{R}^2 , the a.s. of a binary tree is an \mathbb{R} -tree the a.c. of a uniform lattice in $SL(n, \mathbb{R})$ is a building.

Druțu, S. a f.g. group with continuum a.c. $(a_{\square}) \in A$ $(a_{\square}) (a_{\square}) ((a_{\square}) (a_{\square}) ((a_{\square}) ((a_{\square}) (a_{\square}) ((a_{\square}) ((a$

Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R} -tree.

Observation due to Bestvina and Paulin: if a group has many actions on a Gromov-hyperbolic metric space then it acts non-trivially (i.e. without a global fixed point) by isometries on the asymptotic cone of that space which is an \mathbb{R} -tree.

The word many means that the translation numbers d_{ϕ} are unbounded.

Х

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

〈曰〉〈曰〉〈己〉〈之〉〈之〉

〈ロ〉 〈聞〉 〈言〉 〈言〉

5990

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

5900

<ロ> < 四> < 四> < 四> < 三> < 三>

$$G = \langle a, b, c \rangle$$
, $x \in X$,

The word many means that the translation numbers d_{ϕ} are unbounded.

ヘロト ヘ週ト くほと くぼう

5900

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

イロト イ押ト イヨト イヨト

Jac.

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

Then we can divide the metric in X by d_{ϕ} , obtaining X_{ϕ} , $\phi \colon \Lambda \to G$.

$$G = \langle a, b, c \rangle$$
, $x \in X$, $d_{\phi} = \min_{x} d(x)$.

The word many means that the translation numbers d_{ϕ} are unbounded.

Then we can divide the metric in X by d_{ϕ} , obtaining X_{ϕ} , $\phi: \Lambda \to G$. The \mathbb{R} -tree is the limit $\operatorname{Con}(X, (d_{\phi}), (x_{\phi}))$.

। २०००

< □ > < 🗇 >

<ロ> < 四> < 四> < 三> < 三> < 三> < 三> のへで

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

(ロ) (四) (三) (三) (三) (四) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

Sac

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

(ロ) (同) (三) (三) (三) (0) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded,

Sac
Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded

(ロ) (同) (三) (三) (三) (0) (0)

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi \colon \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*).

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

- ロ > - 4 回 > - 4 三 > - 4 三 > - 1 = - りへで

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators s). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Indeed, if the translation numbers d_{ϕ} of $\phi: \Lambda \to G$ are bounded, then $\operatorname{dist}(\phi(s)x_{\phi}, x_{\phi})$ is bounded which means that $|x_{\phi}^{-1}\phi(s)x_{\phi}|$ is bounded (for all generators *s*). So up to conjugacy ϕ maps the generating set of Λ to a ball of bounded radius, hence there are only finitely many ϕ 's up to conjugacy.

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Sar

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

 There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;

Sar

2. Out(G) is infinite;

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

- There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;
- 2. Out(G) is infinite;
- 3. *G* is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ ;

(ㅁ) (큔) (흔) (흔) [흔]

Sac

Given an action on an $\mathbb{R}\text{-tree}$, we can apply Rips -Bestvina - Feighn - Levitt -Sela - Guirardel... and split the group into a graph of groups.

The Bestvina-Paulin's observation applies, for example, when the group G is hyperbolic and one of the following holds:

- There are infinitely many pairwise non-conjugate homomorphisms from a finitely generated group Λ into G; then there are "many" actions of Λ on the Cayley graph of G: g ⋅ x = φ(g)x for every φ: Λ → G;
- 2. Out(G) is infinite;
- 3. *G* is not co-Hopfian, i.e. it has a non-surjective but injective endomorphism ϕ ;

<□> <□> <□> <□> <三> <三> <三> <三> <<

4. *G* is not Hopfian, i.e. it has a non-injective but surjective endomorphism ϕ .

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

Note that in all four cases, the group acts non-trivially on the asymptotic cone of the metric space even if the metric space is not hyperbolic.

The asymptotic cones of non-hyperbolic spaces need not be trees.

5990

But in many cases they are tree-graded spaces. Recall the definition.

