Congruent numbers and local polynomials

Larry Rolen (joint work with Ehlen, Guerzhoy, and Kane)

Vanderbilt University

Joint Math Meetings, January 17, 2019

• A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^3$ with $a^2 + b^2 = c^2$.

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^3$ with $a^2 + b^2 = c^2$.
- Easy to find examples, like (3, 4, 5), first tables in 1800 BC:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^3$ with $a^2 + b^2 = c^2$.
- Easy to find examples, like (3,4,5), first tables in 1800 BC:

THE FOR For	1 - 100 1	-	Sec. 12
1 AF AMAT	1 Provent	TKH.	IF P
a the state	To Pat	EFT	
Part Partie	F.F.	1-1-	
the state	1	11	
The Property and	Pater	10r	计公
E The	14	11 P	4
attant the	D.T		P

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^3$ with $a^2 + b^2 = c^2$.
- Easy to find examples, like (3, 4, 5), first tables in 1800 BC:

• Easy to parameterize **all** such triples: divide to get $(a/c)^2 + (b/c)^2 = 1$ on unit circle, line with rational slope:

- A Pythagorean triple is an $(a, b, c) \in \mathbb{N}^3$ with $a^2 + b^2 = c^2$.
- Easy to find examples, like (3, 4, 5), first tables in 1800 BC:

• Easy to parameterize **all** such triples: divide to get $(a/c)^2 + (b/c)^2 = 1$ on unit circle, line with rational slope:

• $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.

• $n \in \mathbb{N}$ is congruent if some **rational** right tri. has area n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• 6 is congruent as its the area of the 3 - 4 - 5 triangle.

- $n \in \mathbb{N}$ is congruent if some **rational** right tri. has area n.
- 6 is congruent as its the area of the 3 4 5 triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $n \in \mathbb{N}$ is congruent if some **rational** right tri. has area n.
- 6 is congruent as its the area of the 3 4 5 triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the 3 4 5 triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.

• Since \mathbb{Q} is dense in \mathbb{R} , not a finite check.

- $n \in \mathbb{N}$ is congruent if some rational right tri. has area n.
- 6 is congruent as its the area of the 3 4 5 triangle.
- Question: Given $n \in \mathbb{N}$, how can we test if its congruent?
- A basic idea: Computer search through Pythagorean triples and their rescalings.
- Since \mathbb{Q} is dense in \mathbb{R} , not a finite check.

• Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers: 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39...

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers:
 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39...

• 157 is congruent.

- Fermat famously proved by infinite descent (also known by Fibonacci) that 1 isn't congruent.
- First few (square-free) congruent numbers:
 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39...
- 157 is congruent.
- Zagier: the "simplest" triangle showing this has hypotenuse: <u>224403517704336969924557513090674863160948472041</u> <u>8912332268928859588025535178967163570016480830</u>
 (!!)

Connections to deeper theory

• There is a one-to-one correspondence:

$$\{(a, b, c): \frac{ab}{2} = n, a^2 + b^2 = c^2\} \leftrightarrow \{(x, y): y^2 = x^3 - n^2 x, y \neq 0\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Connections to deeper theory

• There is a one-to-one correspondence:

$$\{(a, b, c): \frac{ab}{2} = n, a^2 + b^2 = c^2\} \leftrightarrow \{(x, y): y^2 = x^3 - n^2 x, y \neq 0\}$$

• So *n* is congruent iff there is a Q-point on the **elliptic curve** $E_n: y^2 = x^3 - n^2x$ other than the 3 "easy" points on *x*-axis:

Connections to deeper theory

• There is a one-to-one correspondence:

$$\{(a, b, c): \frac{ab}{2} = n, a^2 + b^2 = c^2\} \leftrightarrow \{(x, y): y^2 = x^3 - n^2 x, y \neq 0\}$$

- So *n* is congruent iff there is a Q-point on the **elliptic curve** $E_n: y^2 = x^3 - n^2x$ other than the 3 "easy" points on *x*-axis:
- Birch and Swinnerton-Dyer conjecture $\implies n$ is congruent if and only if the central *L*-value vanishes:

$$L(E,1)=0.$$

• Tunnell gave a formula to check for congruent numbers.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number *n* is congruent iff

$$\#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 8z^2 = n\}$$

= $2 \cdot \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 32z^2 = n\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number *n* is congruent iff

$$\#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 8z^2 = n\}$$
$$= 2 \cdot \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 32z^2 = n\}.$$

 Waldspurger, and later Kohnen and Zagier, related families of L-values like L(E_n, 1) to coefficients of modular forms.

