Maass Forms and Quantum Modular Forms

Larry Rolen

Emory University

June 26, 2013
Modular Forms

Let \(\mathbb{H} \) denote the complex upper-half plane and \(\Gamma \leq \text{SL}_2(\mathbb{Z}) \).
Let \mathbb{H} denote the complex upper-half plane and $\Gamma \leq \text{SL}_2(\mathbb{Z})$.

Definition

A weakly holomorphic modular form of weight $k \in \mathbb{Z}$ on Γ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that
Let \(\mathbb{H} \) denote the complex upper-half plane and \(\Gamma \leq \text{SL}_2(\mathbb{Z}) \).

Definition

A weakly holomorphic modular form of weight \(k \in \mathbb{Z} \) on \(\Gamma \) is a holomorphic function \(f : \mathbb{H} \to \mathbb{C} \) such that

\[
f \left(\frac{az+b}{cz+d} \right) = (cz+d)^k f(z) \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.
\]
Let \mathbb{H} denote the complex upper-half plane and $\Gamma \leq \text{SL}_2(\mathbb{Z})$.

Definition

A weakly holomorphic modular form of weight $k \in \mathbb{Z}$ on Γ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that

1. $f \left(\frac{az+b}{cz+d} \right) = (cz + d)^k f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

2. $\left| (cz + d)^{-k} f \left(\frac{az+b}{cz+d} \right) \right| \ll e^{C \cdot \Im z}$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$.
Let \(\mathbb{H} \) denote the complex upper-half plane and \(\Gamma \leq \text{SL}_2(\mathbb{Z}) \).

Definition

A weakly holomorphic modular form of weight \(k \in \mathbb{Z} \) on \(\Gamma \) is a holomorphic function \(f : \mathbb{H} \to \mathbb{C} \) such that

1. \(f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z) \) for all \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \).

2. \(\left| (cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right) \right| \ll e^{C \cdot \Im z} \) for all \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \).

Remarks

- If \(k = 0 \), we call \(f \) a modular function.
Let \mathbb{H} denote the complex upper-half plane and $\Gamma \leq \text{SL}_2(\mathbb{Z})$.

Definition

A weakly holomorphic modular form of weight $k \in \mathbb{Z}$ on Γ is a holomophic function $f : \mathbb{H} \to \mathbb{C}$ such that

1. $f \left(\frac{az+b}{cz+d} \right) = (cz+d)^k f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

2. $\left| (cz+d)^{-k} f \left(\frac{az+b}{cz+d} \right) \right| \ll e^{C \cdot \Im z}$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$.

Remarks

- If $k = 0$, we call f a modular function.
- We can also define modular forms of half-integral weight.
Congruence Subgroups

We are mainly interested in modular forms on groups like:

$$
\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}
$$
Any modular form of level N has a Fourier expansion

$$f(z) = \sum_{n \gg -\infty} a_n q^n,$$

where $q := e^{2\pi i z}$.

Fourier Expansions
Examples

1. The j-invariant is a modular function of level 1:

$$j(z) = q^{-1} + 744 + 196884q + \ldots$$

It parameterizes elliptic curves.
Examples

1. The j-invariant is a modular function of level 1:

$$j(z) = q^{-1} + 744 + 196884q + \ldots$$

It parameterizes elliptic curves.

2. The weight 12 modular discriminant function is the infinite product:

$$\Delta(z) := q \prod_{n \geq 1} (1 - q^n)^{24}.$$
Examples

1. The j-invariant is a modular function of level 1:

$$j(z) = q^{-1} + 744 + 196884q + \ldots$$

It parameterizes elliptic curves.

2. The weight 12 modular discriminant function is the infinite product:

$$\Delta(z) := q \prod_{n \geq 1} (1 - q^n)^{24}.$$

3. The weight $\frac{1}{2}$ Jacobi theta function

$$\theta(z) := \sum_{n \in \mathbb{Z}} q^{n^2}.$$
Singular moduli are values of modular functions at quadratic irrationalities.
Singular moduli are values of modular functions at quadratic irrationalities.

Zagier defined “traces of singular moduli”, which he proved are often coefficients of modular forms.
Singular Moduli

- **Singular moduli** are values of modular functions at quadratic irrationalities.

- Zagier defined “traces of singular moduli”, which he proved are often coefficients of modular forms.

