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be two metric spaces and let φ : X → Y be a 1-Lipschitz map.The
compression of φ is the supremum over all α ≥ 0 such that

distY (f (u), f (v)) ≥ distX (u, v)α

for all u, v with large enough distX (u, v).

If E is a class of metric spaces, then the E–compression of X is the
supremum over all compressions of 1-Lipschitz maps X → Y ,
Y ∈ E .

In particular, if E is the class of Hilbert spaces, we get the Hilbert

space compression of X .

The Hilbert space compression of a space is a q.i. invariant.
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Let (X , distX ) and (Y , distY ) be metric spaces. Let ρ be an
increasing function ρ : R+ → R+, with limx→∞ ρ = ∞. A map
φ : X → Y is called a ρ–embedding if

ρ(distX (x1, x2)) ≤ distY (φ(x1), φ(x2)) ≤ distX (x1, x2) , (1)

for all x1, x2 with large enough dist(x1, x2). This ρ is called the
compression function of the embedding.
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An order on functions

Notation. Let f , g : R+ → R+. We write f ≪ g if for some a, b, c ,

f (x) ≤ ag(bx) + c

for all x > 0.

Equivalence relation: f ∼ g iff f ≪ g , g ≪ f .

Not a linear order. So we cannot talk about the maximal

compression function.
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The result of Guentner-Kaminker

◮ (Guentner-Kaminker) If the compression function of some
embedding into a Hilbert space is ≫ √

x (say, if the
compression > 1

2
) then the group is exact, so the group

satisfies Yu’s property A.

(Amenability - for the equivariant compression.)
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Known results about compression

(Bourgain, Tessera) The free group has compression 1.

The standard embedding of a tree Fn → l2(set of edges) :

w →
∑

w [i ].

Bourgain’s embedding: add coefficients to that sum:

w →
∑

(n − i)
1

2
−ǫw [i ].

That embedding has compression function x1−2ǫ.
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Theorem. (Tessera)Every increasing function f : R+ → R+

satisfying
∫

x>c

f (x)2

x3
dx < ∞

is ≪ the compression function of some embedding of Fn into a
Hilbert space.

Clearly for every sublinear g there exists a function f satisfying
that condition such that f (n) > g(n) for infinitely many n.

f (x)

g(x)
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Definition (compression gap). Let (X , dist) be a metric space,
and let E be a collection of metric spaces. Let f ≪ g : R+ → R+

be increasing functions with limx→∞ f (x) = limx→∞ g(x) = ∞.

We say that (f , g) is a E–compression gap of (X , dist) if

(1) for some ρ ≫ f there exists a ρ-embedding of X into a
E-space;

(2) for every ρ-embedding of X into a E-space, ρ ≪ g .

If f = g then we say that f is the E-compression of X . The

quotient g
f

is called the size of the gap.
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Compression gaps of groups

The following groups have compression gaps

(

x

log x(log log x)1+ǫ
, x

)

:

◮ (Bourgain, Tessera) Free groups;

◮ (Bonk-Schramm, Dranishnikov-Schroeder) Hyperbolic groups;

◮ (Tessera) Lattices in semi-simple Lie groups;

◮ (Campbell-Niblo, Brodsky-Sonkin) Groups acting on finite
dim. CAT(0)-cubings.

Problem. Is there a non-virtually cyclic group with better
compression gap than Fn?
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The Thompson group

Definition 1. F is given by the following presentation:

F = 〈xi , i ≥ 0 | xixj = xj+1xi , i < j〉

= 〈x0, x1 | x2
0x1x

−2

0
= (x1x0)x1(x1x0),

x3
0x1x

−3

0
= (x2

1x0)x1(x
2
1x0)

−1〉.

Definition 2. F is the group of all piecewise linear
homeomorphisms of [0, 1] with dyadic break-points and slopes 2n,
n ∈ Z.

Problems. Is F amenable? Does F satisfy G. Yu’s property A?

(Farley) F is a-T-menable.
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Definition 3. F is generated by the following two pictures:

q q q q q q q q q

x0 x1

Elementary diagrams:

r

r r

r qi e

i e

Operations:

+ =

× =
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Thompson group as a diagram group

Theorem. (Guba, S., 1995) The set of (1, 1)-diagrams forms a
group isomorphic to F . The length function of F is quasi-isometric
to “the number of cells” function.

Representation by piecewise linear and other homeomorphisms of
the interval:

q

q q

f : x → 2x

x

φ(x)
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Z ≀ Z as a diagram group

Theorem. (Guba, S., 1995) The group Z ≀ Z is the
(ac , ac)-diagram group corresponding to the following elementary
diagrams:

q q

q qq q

p q

c a

b ac b
b

b

a, b, c
?
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Compression gap of the Thompson group

Theorem. (Arzhantseva-Guba-S.)

◮ Any diagram group with the Burillo property has compression
function ≥ √

x .

◮ The R. Thompson group F has compression 1

2

◮ and compression gap

(√
x ,
√

x log x
)

.

◮ Same for the equivariant compression.

Idea of the proof. Free group acts on a tree, Thompson group
(and any other diagram group) acts of a 2-tree.
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c

a

b
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The lower bound of the compression gap

F acts on the set of cells of the 2-tree T :

π

π

∆ × = ∆

Let H = l2(set of 2-cells of the 2-tree). Every diagram ∆ has
unique image on the 2-tree. Map it to the sum of the cells of the
image. The compression function is

√
x . The equivariant

compression of the embedding = 1

2
because of the Burillo property.
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The upper bound

Build the following collections of diagrams Ψn by induction.
Ψ0 = {x0}. Suppose that Ψn = {∆1, ...,∆2n} has been
constructed. Let Ψn+1 be:

∆i ∆i

i = 1, ..., 2n.

The diagrams of Ψn pairwise commute and have 2n + 4 cells.
Thus the Cayley graph of F contains cubes of dimension 2n with
sides of edges ∼ n.
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Skew cubes

Use the “skew cube” inequality:

For every skew cube in a Hilbert space, the sum of squares of its

diagonals does not exceed the sum of squares of its edges.

This gives the upper bound for compression
√

x log x and a
compression gap

(√
x ,
√

x log x
)

of logarithmic size.



The problem

Problem. Is it true that a compression function of some
embedding of F into a Hilbert space is ≫ √

x?
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Wreath products

Theorem (Arzhantseva-Guba-Sapir)The Hilbert space
compression of Z ≀ Z is between 1

2
and 3

4
. The Hilbert space

compression of Z ≀ B where B has exponential growth is between 0
and 1

2
. If the polynomial growth rate is k then the compression

does not exceed 1+k/2

1+k
.

Problem. What is the compression of Z ≀ Z? Tessera: ≥ 2

3
.

Problem. What is the compression of Grigorchuk’s group of
subexponential growth?

Problem. Is there an amenable group with compression 0?
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