On the dimension growth of groups

Alexander Dranishnikov and Mark Sapir

New Brunswick, October 12, 2012
The covering dimension

Definition (approximate). The dimension of a space X is at most n if for every $\epsilon > 0$ there exists an (open) coloring in at most $n + 1$ colors such that every monochromatic path has diameter at most ϵ.
The definition

Definition
Definition Let Γ be a graph.
The definition

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices.
Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ. The number d such that $d = \max_\lambda (k(\lambda) - 1)$ is called the asymptotic dimension of Γ (both concepts were introduced by Gromov).
The definition

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ. The number d such that $d = \max_{\lambda}(k(\lambda) - 1)$ is called the asymptotic dimension of Γ (both concepts were introduced by Gromov).

A λ-path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$, so it is a path on the Rips complex R_λ.
The definition

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ. The number d such that $d = \max_\lambda (k(\lambda) - 1)$ is called the asymptotic dimension of Γ (both concepts were introduced by Gromov).

A λ-path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$, so it is a path on the Rips complex R_λ. For example if Γ is \mathbb{Z} (or the square lattice \mathbb{Z}^n), then $k(1) = 2$.
Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ. The number d such that $d = \max_{\lambda}(k(\lambda) - 1)$ is called the asymptotic dimension of Γ (both concepts were introduced by Gromov).

A λ-path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$, so it is a path on the Rips complex R_λ. For example if Γ is \mathbb{Z} (or the square lattice \mathbb{Z}^n), then $k(1) = 2$. Color even vertices in white, odd vertices in black.
The definition

Definition Let Γ be a graph. Let $\lambda > 1$. Let $k = k(\lambda)$ be the minimal number of colors so that we can color vertices of Γ in k colors and there are no arbitrary long monochromatic λ-paths without repeated vertices. Then $k(\lambda) - 1$ is called the *dimension growth function* of Γ. The number d such that $d = \max_\lambda (k(\lambda) - 1)$ is called the asymptotic dimension of Γ (both concepts were introduced by Gromov).

A λ-path is a sequence of vertices with distances between consecutive vertices $\leq \lambda$, so it is a path on the Rips complex R_λ. For example if Γ is \mathbb{Z} (or the square lattice \mathbb{Z}^n), then $k(1) = 2$. Color even vertices in white, odd vertices in black.

The growth rate of $k(\lambda)$ is a q.i. invariant.
Examples

For many groups, the dimension growth is constant: hyperbolic, toric relatively hyperbolic, RAAGs, the mapping class group, nilpotent groups, etc.
Examples

For many groups, the dimension growth is constant: hyperbolic, toric relatively hyperbolic, RAAGs, the mapping class group, nilpotent groups, etc.

\(\mathbb{Z} \wr \mathbb{Z} \), the Grigorchuk group, the R. Thompson group \(F \), etc. have infinite asymptotic dimension and the question about dimension growth is natural for these groups.
The controlled dimension growth

If $D > 0$, then the (λ, D)-dimension of X is the minimal k as above where all clusters have diameters $\leq D$.
If $D > 0$, then the (λ, D)-dimension of X is the minimal k as above where all clusters have diameters $\leq D$. If $D(\lambda)$ is an increasing function, then we can define the D-controlled dimension growth $k(\lambda)$ as before, but demanding that all clusters have diameters $\leq D(\lambda)$.
The controlled dimension growth

If $D > 0$, then the (λ, D)-dimension of X is the minimal k as above where all clusters have diameters $\leq D$. If $D(\lambda)$ is an increasing function, then we can define the D-controlled dimension growth $k(\lambda)$ as before, but demanding that all clusters have diameters $\leq D(\lambda)$. The notion was also introduced by Gromov.
The controlled dimension growth

If $D > 0$, then the (λ, D)-dimension of X is the minimal k as above where all clusters have diameters $\leq D$. If $D(\lambda)$ is an increasing function, then we can define the D-controlled dimension growth $k(\lambda)$ as before, but demanding that all clusters have diameters $\leq D(\lambda)$. The notion was also introduced by Gromov. If $D(\lambda)$ is linear, and $k(\lambda)$ is constant, we get the Assouad-Nagata dimension.
The controlled dimension growth

If $D > 0$, then the (λ, D)-dimension of X is the minimal k as above where all clusters have diameters $\leq D$. If $D(\lambda)$ is an increasing function, then we can define the D-controlled dimension growth $k(\lambda)$ as before, but demanding that all clusters have diameters $\leq D(\lambda)$. The notion was also introduced by Gromov. If $D(\lambda)$ is linear, and $k(\lambda)$ is constant, we get the Assouad-Nagata dimension.

