Congruent numbers and local polynomials

Larry Rolen (joint work with Ehlen, Guerzhoy, and Kane)

Vanderbilt University

Joint Math Meetings, January 17, 2019

An ancient geometry problem

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.

An ancient geometry problem

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.
- Easy to find examples, like $(3,4,5)$, first tables in 1800 BC :

An ancient geometry problem

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.
- Easy to find examples, like $(3,4,5)$, first tables in 1800 BC :

An ancient geometry problem

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.
- Easy to find examples, like $(3,4,5)$, first tables in 1800 BC :

- Easy to parameterize all such triples: divide to get $(a / c)^{2}+(b / c)^{2}=1$ on unit circle, line with rational slope:

An ancient geometry problem

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.
- Easy to find examples, like $(3,4,5)$, first tables in 1800 BC :

- Easy to parameterize all such triples: divide to get $(a / c)^{2}+(b / c)^{2}=1$ on unit circle, line with rational slope:

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the $3-4-5$ triangle.

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the $3-4-5$ triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the $3-4-5$ triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the $3-4-5$ triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.
- Since \mathbb{Q} is dense in \mathbb{R}, not a finite check.

A slight modification

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the $3-4-5$ triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.
- Since \mathbb{Q} is dense in \mathbb{R}, not a finite check.

Examples

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.

Examples

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers:
$5,6,7,13,14,15,20,21,22,23,24,28,29,30,31,34,37,38,39 \ldots$

Examples

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers:
$5,6,7,13,14,15,20,21,22,23,24,28,29,30,31,34,37,38,39 \ldots$
- 157 is congruent.

Examples

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers:
$5,6,7,13,14,15,20,21,22,23,24,28,29,30,31,34,37,38,39 \ldots$
- 157 is congruent.
- Zagier: the "simplest" triangle showing this has hypotenuse: $\frac{224403517704336969924557513090674863160948472041}{8912332268928859588025535178967163570016480830}(!!)$

Connections to deeper theory

- There is a one-to-one correspondence:

$$
\left\{(a, b, c): \frac{a b}{2}=n, a^{2}+b^{2}=c^{2}\right\} \leftrightarrow\left\{(x, y): y^{2}=x^{3}-n^{2} x, y \neq 0\right\}
$$

Connections to deeper theory

- There is a one-to-one correspondence:

$$
\left\{(a, b, c): \frac{a b}{2}=n, a^{2}+b^{2}=c^{2}\right\} \leftrightarrow\left\{(x, y): y^{2}=x^{3}-n^{2} x, y \neq 0\right\}
$$

- So n is congruent iff there is a \mathbb{Q}-point on the elliptic curve $E_{n}: y^{2}=x^{3}-n^{2} x$ other than the 3 "easy" points on x-axis:

Connections to deeper theory

- There is a one-to-one correspondence:

$$
\left\{(a, b, c): \frac{a b}{2}=n, a^{2}+b^{2}=c^{2}\right\} \leftrightarrow\left\{(x, y): y^{2}=x^{3}-n^{2} x, y \neq 0\right\}
$$

- So n is congruent iff there is a \mathbb{Q}-point on the elliptic curve $E_{n}: y^{2}=x^{3}-n^{2} x$ other than the 3 "easy" points on x-axis:

- Birch and Swinnerton-Dyer conjecture $\Longrightarrow n$ is congruent if and only if the central L-value vanishes:

$$
L(E, 1)=0 .
$$

An efficient criterion

- Tunnell gave a formula to check for congruent numbers.

An efficient criterion

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number n is congruent iff

$$
\begin{gathered}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+8 z^{2}=n\right\} \\
=2 \cdot \#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+32 z^{2}=n\right\}
\end{gathered}
$$

An efficient criterion

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number n is congruent iff

$$
\begin{gathered}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+8 z^{2}=n\right\} \\
=2 \cdot \#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+32 z^{2}=n\right\}
\end{gathered}
$$

- Waldspurger, and later Kohnen and Zagier, related families of L-values like $L\left(E_{n}, 1\right)$ to coefficients of modular forms.