 (T_1) Every two different pieces have at most one common point.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

(*T*₁) Every two different pieces have at most one common point.
(*T*₂) Every simple geodesic triangle (a simple loop composed of three geodesics) in F is contained in one piece.

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

 (T_1) Every two different pieces have at most one common point.

 (T_2) Every simple geodesic triangle (a simple loop composed of three geodesics) in \mathbb{F} is contained in one piece.

Then we say that the space \mathbb{F} is *tree-graded with respect to* \mathcal{P} .

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Note (Druțu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure:

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point.

くロン く得り くほり くほう

Sar

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

ヘロン 人間 とく思い 人間と

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Indeed, (T_2) follows from the fact that every simple triangle does not have a cut point. So it is contained in a maximal subset without cut points.

 (T_1) If two maximal subsets without cut points have more than one point in common then their union does not have cut points.

・ロット (雪) (山) (日)

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity:

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points

(日) (四) (王) (王)

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points

Note (Druţu, S.). Any complete geodesic metric space with cut-points has non-trivial canonical tree-graded structure: pieces are maximal connected subsets without cut points.

Having cut-points in asymptotic cones is a very weak form of hyperbolicity: it is equivalent to having super-linear divergence of pairs of points

소리가 소리가 소문가 소문가

The length of the blue arc should be > O(R).

(ロ) (四) (三) (三) (三) (四) (0)

Recall that hyperbolicity \equiv

Recall that hyperbolicity \equiv superlinear divergence of any pair of geodesic rays with common origin.
Definition. For every point x in a tree-graded space $(\mathbb{F}, \mathcal{P})$, the union of geodesics [x, y] intersecting every piece by at most one point is an \mathbb{R} -tree called a *transversal* tree of \mathbb{F} .

Definition. For every point x in a tree-graded space $(\mathbb{F}, \mathcal{P})$, the union of geodesics [x, y] intersecting every piece by at most one point is an \mathbb{R} -tree called a *transversal* tree of \mathbb{F} .

The geodesics [x, y] from transversal trees are called *transversal* geodesics.

Transversal trees, an example

Transversal trees, an example

• • • •

5900

A tree-graded space. Pieces are the circles and the points on the line.

Transversal trees, an example

< 口 > < 同

SQ C

A tree-graded space. Pieces are the circles and the points on the line.

The line is a transversal tree, the other transversal trees are points on the circles.

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point.

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

くロン く得り くほり くほう

3

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones

Sac

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Sac

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Sac

Morse geodesics:

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic \mathfrak{g} such that every quasi-geodesic with ends on \mathfrak{g} is close to \mathfrak{g} .

Sac

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic \mathfrak{g} such that every quasi-geodesic with ends on \mathfrak{g} is close to \mathfrak{g} .

Observation. (D+S)

Proposition. Let X be a homogeneous geodesic metric space such that one of the asymptotic cones of X has a cut point. Then X contains a sequence of geodesics g_n with superlinear divergence.

Proposition. (W. Ballmann, M. Kapovich-B.Kleiner-B.Leeb) A CAT(0) group G acting on (CAT(0)) X does not have cut points in its asymptotic cones iff every bi-infinite geodesic bounds a half-plane.

Morse geodesics: a geodesic \mathfrak{g} such that every quasi-geodesic with ends on \mathfrak{g} is close to \mathfrak{g} .

Observation. (D+S) A bi-infinite geodesic in the Cayley graph is Morse iff its limit in every asymptotic cone is a transversal geodesic.

Actions on tree-graded spaces

Thus it is important to study actions of groups on tree-graded spaces.

Thus it is important to study actions of groups on tree-graded spaces.

Our main result shows that a group acting "nicely" on a tree-graded space also acts "nicely" on an \mathbb{R} -tree.

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

< ロ > < 回 > < 言 > < 言 > く 言 > く 言 > う < ぐ

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

(ロ) (四) (三) (三) (三) (四) (0)

 C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,
- C₂(G) is the set of stabilizers of pairs of points of 𝔅 not from the same piece,

Notation: For every group G acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$,

- ► C₁(G) is the set of subgroups stabilizing pairs of distinct pieces in P,
- C₂(G) is the set of stabilizers of pairs of points of 𝔅 not from the same piece,
- C₃(G) is the set of stabilizers of triples of points of 𝔅 neither from the same piece nor on the same transversal geodesic.

