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Definition of compression (Guentner-Kaminker)Let X and Y
be two metric spaces and let ¢: X — Y be a 1-Lipschitz map.The
compression of ¢ is the supremum over all & > 0 such that

disty (f(u), f(v)) > distx(u, v)*
for all u, v with large enough distx(u, v).

If £ is a class of metric spaces, then the £—compression of Xis the
supremum over all compressions of 1-Lipschitz maps X — Y,
Y el

In particular, if £ is the class of Hilbert spaces, we get the Hilbert
space compression of X.

The Hilbert space compression of a space is a q.i. invariant.
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Compression function of an embedding

Let (X, distx) and (Y,disty) be metric spaces. Let p be an

increasing function p: Ry — Ry, with limy_,oo p = co. A map
¢: X — Y is called a p—embedding if

p(distx(xl, Xz)) < diSty(gf)(Xl), (f)(Xg)) < diStx(Xl, X2) ,

(1)

for all xq, xp with large enough dist(xy, x2). This p is called the
compression function of the embedding.
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An order on functions

Notation. Let f,g: R, — R . We write f < g if for some a, b, c,
f(x) < ag(bx)+ ¢
for all x > 0.

Equivalence relation: f ~ g iff f < g, g < f.

Not a linear order. So we cannot talk about the maximal
compression function.
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The result of Guentner-Kaminker

» (Guentner-Kaminker) If the compression function of some
embedding into a Hilbert space is > \/x (say, if the
compression > %) then the group is exact, so the group
satisfies Yu's property A.

(Amenability - for the equivariant compression.)
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Known results about compression

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree F, — /?(set of edges)

w — Z wli].

Bourgain's embedding: add coefficients to that sum:

w — Z(n - i)%_ew[i].

That embedding has compression function x

1—2¢
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The definition: compression gap and compression function

Definition (compression gap). Let (X, dist) be a metric space,

and let £ be a collection of metric spaces. Let f < g: Ry — R

be increasing functions with limy_ f(x) = limyx_00 g(x) = 0.

We say that (f, g) is a E-compression gap of (X, dist) if

(1) for some p > f there exists a p-embedding of X into a
E-space;

(2) for every p-embedding of X into a £-space, p < g.

If f = g then we say that f is the £-compression of X. The

quotient £ is called the size of the gap.
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Compression gaps of groups

The following groups have compression gaps

X
(Iogx(log Iogx)1+€’x> '
Bourgain, Tessera) Free groups;

> (
» (Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;
> (Tessera) Lattices in semi-simple Lie groups;

>

(Campbell-Niblo, Brodsky-Sonkin) Groups acting on finite
dim. CAT(0)-cubings.

Problem. Is there a non-virtually cyclic group with better
compression gap than F,?
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The Thompson group

Definition 1. F is given by the following presentation:
F o= (i 20] x5 = X1, 0 <))
—2
= (xo0,x1 | xgx1xg > = (x1x0)x1(x1%0),
3

X0X1X0_3 = (X12X0)X1(X12X0)_1>.

Definition 2. F is the group of all piecewise linear

homeomorphisms of [0, 1] with dyadic break-points and slopes 27,
neZ.

Problems. Is F amenable? Does F satisfy G. Yu's property A?
(Farley) F is a-T-menable.
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Thompson group as a diagram group

Definition 3. F is generated by the following two pictures

X0

Elementary diagrams:

I.—’e

Operations:

OO0
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Thompson group as a diagram group

Theorem. (Guba, S., 1995) The set of (1,1)-diagrams forms a

group isomorphic to F. The length function of F is quasi-isometric
to “the number of cells” function.

Representation by piecewise linear and other homeomorphisms of
the interval:

f:XHW @
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Theorem. (Guba, S., 1995)
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diagrams:

Theorem. (Guba, S., 1995) The group ZZ is the
(ac, ac)-diagram group corresponding to the following elementary

a,b,c

SHP L,

A Sy
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Compression gap of the Thompson group

Theorem. (Arzhantseva-Guba-S.)

» Any diagram group with the Burillo property has compression
function > /x.

» The R. Thompson group F has compression %
» and compression gap

(v/x, V/x log x) .

» Same for the equivariant compression.

Idea of the proof. Free group acts on a tree, Thompson group
(and any other diagram group) acts of a 2-tree.
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2-trees

How to build the tree (Cayley graph of F3):
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The lower bound of the compression gap

F acts on the set of cells of the 2-tree T:

/TN

© -\ %

Let H = I?(set of 2-cells of the 2-tree). Every diagram A has
unique image on the 2-tree. Map it to the sum of the cells of the
image. The compression function is /x. The equivariant
compression of the embedding = % because of the Burillo property.

[m] = = =
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The upper bound

Build the following collections of diagrams W, by induction
Vo = {x0}. Suppose that ¥, = {Ay, ..., Azn} has been
constructed. Let W1 be:

&)

i=1,..,2"
The diagrams of W,, pairwise commute and have 2n + 4 cells.
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The upper bound

Build the following collections of diagrams W,, by induction.
Vo = {x0}. Suppose that ¥, = {Ay, ..., Azn} has been
constructed. Let W1 be:

&)

i=1,..2"

sides of edges ~ n.

The diagrams of W,, pairwise commute and have 2n + 4 cells.
Thus the Cayley graph of F contains cubes of dimension 2” with



Skew cubes

Use the “skew cube” inequality:
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For every skew cube in a Hilbert space, the sum of squares of its
diagonals does not exceed the sum of squares of its edges.
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Skew cubes

Use the “skew cube” inequality:

For every skew cube in a Hilbert space, the sum of squares of its
diagonals does not exceed the sum of squares of its edges.

This gives the upper bound for compression /x log x and a
compression gap (\/;(, V/x log x) of logarithmic size.

n}
o)
1
u
it



The problem

Problem. Is it true that a compression function

embedding of F into a Hilbert space is > /x?

of some
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Wreath products
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Wreath products

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space
compression of Z ! Z is between % and %. The Hilbert space
compression of Z ! B where B has exponential growth is between 0
and % If the polynomial growth rate is k then the compression

1+k/2
does not exceed el

Problem. What is the compression of Z 1 Z7?
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and % If the polynomial growth rate is k then the compression
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Problem. What is the compression of Z { Z7 Tessera: >
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Problem. What is the compression of Grigorchuk's group of
subexponential growth?



Wreath products

Theorem (Arzhantseva-Guba-Sapir) The Hilbert space

compression of Z ! Z is between % and %. The Hilbert space

compression of Z ! B where B has exponential growth is between 0

and % If the polynomial growth rate is k then the compression

1+k/2
does not exceed el

Problem. What is the compression of Z { Z7 Tessera: >

WIN

Problem. What is the compression of Grigorchuk's group of
subexponential growth?

Problem. Is there an amenable group with compression 07
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