An efficient criterion

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number n is congruent iff

$$
\begin{gathered}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+8 z^{2}=n\right\} \\
=2 \cdot \#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+32 z^{2}=n\right\} .
\end{gathered}
$$

- Waldspurger, and later Kohnen and Zagier, related families of L-values like $L\left(E_{n}, 1\right)$ to coefficients of modular forms.
- Other formulas for $L\left(E_{n}, 1\right)$ given by B-SD, for CM curves.

An efficient criterion

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number n is congruent iff

$$
\begin{gathered}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+8 z^{2}=n\right\} \\
=2 \cdot \#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+32 z^{2}=n\right\} .
\end{gathered}
$$

- Waldspurger, and later Kohnen and Zagier, related families of L-values like $L\left(E_{n}, 1\right)$ to coefficients of modular forms.
- Other formulas for $L\left(E_{n}, 1\right)$ given by B-SD, for CM curves.
- We will give alternate formulas which include some non-CM cases and have analogies with classical formulas.

Classical results of Dirichlet and Gauss

- For $\chi_{d}:=\left(\frac{d}{.}\right)$, the Dirichlet L-series is

$$
L(\chi, s):=\sum_{n \geq 1} \chi(n) n^{-s} \quad(\operatorname{Re}(s)>1) .
$$

Classical results of Dirichlet and Gauss

- For $\chi_{d}:=\left(\frac{d}{.}\right)$, the Dirichlet L-series is

$$
L(\chi, s):=\sum_{n \geq 1} \chi(n) n^{-s} \quad(\operatorname{Re}(s)>1) .
$$

- For example, the Leibniz formula is:

$$
L\left(\chi_{-4}, 1\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots=\frac{\pi}{4} .
$$

Classical results of Dirichlet and Gauss

- For $\chi_{d}:=\left(\frac{d}{.}\right)$, the Dirichlet L-series is

$$
L(\chi, s):=\sum_{n \geq 1} \chi(n) n^{-s} \quad(\operatorname{Re}(s)>1) .
$$

- For example, the Leibniz formula is:

$$
L\left(\chi_{-4}, 1\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots=\frac{\pi}{4} .
$$

- Dirichlet Class Number Formula: $L\left(\chi_{d}, 1\right) \doteq h(d)$, where $h(d)$ is the class number of $\mathbb{Q}(\sqrt{d})$.

Classical results of Dirichlet and Gauss

- For $\chi_{d}:=\left(\frac{d}{.}\right)$, the Dirichlet L-series is

$$
L(\chi, s):=\sum_{n \geq 1} \chi(n) n^{-s} \quad(\operatorname{Re}(s)>1)
$$

- For example, the Leibniz formula is:

$$
L\left(\chi_{-4}, 1\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots=\frac{\pi}{4} .
$$

- Dirichlet Class Number Formula: $L\left(\chi_{d}, 1\right) \doteq h(d)$, where $h(d)$ is the class number of $\mathbb{Q}(\sqrt{d})$.
- Gauss gave formulas like for $d \equiv 3(\bmod 8)$:

$$
h(-d)=\sum_{x^{2}+y^{2}+z^{2}=d} 1
$$

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Sample Theorem (Ehlen, Guerzhoy, Kane, R.)
Suppose that $D<0,|D| \equiv 3(\bmod 8), 3|D| \neq \square$. Set

$$
\chi(a, b, c):= \begin{cases}\left(\frac{-3}{a}\right) & \text { if } 3 \nmid a, \\ \left(\frac{-3}{c}\right) & \text { if } 3 \mid a .\end{cases}
$$

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Sample Theorem (Ehlen, Guerzhoy, Kane, R.)
Suppose that $D<0,|D| \equiv 3(\bmod 8), 3|D| \neq \square$. Set

$$
\chi(a, b, c):= \begin{cases}\left(\frac{-3}{a}\right) & \text { if } 3 \nmid a, \\ \left(\frac{-3}{c}\right) & \text { if } 3 \mid a .\end{cases}
$$

Then, assuming $B S D,|D|$ is congruent iff

$$
\sum_{\substack{b^{2}-4 a c=-3 D \\ c>0>a}} \chi \chi(a, b, c)=\sum_{\substack{b^{2}-4 a c=-3 D \\ 32 \mid a+3 b+9 c>0>a}} \chi(a, b, c)
$$

Example

- Is 11 congruent? Check quadratic forms of discriminant 33.

