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◮ Every element in HNN can be represented in the form t−kgtℓ

for some k , ℓ ∈ Z and g ∈ G . ℓ − k is an invariant, the
representation is unique for a given k .

◮ A homomorphism f : HNNφ(G ) → H is injective iff fG is
injective and f (t) is of infinite order.

◮ (Feighn-Handel) If G is free then HNNφ(G ) is coherent i.e.
every f.g. subgroup is f.p.

◮ (Geoghegan-Mihalik-S.-Wise) If G is free then HNNφ(G ) is
Hopfian i.e. every surjective endomorphism is injective.
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An automorphism f must fix the root and so it fixes the levels of
the tree. If f 6= 1 on level n, we consider the homomorphism from
Aut(T ) to a finite group restricting automorphisms to vertices of
levels at most n. f survives this homomorphism.
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Conversely every finitely generated residually finite group acts
faithfully on a locally finite rooted tree.
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Problems.

Problem. Is every hyperbolic group residually finite?

Problem. When is a one-relator group 〈X | R = 1〉 residually
finite?

Example 1. BS(2, 3) 〈a, t | ta2t−1 = a3〉 is not Hopfian
(a 7→ a2, t 7→ t)

Example 2. BS(1, 2) 〈a, t | tat−1 = a2〉 is metabelian, and linear,
so it is residually finite.



Problems.

Problem. Is every hyperbolic group residually finite?

Problem. When is a one-relator group 〈X | R = 1〉 residually
finite?

Problem. (Moldavanskii, Kapovich, Wise) Are ascending HNN
extensions of free groups residually finite?
These three problems are related.
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−1 = 1, a−1b0a = b
−1, a

−1b1a = b0〉.

So we can replace b
−1 by b1b

−1
0 b1b

−1
0 , remove this generator,

and get a new presentation of the same group.



Hyperbolic groups, 1-related groups, and mapping tori of

free groups

Fact 1. (Gromov-Olshanskii) Almost every 1-related group is
hyperbolic. Almost every mapping torus of the free group is
hyperbolic.

Fact 2. (S., Schupp) 99.6% of all 1-related group are mapping
tori or free group endomorphisms.

Example (Magnus procedure). Consider the group
〈a, b0, b1 | a−1b0a = b1b

−1
0 b1b

−1
0 , a−1b1a = a0〉. This is

clearly an ascending HNN extension of the free group 〈b0, b1〉.
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Random walks

Consider the word aba−1 · b−1 · aba−1 · b−1 · a−1b−1a and the
corresponding walk on the plane:

aba−1b−1aba−1b−1a−1b−1a

Indexes of b’s are coordinates of the vertical steps of the walk.

e

−1 0 1

In general:

b

e

Problem. What is the probability that
a support line of the walk
intersects the walk only once?

Dunfield and Thurston proved recently that this probability is
strictly between 0 and 1.
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Consider the following example

G = 〈x , y , t | txt−1 = xy , tyt−1 = yx〉.

So the endomorphism

φ : x 7→ xy , y 7→ yx .

This group is hyperbolic (Minasyan). Consider any
w = w(x , y) 6= 1. We want to find ψ : G → V with ψ(w) 6= 1,
|V | < ∞. Suppose that ψ exists.
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w(x̄ , ȳ) 6= 1.



Let us denote ψ(x), ψ(y), ψ(t) by x̄ , ȳ , t̄. So we want
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Since t̄ has finite order in V , for some k , we must have

(φk(x̄), φk(ȳ)) = (x̄ , ȳ).
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w(x̄ , ȳ) 6= 1.

Note:
t̄(x̄ , ȳ)t̄−1 = (x̄ ȳ , ȳ x̄) = (φ(x), φ(y))

We can continue:

t̄2(x̄ , ȳ)t̄−2 = (x̄ ȳ ȳ x̄ , ȳ x̄ x̄ ȳ) = (φ2(x̄), φ2(ȳ)).

...

t̄k(x̄ , ȳ)t̄−k = (φk(x̄), φk(ȳ)).

Since t̄ has finite order in V , for some k , we must have

(φk(x̄), φk(ȳ)) = (x̄ , ȳ).

So (x̄ , ȳ) is a periodic point of the map

φ̃ : (a, b) 7→ (ab, ba).

on the “space” V × V .
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So if G is residually finite then for every w(x , y) 6= 1, we found a
finite group V and a periodic point (x̄ , ȳ) of the map

φ̃ : (a, b) 7→ (φ(a), φ(b))

on V × V such that
w(x̄ , ȳ) 6= 1.

So the periodic point should be outside the “subvariety” given by
w = 1.