- We consider integrality for the polynomials arising from non-holomorphic functions.
For a positive-definite quadratic form $Q = ax^2 + bxy + cy^2$, let
Traces of Singular Moduli

For a positive-definite quadratic form $Q = ax^2 + bxy + cy^2$, let

$$\tau_Q := \frac{-b + \sqrt{b^2 - 4ac}}{2a} \in \mathbb{H}.$$

Larry Rolen
For a positive-definite quadratic form $Q = ax^2 + bxy + cy^2$, let

$$\tau_Q := \frac{-b + \sqrt{b^2 - 4ac}}{2a} \in \mathbb{H}.$$

Definition

Let Q_d be the set of positive definite binary quadratic forms of discriminant d. For a modular function F, define the trace:

$$\text{Tr}_d(F) := \sum_{Q \in Q_d/\Gamma} w_Q^{-1} F(\tau_Q).$$
An Example of Zagier’s Theory

Theorem (Zagier)

Let

\[J(z) := j(z) - 744 \]

and

\[g(z) := \theta_1(z) \frac{E_4(4z)}{\eta(4z)^6} = \sum B(d)q^n \]

For any positive integer \(d \equiv 0, 3 \pmod{4} \), we have
An Example of Zagier’s Theory

Theorem (Zagier)

Let

\[J(z) := j(z) - 744 \]

and

\[g(z) := \theta_1(z) \frac{E_4(4z)}{\eta(4z)^6} = \sum B(d) q^n \]

For any positive integer \(d \equiv 0, 3 \pmod{4} \), we have

\[\text{Tr}_{-d} (J(z)) = -B(d). \]
Another Example; \(K := \partial \left(\frac{E_4 E_6}{\Delta} \right) \)

Define \(H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)) \).
Another Example; $K := \partial \left(\frac{E_4 E_6}{\Delta} \right)$

Define $H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q))$.

- $H_{-23}(K; x) = x^3 - 23261998 x^2 - \frac{3945271661}{23} x - 7693330369871$.

Remark: It appears that the third symmetric function is always an integer.
Another Example; $K := \partial \left(\frac{E_4 E_6}{\Delta} \right)$

Define $H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q))$.

- $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871$.

- $H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823$.
Another Example; $K := \partial \left(\frac{E_4 E_6}{\Delta} \right)$

Define $H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q))$.

- $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871$.

- $H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823$.

- $H_{-39}(K; x) = x^4 - 314635932x^3 + \frac{8602826222178}{39}x^2 - 84029669803810035x + \frac{95749227855890319016073}{39^2}$.

Remark: It appears that the third symmetric function is always an integer.
Another Example; \(K := \partial \left(\frac{E_4 E_6}{\Delta} \right) \)

Define \(H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)) \).

- \(H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871 \).
- \(H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823 \).
- \(H_{-39}(K; x) = x^4 - 314635932x^3 + \frac{8602826222178}{39}x^2
- 84029669803810035x + \frac{95749227855890319016073}{39^2} \).

Remark

It appears that the third symmetric function is always an integer.
Recall the **Maass raising operator**, which raises the weight of a Maass form by 2:
Recall the **Maass raising operator**, which raises the weight of a Maass form by 2:

\[R_k := 2i \frac{\partial}{\partial z} + ky^{-1}. \]
Traces for Negative Weight Forms

- Recall the **Maass raising operator**, which raises the weight of a Maass form by 2:

 \[R_k := 2i \frac{\partial}{\partial z} + ky^{-1}. \]

- For \(f \) of negative weight, \(\partial f \) is the **iterated** raising to weight 0.
Theorem 1 (Griffin-R 2012)

Let \(f(z) \in M_k^! \), \(0 > k \in 2\mathbb{Z} \) have integral principal part. Denote the \(n^{th} \) symmetric function in the singular moduli of discriminant \(d \) for \(\partial f \) by \(S_f(n; d) \). Let

\[
B(n, k) := \begin{cases}
\frac{-nk}{4} & \text{if } nk \in 4\mathbb{Z} \\
\frac{1}{4}(-nk + 2k - 2) & \text{otherwise.}
\end{cases}
\]
Theorem 1 (Griffin-R 2012)

Let \(f(z) \in M^!_k \), \(0 > k \in 2\mathbb{Z} \) have integral principal part. Denote the \(n^{th} \) symmetric function in the singular moduli of discriminant \(d \) for \(\partial f \) by \(S_f(n; d) \). Let

\[
B(n, k) := \begin{cases}
\frac{-nk}{4} & \text{if } nk \in 4\mathbb{Z} \\
\frac{1}{4}(-nk + 2k - 2) & \text{otherwise.}
\end{cases}
\]

Then we have that

\[
d^{B(n,k)} \cdot S_f(n; d) \in \mathbb{Z}.
\]
Corollary

For any $f(z) \in M_{-2}$ with integral principal part, we have that

$$S_f(3; d) \in \mathbb{Z}.$$
Corollary

For any $f(z) \in M^1_{-2}$ with integral principal part, we have that

$$S_f(3; d) \in \mathbb{Z}.$$

Remark

This theorem is sharp.
Sketch of Proof

- Use Newton’s identities to reduce to sums of powers.
Sketch of Proof

- Use Newton’s identities to reduce to sums of powers.