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number *n* is congruent iff

$$\#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 8z^2 = n\}$$
$$= 2 \cdot \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 32z^2 = n\}.$$

 Waldspurger, and later Kohnen and Zagier, related families of L-values like L(E_n, 1) to coefficients of modular forms.

• Other formulas for $L(E_n, 1)$ given by B-SD, for CM curves.

- Tunnell gave a formula to check for congruent numbers.
- For example, assuming BSD, an odd number *n* is congruent iff

$$\#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 8z^2 = n\}$$
$$= 2 \cdot \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 32z^2 = n\}$$

- Waldspurger, and later Kohnen and Zagier, related families of L-values like L(E_n, 1) to coefficients of modular forms.
- Other formulas for $L(E_n, 1)$ given by B-SD, for CM curves.
- We will give alternate formulas which include some non-CM cases and have analogies with classical formulas.

• For $\chi_d := \left(rac{d}{\cdot} \right)$, the **Dirichlet** *L*-series is

$$L(\chi, s) := \sum_{n \ge 1} \chi(n) n^{-s} \quad (\operatorname{Re}(s) > 1).$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

• For $\chi_d := \left(\frac{d}{\cdot}\right)$, the **Dirichlet** *L*-series is

$$L(\chi, s) := \sum_{n \ge 1} \chi(n) n^{-s} \quad (\operatorname{Re}(s) > 1).$$

• For example, the Leibniz formula is:

$$L(\chi_{-4},1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots = \frac{\pi}{4}.$$

• For $\chi_d := \left(\frac{d}{\cdot}\right)$, the **Dirichlet** *L*-series is

$$L(\chi, s) := \sum_{n \ge 1} \chi(n) n^{-s} \quad (\operatorname{Re}(s) > 1).$$

• For example, the Leibniz formula is:

$$L(\chi_{-4},1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots = \frac{\pi}{4}.$$

• Dirichlet Class Number Formula: $L(\chi_d, 1) \doteq h(d)$, where h(d) is the **class number** of $\mathbb{Q}(\sqrt{d})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For $\chi_d := \left(\frac{d}{\cdot}\right)$, the **Dirichlet** *L*-series is

$$L(\chi, s) := \sum_{n \ge 1} \chi(n) n^{-s} \quad (\operatorname{Re}(s) > 1).$$

• For example, the Leibniz formula is:

$$L(\chi_{-4},1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots = \frac{\pi}{4}.$$

- Dirichlet Class Number Formula: $L(\chi_d, 1) \doteq h(d)$, where h(d) is the class number of $\mathbb{Q}(\sqrt{d})$.
- Gauss gave formulas like for $d \equiv 3 \pmod{8}$:

$$h(-d) = \sum_{x^2 + y^2 + z^2 = d} 1.$$

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Sample Theorem (Ehlen, Guerzhoy, Kane, R.)

Suppose that D < 0, $|D| \equiv 3 \pmod{8}$, $3|D| \neq \Box$. Set

$$\chi(a,b,c) := \begin{cases} \left(\frac{-3}{a}\right) & \text{if } 3 \nmid a, \\ \left(\frac{-3}{c}\right) & \text{if } 3 \mid a. \end{cases}$$

Analogous results

Question

Are there similar eqns for other L-functions, e.g., for elliptic curves?

Sample Theorem (Ehlen, Guerzhoy, Kane, R.)

Suppose that $D<0,\,|D|\equiv 3 \pmod{8},\, 3|D|\neq \Box.$ Set

$$\chi(a, b, c) := \begin{cases} \left(\frac{-3}{a}\right) & \text{if } 3 \nmid a, \\ \left(\frac{-3}{c}\right) & \text{if } 3 \mid a. \end{cases}$$

Then, assuming BSD, |D| is congruent iff

$$\sum_{\substack{b^2-4ac=-3D\\c>0>a\\32|a}} \chi(a,b,c) = \sum_{\substack{b^2-4ac=-3D\\a+3b+9c>0>a\\32|a}} \chi(a,b,c).$$

• Is 11 congruent? Check quadratic forms of discriminant 33.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Is 11 congruent? Check quadratic forms of discriminant 33.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• No forms on LHS, one form (-32, 17, -2) on RHS, so LHS= 0, RHS= $\left(\frac{-3}{-32}\right) = 1$. Thus, 11 is **not** congruent.