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

(i) Every isometry $g \in G$ permutes the pieces;

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

(1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Theorem Let G be a finitely generated group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.
- (IV) The group G acts on a complete \mathbb{R} -tree by isometries, non-trivially, stabilizers of non-trivial arcs are locally inside $C_1(G)$ -by-Abelian subgroups, and stabilizers of tripods are locally inside subgroups in $C_1(G)$.

Theorem Let G be a finitely presented group acting on a tree-graded space $(\mathbb{F}, \mathcal{P})$. Suppose that the following hold:

- (i) Every isometry $g \in G$ permutes the pieces;
- (ii) No piece or point in \mathbb{F} is stabilized by the whole group G;

Then one of the following four situations occurs.

- (1) The group G acts by isometries on a complete \mathbb{R} -tree non-trivially, with stabilizers of non-trivial arcs in $\mathcal{C}_2(G)$, and with stabilizers of non-trivial tripods in $\mathcal{C}_3(G)$.
- (11) The group G acts on a simplicial tree with stabilizers of pieces or points of \mathbb{F} as vertex stabilizers, and stabilizers of pairs (a piece, a point inside the piece) as edge stabilizers.
- (III) The group G acts non-trivially on a simplicial tree with edge stabilizers from $C_1(G)$.
- (IV) The group G acts on a complete \mathbb{R} -tree by isometries, non-trivially, stabilizers of non-trivial arcs are in $C_1(G)$, and stabilizers of tripods are locally inside subgroups in $C_1(G)$.

Groups and other metric spaces whose asymptotic cones do not have cut-points:

〈ロ〉 〈問〉 〈言〉 〈言〉 二言

Groups and other metric spaces whose asymptotic cones do not have cut-points:

▶ (Druțu, S.) Groups satisfying laws (solvable, Burnside, etc.).

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

Groups and other metric spaces whose asymptotic cones do not have cut-points:

► (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).

<ロ> <同> <三> <三> <三> <三> <三> <三> のへの

► (D+S) Groups with infinite centers.

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- ► (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- ► (D+S) Groups with infinite centers.
- ► (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of ℝ-rank at least 2.

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- ► (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- ► (D+S) Groups with infinite centers.
- ► (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of ℝ-rank at least 2.

Question

Groups and other metric spaces whose asymptotic cones do not have cut-points:

- ► (Druţu, S.) Groups satisfying laws (solvable, Burnside, etc.).
- ► (D+S) Groups with infinite centers.
- ► (Druţu, Mozes, S.) Lattices in classical semi-simple Lie groups of ℝ-rank at least 2.

(ロ) (同) (三) (三) (三) (0) (0)

Question What about non-classical Lie groups?

Examples (with cut points)

・ロシ ・ 雪 ・ 言 ・ ・ 雪 ・ ・ 日 ・ ・ 日 ・

Examples (with cut points)

 relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);

くロン く得り くほり くほう

3

Sac

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

Sac

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);

Sac

RAAGs (J. Behrstock, C. Drutu, L. Mosher);

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(ロ) (同) (三) (三) (三) (0) (0)

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).

(ロ) (同) (三) (三) (三) (0) (0)

 (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- ► (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- ► (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- ► (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.

Question.

- relatively hyperbolic groups and metrically relatively hyperbolic spaces (Druţu, Osin, Sapir);
- Mapping class groups of punctured surfaces (J. Behrstock);
- Teichmuller spaces with Weil-Petersson metric (J. Behrstock);
- RAAGs (J. Behrstock, C. Drutu, L. Mosher);
- Fundamental groups of graph-manifolds which are not Sol or Nil manifolds (M. Kapovich, B. Kleiner, B. Leeb).
- (Druţu, Mozes, S.) Any group acting on a simplicial tree k-acylindrically.
- (Olshanskii, Osin, S.) There exists a torsion group with cut points in every asymptotic cone (no bounded torsion groups with this property exist).
- ► (O+O+S.) There exists a f.g. (amenable) group such that one a.s. is a tree and another has no cut points.
- (O+O+S.) There exist a f.g. infinite group with all periodic quasi-geodesics Morse and all proper subgroups cyclic.