- Unfortunately, powers of Maass forms are usually not finite sums of Maass forms.
Theorem (Griffin-R 2012)

Let F be a product of “raises” of modular forms. Then there are modular forms $g_j \in M_{k-2j}^!$ such that

$$F = \sum_{j=0}^\infty R_j g_j.$$
The Spectral Decomposition

Theorem (Griffin-R 2012)

Let F be a product of “raises” of modular forms. Then there are modular forms $g_j \in M_{k-2j}^!$ such that

$$F = \sum_{j=0}^{E} R^j g_j,$$

Remark

The proof gives an explicit algorithm for computing the forms g_j.

Larry Rolen
Theorem (Griffin-R 2012)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_j \in M_{k-2j}^!$ such that

$$F = \sum_{j=0}^{E} R^j g_j,$$

Remark

The proof gives an explicit algorithm for computing the forms g_j.
Sketch of Proof (cont).

- Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.
Sketch of Proof (cont).

- Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.

- Bounding denominators on each piece gives a naïve bound.
Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.

- We prove a vanishing condition on which forms in the decomposition actually appear.
Two Intervening Problems

- **Obstruction 1:** Certain weights in the decomposition give the wrong denominators.
 - We prove a vanishing condition on which forms in the decomposition actually appear.

- **Obstruction 2:** The coefficients $c_{i,j}$ in the previous theorem also introduce artificial denominators.
Two Intervening Problems

- **Obstruction 1:** Certain weights in the decomposition give the wrong denominators.

- **We prove a vanishing condition on which forms in the decomposition actually appear.**

- **Obstruction 2:** The coefficients $c_{i,j}$ in the previous theorem also introduce artificial denominators.

- **We show that they cancel using the action of the Hecke algebra on Poincaré series.**

 Q.E.D.
Let $f \in M_k^1, \ g \in M_\ell^1, \ n \in \mathbb{N}$. The n^{th} Rankin-Cohen bracket is

$$\left[f, g \right]_{n}^{(k, \ell)} := \sum_{r+s=n} (-1)^r (n+k-1)s (n+\ell-1)r f(r) \cdot g(s).$$

This gives a map

$$\left[\cdot, \cdot \right]^{(k)}_{n} : M_k^1 \otimes M_\ell^1 \rightarrow M_{k+\ell+2n}.$$
Let $f \in M_k^!$, $g \in M_\ell^!$, $n \in \mathbb{N}$. The n^{th} Rankin-Cohen bracket is

$$[f, g]_{n}^{(k, \ell)} := \sum_{r+s=n} (-1)^r \binom{n+k-1}{s} \binom{n+\ell-1}{r} f(r) \cdot g(s).$$
Rankin-Cohen Brackets

Let \(f \in M_k^! \), \(g \in M_\ell^! \), \(n \in \mathbb{N} \). The \(n^{th} \) Rankin-Cohen bracket is

\[
[f, g]^{(k, \ell)}_n := \sum_{r+s=n} (-1)^r \binom{n+k-1}{s} \binom{n+\ell-1}{r} f(r) \cdot g(s).
\]

This gives a map

\[
[\cdot, \cdot]^{(k), (\ell)}_n : M_k^! \otimes M_\ell^! \to M_{k+\ell+2n}^!.
\]
Obstruction 1: Vanishing lemma

- It suffices to prove a vanishing condition for the product of two forms.
Obstruction 1: Vanishing lemma

- It suffices to prove a vanishing condition for the product of two forms.
- In this case, we can expand in terms of Rankin-Cohen brackets.
Obstruction 1: Vanishing lemma

- It suffices to prove a vanishing condition for the product of two forms.
- In this case, we can expand in terms of Rankin-Cohen brackets.
- Using a calculation of Beyerl-James-Trentacoste-Xue, this reduces to a binomial sum identity, for j odd

$$
\sum_{m=0}^{s} (-1)^{j+m} \cdot \frac{(m+r)(s)(m-r-1)}{(-r-2s+m+j-1)} = 0.
$$
Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

\[Z(\tau) := \sum_{t=0}^{\left\lfloor \frac{E+1}{2} \right\rfloor} (-1)^{M+t} R^{M+t} 3_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} 3_1(g_{2t}). \]
Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

 \[Z(\tau) := \sum_{t=0}^{\left\lfloor \frac{E+1}{2} \right\rfloor} (-1)^{M+t} R^{M+t} \mathfrak{Z}_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} \mathfrak{Z}_1(g_{2t}). \]

- By comparison with \(F \), we observe that the holomorphic part \(Z^+ \) of \(Z \) has integral principal part.
Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

\[Z(\tau) := \sum_{t=0}^{\left\lfloor \frac{E+1}{2} \right\rfloor} (-1)^{M+t} R^{M+t} \mathcal{Z}_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} \mathcal{Z}_1(g_{2t}). \]

- By comparison with \(F \), we observe that the holomorphic part \(Z^+ \) of \(Z \) has integral principal part.