We do not know any finitely generated group where more than exponential control is needed.
How large should the brick be?

The Assouad-Nagata dimension of \mathbb{Z}^n is n.
How large should the brick be?

The Assouad-Nagata dimension of \mathbb{Z}^n is n
How large should the brick be?

The Assouad-Nagata dimension of \mathbb{Z}^n is n

The size of the bricks are at most quadratic in the dimension n.
How large should the brick be?

The Assouad-Nagata dimension of \mathbb{Z}^n is n

The size of the bricks are at most quadratic in the dimension n.

Problem. What is the smallest size of a brick (as a function in n)? What if we color in a different way (not by bricks)?
A map of metric spaces \(\phi : X \to Y \) is called a \textit{coarse embedding} if there are strictly monotone tending to infinity functions \(\rho_1, \rho_2 : \mathbb{R}_+ \to \mathbb{R}_+ \) and a number \(r > 0 \) such that

\[
\rho_1(d_X(x, x')) \leq d_Y(\phi(x), \phi(x')) \leq \rho_2(d_X(x, x'))
\]

for all \(x, x' \in X \) with \(d(x, x') \geq r \).
A map of metric spaces $\phi : X \to Y$ is called a *coarse embedding* if there are strictly monotone tending to infinity functions $\rho_1, \rho_2 : \mathbb{R}_+ \to \mathbb{R}_+$ and a number $r > 0$ such that

$$\rho_1(d_X(x, x')) \leq d_Y(\phi(x), \phi(x')) \leq \rho_2(d_X(x, x'))$$

for all $x, x' \in X$ with $d(x, x') \geq r$. **Example:** inclusion of a finitely generated subgroup in a finitely generated group both supplied with the word metrics.
Connection with quasi-isometry and coarse embeddings

A map of metric spaces \(\phi : X \rightarrow Y \) is called a coarse embedding if there are strictly monotone tending to infinity functions \(\rho_1, \rho_2 : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) and a number \(r > 0 \) such that

\[
\rho_1(d_X(x, x')) \leq d_Y(\phi(x), \phi(x')) \leq \rho_2(d_X(x, x'))
\]

for all \(x, x' \in X \) with \(d(x, x') \geq r \). Example: inclusion of a finitely generated subgroup in a finitely generated group both supplied with the word metrics.

Let \(\phi : X \rightarrow Y \) be a coarse embedding with functions \(\rho_1, \rho_2 \). Then

\[
(\lambda, D)\text{-dim}(Y) \geq (\rho_2^{-1}(\lambda), \rho_1^{-1}(D))\text{-dim}(X).
\]
Connection with the volume growth

Proposition. The dimension growth of a finitely generated group G does not exceed its volume growth.
Connection with the volume growth

Proposition. The dimension growth of a finitely generated group G does not exceed its volume growth.

Proof Let f be the volume growth function. We consider a graph with vertices elements of G where every two vertices at distance $\leq \lambda$ are joined by an edge. Then the valency of this graph is $\leq f(\lambda)$. The graph has chromatic number $\leq f(\lambda) + 1$.
Proposition. The dimension growth of a finitely generated group G does not exceed its volume growth.

Proof Let f be the volume growth function. We consider a graph with vertices elements of G where every two vertices at distance $\leq \lambda$ are joined by an edge. Then the valency of this graph is $\leq f(\lambda)$. The graph has chromatic number $\leq f(\lambda) + 1$.

Corollary. The dimension growth of any finitely generated group is at most exponential (with any control since the size of every cluster is 1, does not depend on λ).
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.

Problem. Is the opposite implication true?
Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is subexponential, then the group satisfies G. Yu’s property A, hence it is coarsely embeddable into a Hilbert space, etc.

