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Congruent numbers and local polynomials

An ancient geometry problem

A Pythagorean triple is an (a, b, c) ∈ N3 with a2 + b2 = c2.

Easy to find examples, like (3, 4, 5), first tables in 1800 BC:

Easy to parameterize all such triples: divide to get
(a/c)2 + (b/c)2 = 1 on unit circle, line with rational slope:
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A slight modification

n ∈ N is congruent if some rational right tri. has area n.

6 is congruent as its the area of the 3− 4− 5 triangle.

Question: Given n ∈ N, how can we test if its congruent?

A basic idea: Computer search through Pythagorean triples
and their rescalings.

Since Q is dense in R, not a finite check.
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Examples

Fermat famously proved by infinite descent (also known by
Fibonacci) that 1 isn’t congruent.

First few (square-free) congruent numbers:
5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39 . . .

157 is congruent.

Zagier: the “simplest” triangle showing this has hypotenuse:
224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830 (!!)
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Congruent numbers and local polynomials

Connections to deeper theory

There is a one-to-one correspondence:

{(a, b, c) :
ab

2
= n, a2+b2 = c2} ↔ {(x , y) : y 2 = x3−n2x , y 6= 0}.

So n is congruent iff there is a Q-point on the elliptic curve
En : y 2 = x3 − n2x other than the 3 “easy” points on x-axis:

Birch and Swinnerton-Dyer conjecture =⇒ n is congruent if
and only if the central L-value vanishes:

L(E , 1) = 0.
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An efficient criterion

Tunnell gave a formula to check for congruent numbers.

For example, assuming BSD, an odd number n is congruent iff

#{(x , y , z) ∈ Z3 : x2 + 2y 2 + 8z2 = n}
= 2·#{(x , y , z) ∈ Z3 : x2 + 2y 2 + 32z2 = n}.

Waldspurger, and later Kohnen and Zagier, related families of
L-values like L(En, 1) to coefficients of modular forms.

Other formulas for L(En, 1) given by B-SD, for CM curves.

We will give alternate formulas which include some non-CM
cases and have analogies with classical formulas.
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Classical results of Dirichlet and Gauss

For χd :=
(
d
·
)
, the Dirichlet L-series is

L(χ, s) :=
∑
n≥1

χ(n)n−s (Re(s) > 1).

For example, the Leibniz formula is:

L(χ−4, 1) = 1− 1

3
+

1

5
− 1

7
. . . =

π

4
.

Dirichlet Class Number Formula: L(χd , 1)
.

= h(d), where h(d)
is the class number of Q(

√
d).

Gauss gave formulas like for d ≡ 3 (mod 8):

h(−d) =
∑

x2+y2+z2=d

1.
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Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Sample Theorem (Ehlen, Guerzhoy, Kane, R. )

Suppose that D < 0, |D| ≡ 3 (mod 8), 3|D| 6= �. Set

χ(a, b, c) :=

{(−3
a

)
if 3 - a,(−3

c

)
if 3|a.

Then, assuming BSD, |D| is congruent iff∑
b2−4ac=−3D

c>0>a
32|a

χ(a, b, c) =
∑

b2−4ac=−3D
a+3b+9c>0>a

32|a

χ(a, b, c).
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Example

Is 11 congruent? Check quadratic forms of discriminant 33.

No forms on LHS, one form (−32, 17,−2) on RHS, so

LHS= 0, RHS=
(
−3
−32

)
= 1. Thus, 11 is not congruent.

New proof of classical result: All primes p ≡ 3 (mod 8) are
not congruent.

The involution b 7→ −b shows that the LHS is even, so enough
to show that the number of QFs on the RHS is always odd.

This was proven by Genz.
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Behind the proofs

Special functions introduced by Zagier:

fk,D(τ) :=
∑

b2−4ac=D

(aτ2 + bτ + c)−k ∈ S2k .

Kohnen’s more general functions (k = 1: need “Hecke trick”):

fk,N,D,D0(τ) :=
∑

b2−4ac=DD0,N|a

χD0(a, b, c)(aτ2+bτ+c)−k ∈ S2k(N).

We also need cycle integrals of modular forms (CQ is a
semicircle determined by Q):

rk,N(f ; D0, |D|) :=
∑

[a,b,c]∈Γ0(N)\QDD0
, N|a

χD0(a, b, c)

×
∫
CQ

f (τ)(aτ2 + bτ + c)k−1dτ.
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Connection to L-values

Theorem (Kohnen)

If f ∈ S2k(N), under some conditions:

〈f , fk,N,D,D0〉
.

= rk,N,D,D0(f ).

Theorem (Kohnen)

If f ∈ S2k(N), under some conditions:

L(f ⊗ χD , k) · L(f ⊗ χD0 , k)〉 .= |rk,N,D,D0(f )|2.

Thus, if L(f ⊗ χD0 , k) 6= 0, then

L(f ⊗ χD , k) = 0 ⇐⇒ 〈f , fk,N,D,D0〉 = 0.
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Congruent numbers and local polynomials

Where discontinuities arise

Definition

A locally harmonic Maass form is a function f : H→ C which

1 Transforms with modular symmetry.

2 Satisfies a special second-order differential equation (is an
eigenfunction of a Laplacian).

3 Has possible jump discontinuities along geodesics like CQ for
quadratic forms Q.

4 Has polynomial growth at cusps.

By Stokes’ Theorem, to compute 〈f , fk,N,D,D0〉, take a “lift”

under operator ξ2−k := 2i Im(τ)2−k ∂
∂τ .

The “natural” lift has discontinuities from local polynomials.
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eigenfunction of a Laplacian).

3 Has possible jump discontinuities along geodesics like CQ for
quadratic forms Q.

4 Has polynomial growth at cusps.

By Stokes’ Theorem, to compute 〈f , fk,N,D,D0〉, take a “lift”

under operator ξ2−k := 2i Im(τ)2−k ∂
∂τ .

The “natural” lift has discontinuities from local polynomials.
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Modular local polynomials

Non-zero polynomials can’t be modular forms.

But local polynomials can be.
For example, in the “discriminant 5 case”:

The modular forms of weight −2 which are locally polynomial
with “jumps” across the blue semicircles are (α, β ∈ C):
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Non-zero polynomials can’t be modular forms.
But local polynomials can be.
For example, in the “discriminant 5 case”:

The modular forms of weight −2 which are locally polynomial
with “jumps” across the blue semicircles are (α, β ∈ C):
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Thank You!

Thank you!