- If all the coefficients of \(Z^+ \) are integral, then the \(c_{i,j} \)-denominators will cancel.
Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any \(F(\tau) = \sum a(n)q^n \in M_{-2k}^! \) we can write
Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(\tau) = \sum a(n)q^n \in M^!_{-2k}$ we can write

$$F = \sum_{n<0} a(n)n^{1+2k}f_{-2k,1}|T(n).$$
Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(\tau) = \sum a(n)q^n \in M^!_{-2k}$ we can write
 \[F = \sum_{n<0} a(n)n^{1+2k}f_{-2k,1}T(n). \]
- The Zagier lift is equivariant with the Hecke action:
 \[\mathcal{Z}_D(f|T(n)) = \mathcal{Z}_D(f)|T(n^2). \]
We construct a family of Hecke operators with “nice properties”.

Corollary

If \(f_{k,1} \mid H \) has integer coefficients, \(p \) is ordinary for all eigenforms in a basis of \(S_k \), and \(f_{k,1} \mid H \equiv 0 + O(q) \pmod{p^n} \), then
We construct a family of Hecke operators with “nice properties”.

Corollary

If $f_{k,1}|H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_k, and $f_{k,1}|H \equiv 0 + O(q) \pmod{p^n}$, then

$$f_{k,1}|H \equiv 0 \pmod{p^n}.$$
A Tricky Question

Consider the integral

\[\int_{\alpha}^{i\infty} \frac{\eta(2z)^2/\eta(z)}{(z - \alpha)^{3/2}} \, dz. \]

Question

How does one evaluate it?
What can we do?
What can we do?

Corollary

We give exact values for all of these integrals as algebraic multiples of π by specializing one formula.
What can we do?

Corollary

We give exact values for all of these integrals as algebraic multiples of π by specializing one formula.
In 2010, Zagier defined quantum modular forms.
In 2010, Zagier defined quantum modular forms.

Functions on \mathbb{Q} which are modular up to a “nice function”.
Quantum Modular Forms

- In 2010, Zagier defined quantum modular forms.

- Functions on \mathbb{Q} which are modular up to a “nice function”.

- They have connections to: unimodal sequences, ranks, cranks, Dedekind sums, Eichler integrals, mock theta functions . . .
Defining Quantum Modular Forms

Definition

We say that a function $f : \mathbb{Q} \to \mathbb{C}$ is a *quantum modular form* if

$$f(x) - f|_{k\gamma}(x) = h_{\gamma}(x),$$

where $h_{\gamma}(x)$ is a “nice” function.
Definition

We say that a function $f : \mathbb{Q} \to \mathbb{C}$ is a quantum modular form if

$$f(x) - f|_{k\gamma}(x) = h_\gamma(x),$$

where $h_\gamma(x)$ is a “nice” function.
A “Strange” Quantum Modular Form

A striking example of quantum modularity is given by the Kontsevich “strange function”:

\[F(q) = \sum_{n=0}^{\infty} (1 - q)(1 - q^2) \cdots (1 - q^n) = \sum_{n=0}^{\infty} (q; q)_n. \]
A “Strange” Quantum Modular Form

A striking example of quantum modularity is given by the Kontsevich “strange function”:

\[F(q) = \sum_{n=0}^{\infty} (1 - q)(1 - q^2) \cdots (1 - q^n) = \sum_{n=0}^{\infty} (q; q)_n. \]

Remark

This function is strange as it is not defined on any open subset of \(\mathbb{C} \), but is well-defined at roots of unity.
Zagier’s Result

Theorem (Zagier)

$e^{\pi i x/12} F(e^{2\pi i x})$ is a wt. $3/2$ quantum modular form.
A New Quantum Modular Form

- We consider sums of tails of other eta-quotients.
A New Quantum Modular Form

- We consider sums of tails of other eta-quotients.
- We study the vector-valued form:

\[
H(q) = \begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix} := \begin{pmatrix}
\frac{\eta(z)^2}{\eta(2z)} \\
\frac{\eta(z)^2}{\eta(z/2)} \\
\frac{\eta(z)^2}{\eta(z^2 + \frac{1}{2})}
\end{pmatrix}.
\]
A New Quantum Modular Form