Problem. Is the opposite implication true? Hence Gromov random groups containing expanders have exponential asymptotic dimension growth.
Connection with expansion in graphs

Suppose there exists a number $\varepsilon > 0$ such that for every r a graph G contains a finite subgraph G_r with the following property
Suppose there exists a number $\varepsilon > 0$ such that for every r a graph G contains a finite subgraph G_r with the following property

$$(P_r(\varepsilon)) \text{ For every subset } A \text{ of vertices of } G_r \text{ of diameter (in } G) \leq r, |\partial_{G_r}(A)| \geq \varepsilon |A| \text{ where } \partial_{G_r} = \{v \in G_r | \text{dist}(v, A) = 1\} \text{ denotes the boundary in } G_r.$$
Connection with expansion in graphs

Suppose there exists a number $\varepsilon > 0$ such that for every r a graph G contains a finite subgraph G_r with the following property

$$(P_r(\varepsilon))$$ For every subset A of vertices of G_r of diameter (in G) $\leq r$, $|\partial_{G_r}(A)| \geq \varepsilon|A|$ where $\partial_{G_r} = \{v \in G_r | \text{dist}(v, A) = 1\}$ denotes the boundary in G_r.

Then the dimension growth of G is exponential.
Connection with expansion in graphs

Suppose there exists a number \(\varepsilon > 0 \) such that for every \(r \) a graph \(G \) contains a finite subgraph \(G_r \) with the following property

\[(P_r(\varepsilon)) \text{ For every subset } A \text{ of vertices of } G_r \text{ of diameter (in } G) \leq r, |\partial_{G_r}(A)| \geq \varepsilon|A| \text{ where } \partial_{G_r} = \{v \in G_r \mid \text{dist}(v, A) = 1\} \text{ denotes the boundary in } G_r.\]

Then the dimension growth of \(G \) is exponential.

Proof. Let \(V_G = \bigcup_{i=1}^{k+1} U_i \) be a coloring of the vertices of \(G \) in \(k + 1 \) colors such that all \(\lambda \)-clusters \(U_i^j \) have diameters at most \(d \).

Take \(r > d + \lambda \) and consider the graph \(G_r = (V_r, E_r) \). Let \(W_i^j = U_i^j \cap G_r \). We have \(\bigcup W_i^j \) equal to the set \(V_r \) of all vertices of \(G_r \). Note that \(N_{\lambda/2}(W_i^j) \) has at least \((1 + \varepsilon)^{\lambda/2}\) elements. Since different \(\lambda \)-clusters of the same color are \(\lambda \)-disjoint, we have that the sum of \(|N_{\lambda/2}(W_i^j)| \) is at most \(|V_r|(k + 1) \). On the other hand, that sum is at least \((1 + \varepsilon)^{\lambda/2}\) times the sum of cardinalities \(|W_i^j| \), i.e. at least \(|V_r|(1 + \varepsilon)^{\lambda/2} \). Hence \(k + 1 \geq (1 + \varepsilon)^{\lambda/2} \).
Connection with the Ramsey theory

Theorem. (Panov, Moore) Let $\Gamma = \mathbb{Z}^\infty$ with l_1-metric. Then $k_\Gamma(2) = \infty$.
Theorem. (Panov, Moore) Let $\Gamma = \mathbb{Z}^\infty$ with l_1-metric. Then $k_\Gamma(2) = \infty$.

Proof. Every finite subset M of \mathbb{N} corresponds to a vector $\nu(M)$ from \mathbb{Z}^∞ with coordinates 0, 1 in the natural way. Choose any $k \geq 1$. Let $P_k(\mathbb{N})$ denote the set of all k-element subsets of \mathbb{N}. Every finite coloring of \mathbb{Z}^∞ induces a finite coloring of $P_k(\mathbb{N})$. By Ramsey there exists a subset $M \subseteq \mathbb{N}$ of size $2k$ such that all k-element subsets of M have the same color. Therefore we can find subsets T_1, T_2, \ldots, T_k of size k from M such that the symmetric distance between T_i and T_{i+1} is 2, $i = 1, \ldots, k - 1$, and T_1, T_k are disjoint. Then the vectors $\nu(T_1), \ldots, \nu(T_k)$ from \mathbb{Z}^∞ form a monochromatic 2-path of diameter $\geq 2k$.
The dimension growth of \mathbb{Z}^n.