Example

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form ($-32,17,-2$) on RHS, so LHS $=0, \mathrm{RHS}=\left(\frac{-3}{-32}\right)=1$. Thus, 11 is not congruent.

Example

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form $(-32,17,-2)$ on RHS, so LHS $=0, \mathrm{RHS}=\left(\frac{-3}{-32}\right)=1$. Thus, 11 is not congruent.
- New proof of classical result: All primes $p \equiv 3(\bmod 8)$ are not congruent.

Example

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form $(-32,17,-2)$ on RHS, so $\mathrm{LHS}=0, \mathrm{RHS}=\left(\frac{-3}{-32}\right)=1$. Thus, 11 is not congruent.
- New proof of classical result: All primes $p \equiv 3(\bmod 8)$ are not congruent.
- The involution $b \mapsto-b$ shows that the LHS is even, so enough to show that the number of QFs on the RHS is always odd.

Example

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form $(-32,17,-2)$ on RHS, so LHS $=0, \mathrm{RHS}=\left(\frac{-3}{-32}\right)=1$. Thus, 11 is not congruent.
- New proof of classical result: All primes $p \equiv 3(\bmod 8)$ are not congruent.
- The involution $b \mapsto-b$ shows that the LHS is even, so enough to show that the number of QFs on the RHS is always odd.
- This was proven by Genz.

Behind the proofs

- Special functions introduced by Zagier:

$$
f_{k, D}(\tau):=\sum_{b^{2}-4 a c=D}\left(a \tau^{2}+b \tau+c\right)^{-k} \in S_{2 k}
$$

Behind the proofs

- Special functions introduced by Zagier:

$$
f_{k, D}(\tau):=\sum_{b^{2}-4 a c=D}\left(a \tau^{2}+b \tau+c\right)^{-k} \in S_{2 k} .
$$

- Kohnen's more general functions ($k=1$: need "Hecke trick"):

$$
f_{k, N, D, D_{0}}(\tau):=\sum_{b^{2}-4 a c=D D_{0}, N \mid a} \chi_{D_{0}}(a, b, c)\left(a \tau^{2}+b \tau+c\right)^{-k} \in S_{2 k}(N) .
$$

Behind the proofs

- Special functions introduced by Zagier:

$$
f_{k, D}(\tau):=\sum_{b^{2}-4 a c=D}\left(a \tau^{2}+b \tau+c\right)^{-k} \in S_{2 k}
$$

- Kohnen's more general functions ($k=1$: need "Hecke trick"):

$$
f_{k, N, D, D_{0}}(\tau):=\sum_{b^{2}-4 a c=D D_{0}, N \mid a} \chi_{D_{0}}(a, b, c)\left(a \tau^{2}+b \tau+c\right)^{-k} \in S_{2 k}(N) .
$$

- We also need cycle integrals of modular forms $\left(C_{Q}\right.$ is a semicircle determined by Q):

$$
\begin{aligned}
r_{k, N}\left(f ; D_{0},|D|\right) & :=\sum_{[a, b, c] \in \Gamma_{0}(N) \backslash \mathcal{Q}_{D D_{0}}, N \mid a} \chi_{D_{0}}(a, b, c) \\
& \times \int_{C_{Q}} f(\tau)\left(a \tau^{2}+b \tau+c\right)^{k-1} d \tau .
\end{aligned}
$$

Connection to L-values

Theorem (Kohnen)
If $f \in S_{2 k}(N)$, under some conditions:

$$
\left\langle f, f_{k, N, D, D_{0}}\right\rangle \doteq r_{k, N, D, D_{0}}(f) .
$$