- We consider sums of tails of other eta-quotients.
- We study the vector-valued form:
 \[
 H(q) = \begin{pmatrix}
 \theta_1 \\
 \theta_2 \\
 \theta_3
 \end{pmatrix}
 :=
 \begin{pmatrix}
 \eta(z)^2/\eta(2z) \\
 \eta(z)^2/\eta(z/2) \\
 \eta(z)^2/\eta(\frac{z}{2} + \frac{1}{2})
 \end{pmatrix}.
 \]
- We then associate finite versions \(\theta_{i,n} \) so that \(\theta_{i,n} \to \theta_i \).
A New Quantum Modular Form

- We consider sums of tails of other eta-quotients.
- We study the vector-valued form:
 \[
 H(q) = \begin{pmatrix}
 \theta_1 \\
 \theta_2 \\
 \theta_3
 \end{pmatrix} := \begin{pmatrix}
 \eta(z)^2/\eta(2z) \\
 \eta(z)^2/\eta(z/2) \\
 \eta(z)^2/\eta(z^2 + 1/2)
 \end{pmatrix}.
 \]
- We then associate finite versions \(\theta_{i,n}\) so that \(\theta_{i,n} \to \theta_i\).
- The corresponding “strange” function is \(\theta_i^S := \sum_{n=0}^{\infty} \theta_{i,n}\), which converges on some set of roots of unity.
Theorem 2 (R-Schneider 2012)

There are q-series G_i also defined for $|q| < 1$ with

$$\theta_i^S(q^{-1}) = G_i(q).$$
A Vector-Valued Quantum Modular Form

Theorem 2 (R-Schneider 2012)

- There are q-series G_i also defined for $|q| < 1$ with
 \[\theta_i^S(q^{-1}) = G_i(q). \]

- We find $(\theta_1^S, \theta_2^S, \theta_3^S)^T$ is a wt. 3/2 quantum modular form.
Numerical Examples

- Our results give finite expressions for period integrals:
Numerical Examples

Our results give finite expressions for period integrals:

Let \(\mathcal{I}(\alpha, x) := \int_{\alpha + x^{-1}}^{x \cdot i} \frac{\theta_1(z)}{(z - \alpha)^3} \, dz \).

\[\mathcal{I}(1/5, 1/2) \sim -7.1250 + 18.0078i \]
\[\mathcal{I}(1/5, 3/2) \sim 12.078 + 35.7274i \]
\[\mathcal{I}(1, 1/2) \sim 12.078 + 35.7273i \]
\[\mathcal{I}(1, 3/2) \sim 52.0472 + 25.685i \]
\[\mathcal{I}(1, 5/2) \sim 76.4120 - 28.9837i \]
Our results give finite expressions for period integrals:

Let \(I(\alpha, x) := \int_{\alpha + x^{-1}}^{x \cdot i} \frac{\theta_1(z)}{(z-\alpha)^{\frac{3}{2}}} \, dz. \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\pi i(i + 1)\theta_1^5(\zeta_k))</th>
<th>(I(1/k, 10^9))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(\pi i(i + 1)(-2\zeta_3 + 3) \sim -7.1250 + 18.0078i)</td>
<td>(-7.1249 + 18.0078i)</td>
</tr>
<tr>
<td>5</td>
<td>(\pi i(i + 1)(-2\zeta_5^3 - 2\zeta_5^2 - 8\zeta_5 + 3) \sim 12.078 + 35.7274i)</td>
<td>(12.078 + 35.7273i)</td>
</tr>
<tr>
<td>7</td>
<td>(\pi i(i + 1)(6\zeta_7^4 - 2\zeta_7^2 - 10\zeta_7 + 7) \sim 52.0472 + 25.685i)</td>
<td>(52.0474 + 25.685i)</td>
</tr>
<tr>
<td>9</td>
<td>(\pi i(i + 1)(8\zeta_9^4 - 16\zeta_9 + 3) \sim 76.4120 - 28.9837i)</td>
<td>(76.4116 - 28.9836i)</td>
</tr>
</tbody>
</table>
Zagier’s Idea

- The proof comes from a “sum of tails” identity:

\[
\sum_{n=0}^{\infty} \left(\eta(24z) - q(1-q^{24})(1-q^{48})\cdots(1-q^{24n}) \right) = \eta(24z)D(q) + E(q)
\]

where \(E(q)\) is a “half-derivative” of \(\eta(24z)\). Thus, \(F(q)\) equals a half-derivative of \(\eta(24z)\) at roots of unity. Such a half-derivative is equal to an “Eichler integral”, but now the integral lives in \(\mathbb{H}\) and agrees at rationals.
Zagier’s Idea

- The proof comes from a “sum of tails” identity:

\[
\sum_{n=0}^{\infty} \left(\eta(24z) - q(1 - q^{24})(1 - q^{48}) \cdots (1 - q^{24n}) \right) = \eta(24z)D(q) + E(q)
\]

where \(E(q) \) is a “half-derivative” of \(\eta(24z) \).
Zagier’s Idea

- The proof comes from a “sum of tails” identity:

\[
\sum_{n=0}^{\infty} (\eta(24z) - q(1 - q^{24})(1 - q^{48}) \cdots (1 - q^{24n}))
= \eta(24z)D(q) + E(q)
\]

where \(E(q) \) is a “half-derivative” of \(\eta(24z) \).