Key observation. The converse statement is also true (the
number of generators and the choice of φ do not matter).
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“subvariety” given by the equation w = 1.
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Consider two matrices

U =

[

1 2
0 1

]

, V =

[

1 0
2 1

]

.

They generate a free subgroup in SL2(Z) (Sanov, ’48). Then the
matrices

A = UV =

[

5 2
2 1

]

, B = VU =

[

1 2
2 5

]

also generate a free subgroup. Now let us iterate the map
ψ : (x , y) → (xy , yx) starting with (A, B) mod 5. That is we are
considering the finite group SL2(Z/5Z).
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Example continued. Dynamics of polynomial maps over

local fields

Replace 5 by 25, 125, etc. It turned out that (A, B) is periodic in
SL2(Z/25Z) with period 30, in SL2(Z/125Z) with period 150, etc.
Moreover there exists the following general Hensel-like statement

Theorem. Let P : Zn → Zn be a polynomial map with integer
coefficients.Suppose that a point ~x is periodic with period d

modulo some prime p, and the Jacobian JP(x) is not zero. Then ~x
is periodic modulo pk with period pk−1d for every k .

Now take any word w 6= 1 in x , y . Since 〈A, B〉 is free in SL2(Z),
the matrix w(A, B) is not 1, and there exists k ≥ 1 such that
w(A, B) 6= 1 mod 5k .

Therefore our group 〈a, b, t | tat−1 = ab, tbt−1 = ba〉 is residually
finite.
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Polynomial maps over finite fields

Let G = 〈a1, ..., ak , t | tai t
−1 = ui , i = 1, ..., k〉.Consider the ring

of matrices M2(Z).

The map ψ : M2(Z)k → M2(Z)k is given by

~x 7→ (w1(~x), ...,wk(~x)).

It can be considered as a polynomial map A4k → A4k . The group
we consider will be PGL2(.). Here ”.” is any finite field of, say,
characteristic p.

Thus our problem is reduced to the following:

Problem. Let P be a polynomial map An → An with integer
coefficients. Show that the set of periodic points of P is Zariski
dense.
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Counting periodic points. Quasi-fixed points

Fixed points are not enough.

Example: x 7→ x + 1 does not have fixed points.

Deligne: instead of fixed points, P(x) = x , consider quasi-fixed
points, P(x) = xpn

(= Frn(x)).

Note that all quasi-fixed points are periodic because Fr is the
automorphism of finite order, and commutes with P since all
coefficients of P are integers.

Deligne conjecture, proved by Fujiwara and Pink: If P is
dominant and quasi-finite then the set of quasi-fixed points is
Zariski dense.
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Hrushovsky managed to replace An in our statement by arbitrary
variety V .

Theorem (Borisov, Sapir) The ascending HNN extension of any
finitely generated linear group is residually finite.

For non-linear residually finite groups this statement is not true (S.
and Wise).

Problem. Is 〈a, b, t | tat−1 = ab, tbt−1 = ba〉 linear?

Conjecture: No.
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i , for i = 1, 2, ..., n.
Step 1. For a big enough Q the ideal IQ has finite codimension in
the ring Fq[x1, ..xn].
Step 2. For all 1 ≤ i ≤ n and j ≥ 1

f
(j)
i (x1, ..., xn) − xQ j

i ∈ IQ .

Step 3. There exists a number k such that for every quasi-fixed
point (a1, ..., an) with big enough Q and for every 1 ≤ i ≤ n the
polynomial

(f
(n)
i (x1, ..., xn) − f

(n)
i (a1, ..., an))

k

is contained in the localization of IQ at (a1, ..., an).
Let us fix some polynomial D with the coefficients in a finite
extension of Fq such that it vanishes on W but not on V .
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Step 4. There exists a positive integer K such that for all
quasi-fixed points (a1, ..., an) ∈ W with big enough Q we get

R = (D(f
(n)
1 (x1, ..., xn), ..., f

(n)
n (x1, ..., xn)))

K ≡ 0( mod I
(a1,...,an)
Q )

We know that all points with P(x) = xQ belong to V . We want to
prove that some of them do not belong to W . We suppose that
they all do, and we are going to derive a contradiction.

Step 5. First of all, we claim that in this case R lies in the
localizations of IQ with respect to all maximal ideals of the ring of
polynomials.
This implies that R ∈ IQ .
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This means that there exist polynomials u1, ...un such that

R =
n

∑

i=1

ui · (fi − xQ
i ) (1)

Step 6. We get a set of ui ’s with the following property:

◮ For every i < j the degree of xi in every monomial in uj is
smaller than Q.

Step 7. We look how the monomials cancel in the equation (1)
and get a contradiction.
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