Question. Is there a f.g. (f.p.) amenable group with cut points in every a.c.?

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group *G* has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.

Definition Following Dahmani, we say that a homomorphism ϕ from a group Λ into a relatively hyperbolic group G has an *accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either parabolic or finite.

Theorem (Dahmani) If Λ is finitely presented, and *G* is relatively hyperbolic then there are finitely many subgroups of *G*, up to conjugacy, that are images of Λ in *G* by homomorphisms without accidental parabolics.

(ロ) (同) (三) (三) (三) (0) (0)

Homomorphisms into groups

Instead of homomorphic images, we consider the set of homomorphisms.

Instead of homomorphic images, we consider the set of homomorphisms.

Note that if a group G splits over an Abelian subgroup C, say, $G = A *_C B$, then it typically has many outer automorphisms that are identity on A and conjugate B by elements of C. Hence we need to modify the definition of accidental parabolics as follows.

(ロ) (同) (三) (三) (三) (0) (0)

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or

(ロ) (四) (三) (三) (三) (四) (0)

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).

Definition. A homomorphism $\phi: \Lambda \to G$ has a *weakly accidental parabolic* if either $\phi(\Lambda)$ is parabolic or Λ splits over a subgroup C such that $\phi(C)$ is either virtually cyclic or parabolic.

Theorem Let Λ be a finitely generated group, G be a relatively hyperbolic group and parabolic subgroups are small (no free non-Abelian subgroups).

Then the number of pairwise non-conjugate in G injective homomorphisms $\Lambda \to G$ without weakly accidental parabolics is finite.

(ロ) (同) (三) (三) (三) (0) (0)

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)

Jac.

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)

Relatively hyperbolic groups with infinite Out(G) and non-co-Hopf relatively hyperbolic groups have been studied extensively (Paulin, Rips-Sela, T.Delzant-L.Potyagailo, D. Groves and I. Belegradek - A. Szczepański.)

Theorem (Druţu, S.) Suppose that the peripheral subgroups of *G* are not relatively hyperbolic with respect to proper subgroups

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

〈曰〉〈母〉〈言〉〈言〉

5990

€

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

〈曰〉〈曰〉〈己〉〈之〉〈之〉

3

Theorem (Druţu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups (otherwise we can replace peripheral subgroups by smaller peripheral subgroups).

くロン く得り くほり くほう

€

Sac

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

くロン く得り くほり くほう

5990

If Out(G) is infinite then one of the followings cases occurs.

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

くロン く得り くほり くほう

5990

If Out(G) is infinite then one of the followings cases occurs.

► G splits over a virtually cyclic subgroup;

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

If Out(G) is infinite then one of the followings cases occurs.

- ► G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;

Jac.

Theorem (Druțu, S.) Suppose that the peripheral subgroups of G are not relatively hyperbolic with respect to proper subgroups

If Out(G) is infinite then one of the followings cases occurs.

- ► G splits over a virtually cyclic subgroup;
- G splits over a parabolic (finite of uniformly bounded size)-by-Abelian-by-(virtually cyclic) subgroup;
- G can be represented as a non-trivial amalgamated product or HNN extension with one of the vertex groups a maximal parabolic subgroup of G.

(ロ) (同) (三) (三) (三) (0) (0)

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

- **Theorem** Suppose that a relatively hyperbolic group G is not co-Hopfian.
- Let ϕ be an injective but not surjective homomorphism $G \to G$.

- **Theorem** Suppose that a relatively hyperbolic group G is not co-Hopfian.
- Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

5990

• $\phi^k(G)$ is parabolic for some k.

Theorem Suppose that a relatively hyperbolic group G is not co-Hopfian.

Let ϕ be an injective but not surjective homomorphism $G \to G$. Then one of the following holds:

- $\phi^k(G)$ is parabolic for some k.
- *G* splits over a parabolic or virtually cyclic subgroup.