- Thus, \(F(q) \) equals a half-derivative of \(\eta(24z) \) at roots of unity.
Zagier’s Idea

- The proof comes from a “sum of tails” identity:

\[
\sum_{n=0}^{\infty} \left(\eta(24z) - q(1 - q^{24})(1 - q^{48}) \cdots (1 - q^{24n}) \right)
= \eta(24z)D(q) + E(q)
\]

where \(E(q)\) is a “half-derivative” of \(\eta(24z)\).

- Thus, \(F(q)\) equals a half-derivative of \(\eta(24z)\) at roots of unity.

- Such a half-derivative is equal to an “Eichler integral”, but now the integral lives in \(\mathbb{H}^-\) and agrees at rationals.
Sketch of the Proof

- The modularity of Eichler integrals comes from modularity of the original θ-functions.
Sketch of the Proof

The modularity of Eichler integrals comes from modularity of the original θ-functions.

Our strategy is as follows:

Strange function $\underset{\text{Sum of tails}}{\leftrightarrow}$ Half-Derivatives $\underset{\text{Reflection}}{\leftrightarrow}$ Eichler Integral
Let $F_9(z) := \eta(z)^2 / \eta(2z)$, and $F_{10}(z) := \eta(16z)^2 / \eta(8z)$.
Let $F_9(z) := \frac{\eta(z)^2}{\eta(2z)}$, and $F_{10}(z) := \frac{\eta(16z)^2}{\eta(8z)}$.

Theorem (Andrews, Jimenez-Urroz, Ono)

As formal power series, we have

\[
\sum_{n=0}^{\infty} (F_9(z) - F_{9,n}(z)) = 2F_9(z)E_1(z) + 2\sqrt{\theta}(F_9(z)),
\]

\[
\sum_{n=0}^{\infty} (F_{10}(z) - F_{10,n}(z)) = F_{10}(z)E_2(z) + \sqrt{\theta}(F_{10}(z)).
\]
Sums of Tails Identities

- Let $F_9(z) := \eta(z)^2/\eta(2z)$, and $F_{10}(z) := \eta(16z)^2/\eta(8z)$.

Theorem (Andrews, Jimenez-Urroz, Ono)

As formal power series, we have

\[
\sum_{n=0}^{\infty} (F_9(z) - F_{9,n}(z)) = 2F_9(z)E_1(z) + 2\sqrt{\theta}(F_9(z)),
\]

\[
\sum_{n=0}^{\infty} (F_{10}(z) - F_{10,n}(z)) = F_{10}(z)E_2(z) + \sqrt{\theta}(F_{10}(z)).
\]

- Here $\sqrt{\theta} \sum a(n)q^n := \sum \sqrt{n}a(n)q^n$.
For a weight k cusp form $\sum a(n)q^n$, $k > 2$, the Eichler integral \mathcal{E}_f is
Classical Eichler Integrals

For a weight \(k \) cusp form \(\sum a(n)q^n \), \(k > 2 \), the Eichler integral \(\mathcal{E}_f \) is

\[
\mathcal{E}_f := \sum n^{1-k} a(n)q^n.
\]
Classical Eichler Integrals

For a weight k cusp form $\sum a(n)q^n$, $k > 2$, the Eichler integral \mathcal{E}_f is

$$\mathcal{E}_f := \sum n^{1-k}a(n)q^n.$$

Recall that \mathcal{E}_f is modular up to a period polynomial:
Classical Eichler Integrals

- For a weight k cusp form $\sum a(n)q^n$, $k > 2$, the Eichler integral E_f is
 \[E_f := \sum n^{1-k}a(n)q^n. \]

- Recall that E_f is modular up to a period polynomial:
 \[g(x) := c_k \int_0^\infty f(z)(z - x)^{k-2} \, dz. \]
If $k = 1/2$, the Eichler integral is a “half-derivative”.