Let G be the binary cube $\{0, 1\}^n$ with the ℓ_1-metric. Then for every $r > 0$, such that $\varepsilon = \frac{n}{r+1} - 2 > 0$, G satisfies property $(P_r(\varepsilon))$.
The dimension growth of \mathbb{Z}^n.

Let G be the binary cube $\{0, 1\}^n$ with the ℓ_1-metric. Then for every $r > 0$, such that $\varepsilon = \frac{n}{r+1} - 2 > 0$, G satisfies property $(P_r(\varepsilon))$.

[The controlled 4-dimension of a binary n-cube] The binary n-cube $\{0, 1\}^n$, $n > 64$, cannot be colored by n colors such that each 4-cluster of every color has diameter less than $\leq \sqrt{n}/4$, i.e. $(4, \sqrt{n}/4)$-dim (\mathbb{Z}^n) = n for $n > 64$.
The main open problem.

Problem. Is it true that for some $\alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^\alpha)$ for every λ.
The main open problem.

Problem. Is it true that for some $\alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^\alpha)$ for every λ.
If “yes”, then the asymptotic dimension growth of F is exponential.
The main open problem.

Problem. Is it true that for some $\alpha > 0$, $k_{\mathbb{Z}^n}(\lambda) = O(n^\alpha)$ for every λ.

If “yes”, then the asymptotic dimension growth of F is exponential. We do not know the answer for $\lambda = 2, \alpha = 1$. We also do not know whether $k_{\mathbb{Z}^n}(\lambda)$ is bounded for every λ as a function of n.
Connection with the game of Hex

Consider the n-dim cube $[1, m]^n$ with ℓ_∞-metric (more precisely, the Hex metric) and n players, each has his own two opposite sides of the cube and his own color.
Consider the n-dim cube $[1, m]^n$ with ℓ_∞-metric (more precisely, the Hex metric) and n players, each has his own two opposite sides of the cube and his own color. Players color unit cubes in their colors.
Connection with the game of Hex

Consider the \(n \)-dim cube \([1, m]^n\) with \(\ell_\infty \)-metric (more precisely, the Hex metric) and \(n \) players, each has his own two opposite sides of the cube and his own color. Players color unit cubes in their colors.

A player wins if there exists a monochromatic path connecting his sides of the cube.
Consider the n-dim cube $[1, m]^n$ with ℓ_∞-metric (more precisely, the Hex metric) and n players, each has his own two opposite sides of the cube and his own color. Players color unit cubes in their colors.
A player wins if there exists a monochromatic path connecting his sides of the cube.

Theorem. There is always a winner in the game of Hex.
Connection with the game of Hex

Consider the n-dim cube $[1, m]^n$ with l_∞-metric (more precisely, the Hex metric) and n players, each has his own two opposite sides of the cube and his own color. Players color unit cubes in their colors. A player wins if there exists a monochromatic path connecting his sides of the cube.

Theorem. There is always a winner in the game of Hex. Hence if we color \mathbb{Z}^n with l_∞-metric in n colors there is always arbitrary long monochromatic paths. Thus $1\text{-dim}(\mathbb{Z}^n, l_\infty) = n$ for every n.
A connection with a Brouwer-type fixed point theorem?

The Hex theorem is equivalent to the Brouwer fixed point theorem.
A connection with a Brouwer-type fixed point theorem?

The Hex theorem is equivalent to the Brouwer fixed point theorem. Is there a fixed point theorem that gives a bound for the 2-dim(\mathbb{Z}^n, ℓ_1)?
A connection with a Brouwer-type fixed point theorem?

The Hex theorem is equivalent to the Brouwer fixed point theorem. Is there a fixed point theorem that gives a bound for the $2\text{-dim}(\mathbb{Z}^n, \ell_1)$?

Remark. The game of Hex on the plane corresponds to the hexagonal tessellation of the plane and the graph metric on its dual graph. As we know from percolation theory (Smirnov), hexagonal lattice is much easier than square lattice.
The dimension growth of the R. Thompson group F.