Connection to L-values

Theorem (Kohnen)
If $f \in S_{2 k}(N)$, under some conditions:

$$
\left\langle f, f_{k, N, D, D_{0}}\right\rangle \doteq r_{k, N, D, D_{0}}(f) .
$$

Theorem (Kohnen)
If $f \in S_{2 k}(N)$, under some conditions:

$$
\left.L\left(f \otimes \chi_{D}, k\right) \cdot L\left(f \otimes \chi_{D_{0}, k}\right)\right\rangle \doteq\left|r_{k, N, D, D_{0}}(f)\right|^{2}
$$

Connection to L-values

Theorem (Kohnen)

If $f \in S_{2 k}(N)$, under some conditions:

$$
\left\langle f, f_{k, N, D, D_{0}}\right\rangle \doteq r_{k, N, D, D_{0}}(f) .
$$

Theorem (Kohnen)
If $f \in S_{2 k}(N)$, under some conditions:

$$
\left.L\left(f \otimes \chi_{D}, k\right) \cdot L\left(f \otimes \chi_{D_{0}}, k\right)\right\rangle \doteq\left|r_{k, N, D, D_{0}}(f)\right|^{2}
$$

- Thus, if $L\left(f \otimes \chi_{D_{0}}, k\right) \neq 0$, then

$$
L\left(f \otimes \chi_{D}, k\right)=0 \Longleftrightarrow\left\langle f, f_{k, N, D, D_{0}}\right\rangle=0 .
$$

Where discontinuities arise

Definition
A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.
(2) Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.
(2) Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
(3) Has possible jump discontinuities along geodesics like C_{Q} for quadratic forms Q.

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.
(2) Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
(3) Has possible jump discontinuities along geodesics like C_{Q} for quadratic forms Q.
(4) Has polynomial growth at cusps.

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.
(2) Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
(3) Has possible jump discontinuities along geodesics like C_{Q} for quadratic forms Q.
(4) Has polynomial growth at cusps.

- By Stokes' Theorem, to compute $\left\langle f, f_{k, N, D, D_{0}}\right\rangle$, take a "lift" under operator $\xi_{2-k}:=2 i \operatorname{lm}(\tau)^{2-k} \frac{\bar{\partial}}{\partial \bar{\tau}}$.

Where discontinuities arise

Definition

A locally harmonic Maass form is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ which
(1) Transforms with modular symmetry.
(2) Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
(3) Has possible jump discontinuities along geodesics like C_{Q} for quadratic forms Q.
(9) Has polynomial growth at cusps.

- By Stokes' Theorem, to compute $\left\langle f, f_{k, N, D, D_{0}}\right\rangle$, take a "lift" under operator $\xi_{2-k}:=2 i \operatorname{lm}(\tau)^{2-k} \frac{\bar{\partial}}{\partial \bar{\tau}}$.
- The "natural" lift has discontinuities from local polynomials.

Modular local polynomials

- Non-zero polynomials can't be modular forms.

Modular local polynomials

- Non-zero polynomials can't be modular forms.
- But local polynomials can be.

Modular local polynomials

- Non-zero polynomials can't be modular forms.
- But local polynomials can be.
- For example, in the "discriminant 5 case":

Modular local polynomials

- Non-zero polynomials can't be modular forms.
- But local polynomials can be.
- For example, in the "discriminant 5 case":

- The modular forms of weight -2 which are locally polynomial with "jumps" across the blue semicircles are $(\alpha, \beta \in \mathbb{C})$:

$$
\begin{cases}\alpha & \text { if } \tau \in \mathcal{C}_{\infty}, \\ \beta\left(\tau^{2}-\tau+1\right) & \text { if } \tau \in \mathcal{C}_{\rho}, \\ \beta\left(\tau^{2}+\tau+1\right) & \text { if } \tau \in \mathcal{C}_{\rho-1}\end{cases}
$$

Thank You!

Thank you!