A half-integral degree period polynomial (or the integral itself) is not well-defined. This can be fixed by defining an integral in the lower half plane which agrees with $\sqrt{\theta}(f)$ at rationals. The obstruction to modularity is not a polynomial, but it is still a C^∞-function on \mathbb{R}.

Larry Rolen
If $k = 1/2$, the Eichler integral is a “half-derivative”.

A half-integral degree period polynomial (or the integral itself) is not well-defined.
Half-Derivatives

- If $k = 1/2$, the Eichler integral is a “half-derivative”.

- A half-integral degree period polynomial (or the integral itself) is not well-defined.

- This can be fixed by defining an integral in the lower half plane which agrees with $\sqrt{\Theta(f)}$ at rationals.
If $k = 1/2$, the Eichler integral is a “half-derivative”.

A half-integral degree period polynomial (or the integral itself) is not well-defined.

This can be fixed by defining an integral in the lower half plane which agrees with $\sqrt{\theta(f)}$ at rationals.

The obstruction to modularity is not a polynomial, but it is still a C^∞-function on \mathbb{R}.
Proof of the Theorem

Using the sums of tails and analysis above, we can connect our strange function to “period integrals”.
Proof of the Theorem

- Using the sums of tails and analysis above, we can connect our strange function to “period integrals”.

- Modularity for these integrals follows from modularity of the original vector-valued form of θ-functions.
Proof of the Theorem

- Using the sums of tails and analysis above, we can connect our strange function to "period integrals".

- Modularity for these integrals follows from modularity of the original vector-valued form of \(\theta \)-functions.

\[
H(z + 1) = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & \zeta_{12} \\
0 & \zeta_{24} & 0
\end{pmatrix} H(z),
\]
Proof of the Theorem

- Using the sums of tails and analysis above, we can connect our strange function to “period integrals”.

- Modularity for these integrals follows from modularity of the original vector-valued form of θ-functions.

\[
H(z + 1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \zeta_{12} \\ 0 & \zeta_{24} & 0 \end{pmatrix} H(z),
\]

\[
H(-1/z) = \left(\frac{z}{i}\right)^{\frac{1}{2}} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} H(z).
\]
Proof of the Theorem (cont.)

- Extension of the strange functions to the upper half plane (after reflection) follows from power series manipulations, e.g.

\[
\theta_1^S(q^{-1}) = 2 \sum_{n=0}^{\infty} \frac{q^{2n+1}(q; q)_{2n}}{(1 + q^{2n+1})(-q; q)_{2n}}.
\]
The great anticipator of mathematics

Srinivasa Ramanujan (1887-1920)
“Death bed letter”

“Dear Hardy, I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call “Mock” ϑ-functions. Unlike the “False” ϑ-functions (partially studied by Rogers), they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some examples.”

Ramanujan, January 12, 1920.
The first example

\[f(q) = 1 + \frac{q}{(1 + q)^2} + \frac{q^4}{(1 + q)^2(1 + q^2)^2} + \cdots \]
Zwegers’ Work

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:
Zwegers’ Work

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.

Ramanujan’s mock \(\vartheta \) functions are holomorphic parts of weight 1/2 harmonic Maass forms.
Zwegers’ Work

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.
- Stitched them together to give non-holomorphic Jacobi forms.
Zwegers’ Work

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.
- Stitched them together to give non-holomorphic Jacobi forms.

“Theorem”

Ramanujan’s mock theta functions are holomorphic parts of weight $1/2$ harmonic Maass forms.
Notation. Throughout, let $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.
Defining Maass forms

Notation. Throughout, let $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.

Hyperbolic Laplacian.

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$
Harmonic Maass forms

“Definition”

A *harmonic Maass form* is any smooth function \(f \) on \(\mathbb{H} \) satisfying:

1. For all \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z}) \), we have
 \[
 f(\gamma z) = (cz + d)^k f(z).
 \]
2. We have that \(\Delta^k f = 0 \).
Harmonic Maass forms

“Definition”

A **harmonic Maass form** is any smooth function f on \mathbb{H} satisfying:

1. For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z})$ we have

\[
 f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z).
\]
Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function \(f \) on \(\mathbb{H} \) satisfying:

1. For all \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z}) \) we have

\[
 f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z).
\]

2. We have that \(\Delta_k f = 0 \).
HMFs have two parts

"Fundamental Lemma"

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ-function, then

$$f(z) = \sum_{n \gg -\infty} c_f^+(n)q^n + \sum_{n<0} c_f^-(n)\Gamma(k - 1, 4\pi|n|y)q^n.$$

Holomorphic part f^+ Nonholomorphic part f^-

Remark

The mock theta functions are examples of f^+.
So many recent applications

- q-series and partitions
- Modular L-functions (e.g. BSD numbers)
- Eichler-Shimura theory
- Probability models
- Generalized Borcherds products
- Moonshine for affine Lie superalgebras and M_{24}
- Donaldson invariants
- Black holes
- ...
Is there more?