The group \mathbb{Z}^{2n} embeds into F with quasi-isometric constants $O(n), O(1)$ (using the Burillo length estimate).
The dimension growth of the R. Thompson group F.

The group \mathbb{Z}^{2^n} embeds into F with quasi-isometric constants $O(n), O(1)$ (using the Burillo length estimate).

Hence the dimension growth of F with some exponential control is exponential.
The dimension growth of the R. Thompson group F.

The group \mathbb{Z}^{2^n} embeds into F with quasi-isometric constants $O(n), O(1)$ (using the Burillo length estimate).

Hence the dimension growth of F with some exponential control is exponential.

What is the dimension growth of F? Is super-exponential control required?
Upper bounds. Connection with the Kolmogorov-Ostrand dimension

We say that Kolmogorov-Ostrand dimension of X is $\leq n$ if for every $m \geq 0$ there exists a coloring of X in $m + n$ colors (every point may be colored in many colors) such that the diameters of all λ-clusters are uniformly bounded.
Upper bounds. Connection with the Kolmogorov-Ostrand dimension

We say that Kolmogorov-Ostrand dimension of X is $\leq n$ if for every $m \geq 0$ there exists a coloring of X in $m + n$ colors (every point may be colored in many colors) such that the diameters of all λ-clusters are uniformly bounded.

This can be traced back to the work of Kolmogorov and Ostrand on Hilbert’s 13-th problem.
Upper bounds. Connection with the Kolmogorov-Ostrand dimension

We say that Kolmogorov-Ostrand dimension of X is $\leq n$ if for every $m \geq 0$ there exists a coloring of X in $m + n$ colors (every point may be colored in many colors) such that the diameters of all λ-clusters are uniformly bounded.

This can be traced back to the work of Kolmogorov and Ostrand on Hilbert’s 13-th problem.

Theorem. The Kolmogorov-Ostrand dimension growth of the direct product $X \times Y$ does not exceed the sum of $K - O$-dimension growths of X and Y.
Upper bounds. Connection with the Kolmogorov-Ostrand dimension

We say that Kolmogorov-Ostrand dimension of X is $\leq n$ if for every $m \geq 0$ there exists a coloring of X in $m + n$ colors (every point may be colored in many colors) such that the diameters of all λ-clusters are uniformly bounded.

This can be traced back to the work of Kolmogorov and Ostrand on Hilbert’s 13-th problem.

Theorem. The Kolmogorov-Ostrand dimension growth of the direct product $X \times Y$ does not exceed the sum of $K - O$-dimension growths of X and Y.

For Assouad-Nagata dimension it was proved by Brodskiy, Dydak, Levin, and Mitra.

Proof. Suppose $KO - \dim(X) = n_1$, $KO - \dim(Y) = n_2$. Consider colorings of X and Y in $n_1 + n_2 + m$ colors (as required by the definition). Then color (x, y) in color i if both x and y has color i. This gives a required coloring of $X \times Y$.
By C. Bleak, every solvable subgroup of F is a subgroup of a direct product of iterated wreath products $\ldots (\mathbb{Z} \wr \mathbb{Z}) \wr \ldots \wr \mathbb{Z}$.
The dimension growth of solvable subgroups of F

By C. Bleak, every solvable subgroup of F is a subgroup of a direct product of iterated wreath products $(...(\mathbb{Z} \wr \mathbb{Z}) \wr ...) \wr \mathbb{Z}$.

Using W. Parry’s description of the metric on wreath products and the Kolmogorov-Ostrand dimension we prove that the K-O-dimension growth (hence the ordinary dimension growth) is polynomial where the degree of the polynomial does not exceed the degree of solvability of the group.
By C. Bleak, every solvable subgroup of F is a subgroup of a direct product of iterated wreath products $\ldots (\mathbb{Z} \wr \mathbb{Z}) \wr \ldots \wr \mathbb{Z}$.

Using W. Parry’s description of the metric on wreath products and the Kolmogorov-Ostrand dimension we prove that the K-O-dimension growth (hence the ordinary dimension growth) is polynomial where the degree of the polynomial does not exceed the degree of solvability of the group.

Problem. What is the dimension growth of $\mathbb{Z} \wr \mathbb{Z}$?