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generators is given by the presentation

〈a, b | un = 1〉

for all words u in the alphabet a, b.

The fundamental group of the orientable surface of genus n is
given by the presentation

〈a1, b1, ..., an, bn | [a1, b1]...[an, bn] = 1〉.
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Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.

Theorem. (Gromov’s solution of Milnor’s problem) Any group of
polynomial growth has a nilpotent subgroup of finite index.
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Theorem.(Miller) The group MG has solvable conjugacy problem
iff G has solvable word problem.
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The main idea: S-machines are much easier to use as building
blocks of groups than Turing machines.
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Definition. (Madlener-Otto, Gersten, Gromov) Let
G = 〈X | R〉 be a f.p. group, w be a word in X , w = 1 in G . The
area of w is the minimal number of cells in a van Kampen diagram
with boundary label w . That is how long it takes to deduce the
equality w = 1 from the defining relations.

Definition. (Dehn function) For any n ≥ 1 let d(n) be the
largest area of a word w of length at most n.

Example. Surface group The Dehn function is linear.

6

º
N

j

)

z
π

A typical diagram over the surface group presentation (genus > 1)
Definition. A group is hyperbolic if its Dehn function is linear.
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Theorem. (Olshanskii, S.) There exists a f.p. group with Dehn
function n2 log n and undecidable conjugacy problem.

We use some (Vassiliev-type) invariants of chord diagrams to
obtain the upper bound.
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Corollaries about conjugacy problem

Conjecture. Every group with Dehn function <e n2 log n has
solvable conjugacy problem.

O+S: proved for HNN extensions of free groups.

Together with a result of Bridson+Groves gives a proof of
solvability of conjugacy problem for cyclic extensions of free groups.

An earlier proof: Bogopolski, Martino, Maslakova, Ventura.
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Theorem. (Birget-S.) Every Dehn function of a f.p. group is
equivalent to the time function of a non-deterministic Turing
machine.

Theorem. (S., Birget, Rips, Ann. of Math., 2002) If a time
function is superadditive and ≻ n4 then it is equivalent to the
Dehn function of a f.p. group.

Theorem. (S.) Every Turing machine is polynomially equivalent
to an S-machine with one tape and one state (Miller machine).

Corollary. (S.) For every number α ≥ 4 that is computable in
time ≤ 22

n

, there exists a f.p. group with Dehn function nα.
Conversely, every number in the isoperimetric spectrum is

computable in time ≤ 22
2
n

.
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groups with non-simply connected asymptotic cones but Dehn
functions arbitrary close to n2 and linear isodiametric function.

Theorem (O+S)



Asymptotic cones

Definition. (Gromov, van den Dries - Wilkie) An asymptotic
cone of a group G corresponding to a sequences of scalars
dn → ∞ is a Gromov-Hausdorff limit of the spaces G/dn.

Theorem. (Gromov) If all a. c. of a group are simply connected
then the group has polynomial Dehn function and linear
isodiametric function.

Papasoglu: The converse statement is true if the Dehn function is
quadratic.

Theorem. (O+S, solving a problem of Druţu) There are f.p.
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Definition. (Gromov, van den Dries - Wilkie) An asymptotic
cone of a group G corresponding to a sequences of scalars
dn → ∞ is a Gromov-Hausdorff limit of the spaces G/dn.

Theorem. (Gromov) If all a. c. of a group are simply connected
then the group has polynomial Dehn function and linear
isodiametric function.

Papasoglu: The converse statement is true if the Dehn function is
quadratic.

Theorem. (O+S, solving a problem of Druţu) There are f.p.
groups with non-simply connected asymptotic cones but Dehn
functions arbitrary close to n2 and linear isodiametric function.

Theorem (O+S) There are f.p. groups with undecidable word
problem but Dehn function f (n) bounded by Cn2 for infinitely
many n’s. Such a group has at least two non-homeomorphic a. c.:
one simply connected and one non-simply connected.

Kramer, Shelah, Tent, Thomas: assuming CH is not true.
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Theorem. (Birget, Rips, Olshanskii, S., Ann. of Math.,
2002) A finitely generated group has word problem in NP iff it is
inside a finitely presented group with polynomial Dehn function.

Corollary. There exists an NP-complete f.p. group.

Corollary. If a word problem in a f.g. group can be solved in
NP-time by a smart algorithm, it can be solved in NP-time by the
obvious algorithm involving relations of a bigger group.
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Collins’ problem

The conjugacy problem is much harder to preserve under
embeddings.

Collins-Miller and Gorjaga-Kirkinskĭı: even subgroups of index 2 of
finitely presented groups do not inherit solvability or unsolvability
of the conjugacy problem.

D. Collins (1976) Does there exist a version of the Higman

embedding theorem in which the degree of unsolvability of the

conjugacy problem is preserved?

Theorem (O+S, Memoirs of AMS, 2004) A finitely generated
group H has solvable conjugacy problem if and only if it is Frattini
embedded into a finitely presented group G with solvable
conjugacy problem.
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Collins problem: the construction

◮ Embed H into a finitely presented group H1.

◮ Use the Miller S-machine M(H1) to solve the word problem in
H.

◮ Use Boone-Novikov to make a part of M(H1) act as TM.

◮ Embed H into a f.p. group G using the new machine.

◮ Use Makanin-Razborov to analyze conjugacy problem for
trapezia.

◮ Analyze annular diagrams to solve conjugacy problem.

Problem. Is there a version of Higman embedding preserving the
complexity of conjugacy problem?
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von Neumann’s problem

Problem (von Neumann-Day, 50s) Is there a non-amenable
group without non-cyclic free subgroups?

Solved in the 80s: Olshanskii (Tarski monster), Adian (the free
Burnside groups of large enough exponent).
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Problem. Is there a finitely presented counterexample to von
Neumann’s problem?

Theorem. (Olshanskii, S., Publ. IHES, 2002) For every
sufficiently large odd n, there exists a finitely presented group G:

1. G is an ascending HNN extension of a finitely generated
infinite group H of exponent n.

2. H is an “almost” finitely presented bounded torsion group.

3. G contains a subgroup isomorphic to a free Burnside group of
exponent n with 2 generators.

4. G is a non-amenable finitely presented group without free
non-cyclic subgroups.

The proof uses all the ideas mentioned above plus the Olshanskii
theory of graded diagrams.

Problem. Is there a finitely presented torsion group?
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