Ramanujan's last letter.

Asymptotics, near roots of unity, of "Eulerian modular forms".

Raises one question and conjectures the answer.

Gives one example supporting his conjectured answer.

Concludes with a list of his mock theta functions.
Is there more?

Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian modular forms”.
Is there more?

Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian modular forms”.
- Raises one question and conjectures the answer.
Is there more?

Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian modular forms”.

- Raises one question and conjectures the answer.

- Gives one example supporting his conjectured answer.
Is there more?

Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian modular forms”.

- Raises one question and conjectures the answer.

- Gives one example supporting his conjectured answer.

- Concludes with a list of his mock theta functions.
Ramanujan’s question

Question (Ramanujan)

Must Eulerian series with “similar asymptotics” be the sum of a modular form and a function which is \(O(1) \) at all roots of unity?
Ramanujan’s answer

The answer is it is not necessarily so.

When it is not so I call the function
Mock ϑ-function. I have not proved
rigorously that it is not necessarily so. But I have constructed a number
of examples in which it is not in-
conceivable to construct a ϑ func-
tion to cut out the singularities.
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function...”

Srinivasa Ramanujan
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function...”

Srinivasa Ramanujan

“...it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function. . . ”

Srinivasa Ramanujan

“. . . it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)

Theorem 3 (Griffin-Ono-R 2013)

Ramanujan’s examples satisfy his own definition.
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function...”

Srinivasa Ramanujan

“. . . it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)

Theorem 3 (Griffin-Ono-R 2013)

Ramanujan’s examples satisfy his own definition. More precisely, a mock theta function and a modular form never cut out exactly the same singularities.
Sketch of proof: parallel weight

- Suppose a mock theta function f of weight k is cut out by a modular form g of weight k'.
Sketch of proof: parallel weight

- Suppose a mock theta function f of weight k is cut out by a modular form g of weight k'.

- By the Bruinier-Funke pairing, any HMF has a nonzero principal part at some cusp.
Sketch of proof: different weights

- We have that $c_f^-(n)$ are supported on finitely many square classes, so we can kill f^- with quadratic twists.
Sketch of proof: different weights

- We have that $c_f^-(n)$ are supported on finitely many square classes, so we can kill f^- with quadratic twists.

- The holomorphic part doesn’t die due to subexponential growth of coefficients (Poincaré series), giving a modular form \tilde{f}.
Sketch of proof: different weights

- We have that $c_f^-(n)$ are supported on finitely many square classes, so we can kill f^- with quadratic twists.

- The holomorphic part doesn’t die due to subexponential growth of coefficients (Poincaré series), giving a modular form \tilde{f}.

- If f cut out g, then \tilde{f} cuts out \tilde{g} where \tilde{g} is the result of twisting g.
Sketch of proof: different weights

- We have that $c_f^-(n)$ are supported on finitely many square classes, so we can kill f^- with quadratic twists.

- The holomorphic part doesn’t die due to subexponential growth of coefficients (Poincaré series), giving a modular form \tilde{f}.

- If f cut out g, then \tilde{f} cuts out \tilde{g} where \tilde{g} is the result of twisting g.

- We ruled out the case $k = k'$. If $k \neq k'$, it is easy to show this cannot happen for two modular forms.
Here I have discussed results on:
Conclusion

Here I have discussed results on:

- Symmetric functions in singular moduli for nonholomorphic modular functions.
Conclusion

Here I have discussed results on:

- Symmetric functions in singular moduli for nonholomorphic modular functions.

- A new example of a quantum modular form.
Conclusion

Here I have discussed results on:

- Symmetric functions in singular moduli for nonholomorphic modular functions.
- A new example of a quantum modular form.
- Ramanujan’s original definition of a mock modular form.
Further results

I have also proven theorems on:

- Counting number fields with bounded discriminant.
- Matrices arising from finite field analogues of hypergeometric functions.
- Elliptic curves and congruent numbers.

Thank you!
Further results

I have also proven theorems on:

- Counting number fields with bounded discriminant.
Further results

I have also proven theorems on:

- Counting number fields with bounded discriminant.
- Matrices arising from finite field analogues of hypergeometric functions.
Further results

I have also proven theorems on:

- Counting number fields with bounded discriminant.
- Matrices arising from finite field analogues of hypergeometric functions.
- Elliptic curves and congruent numbers.
Further results

I have also proven theorems on:

- Counting number fields with bounded discriminant.

- Matrices arising from finite field analogues of hypergeometric functions.

- Elliptic curves and congruent numbers.

Thank you!