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form (-32, 17, -2) on RHS, so LHS= 0, RHS= $\left(\frac{-3}{-32}\right) = 1$. Thus, 11 is **not** congruent.
- New proof of classical result: All primes p
 = 3 (mod 8) are not congruent.

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form (-32, 17, -2) on RHS, so LHS= 0, RHS= $\left(\frac{-3}{-32}\right) = 1$. Thus, 11 is **not** congruent.
- New proof of classical result: All primes p
 3 (mod 8) are not congruent.
- The involution b → -b shows that the LHS is even, so enough to show that the number of QFs on the RHS is always odd.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Is 11 congruent? Check quadratic forms of discriminant 33.
- No forms on LHS, one form (-32, 17, -2) on RHS, so LHS= 0, RHS= $\left(\frac{-3}{-32}\right) = 1$. Thus, 11 is **not** congruent.
- New proof of classical result: All primes p
 3 (mod 8) are not congruent.
- The involution b → -b shows that the LHS is even, so enough to show that the number of QFs on the RHS is always odd.

• This was proven by Genz.

Behind the proofs

• Special functions introduced by Zagier:

$$f_{k,D}(au) := \sum_{b^2 - 4ac = D} (a au^2 + b au + c)^{-k} \in S_{2k}.$$

Behind the proofs

• Special functions introduced by Zagier:

$$f_{k,D}(au) := \sum_{b^2 - 4ac = D} (a au^2 + b au + c)^{-k} \in S_{2k}.$$

• Kohnen's more general functions (k = 1: need "Hecke trick"):

$$f_{k,N,D,D_0}(au) := \sum_{b^2 - 4ac = DD_0, N \mid a} \chi_{D_0}(a,b,c) (a au^2 + b au + c)^{-k} \in S_{2k}(N).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Behind the proofs

• Special functions introduced by Zagier:

$$f_{k,D}(au) := \sum_{b^2 - 4ac = D} (a au^2 + b au + c)^{-k} \in S_{2k}.$$

• Kohnen's more general functions (k = 1: need "Hecke trick"):

$$f_{k,N,D,D_0}(au) := \sum_{b^2 - 4ac = DD_0, N \mid a} \chi_{D_0}(a,b,c) (a au^2 + b au + c)^{-k} \in S_{2k}(N).$$

• We also need **cycle integrals** of modular forms (*C_Q* is a semicircle determined by *Q*):

$$egin{aligned} &r_{k,N}(f;D_0,|D|) := \sum_{[a,b,c]\in \Gamma_0(N)\setminus \mathcal{Q}_{DD_0},\ N|a} \chi_{D_0}(a,b,c) \ & imes \int_{C_Q} f(au)(a au^2+b au+c)^{k-1}d au. \end{aligned}$$

Connection to L-values

Theorem (Kohnen)

If $f \in S_{2k}(N)$, under some conditions:

 $\langle f, f_{k,N,D,D_0} \rangle \doteq r_{k,N,D,D_0}(f).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connection to L-values

Theorem (Kohnen)

If $f \in S_{2k}(N)$, under some conditions:

$$\langle f, f_{k,N,D,D_0} \rangle \doteq r_{k,N,D,D_0}(f).$$

Theorem (Kohnen)

If $f \in S_{2k}(N)$, under some conditions:

$$L(f \otimes \chi_D, k) \cdot L(f \otimes \chi_{D_0}, k) \rangle \doteq |r_{k,N,D,D_0}(f)|^2.$$

Connection to L-values

Theorem (Kohnen)

If $f \in S_{2k}(N)$, under some conditions:

 $\langle f, f_{k,N,D,D_0} \rangle \doteq r_{k,N,D,D_0}(f).$

Theorem (Kohnen)

If $f \in S_{2k}(N)$, under some conditions:

 $L(f \otimes \chi_D, k) \cdot L(f \otimes \chi_{D_0}, k)) \doteq |r_{k,N,D,D_0}(f)|^2.$

• Thus, if $L(f \otimes \chi_{D_0}, k) \neq 0$, then

$$L(f \otimes \chi_D, k) = 0 \iff \langle f, f_{k,N,D,D_0} \rangle = 0.$$

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Transforms with modular symmetry.

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

- Transforms with modular symmetry.
- Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

- Transforms with modular symmetry.
- Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
- Has possible jump discontinuities along geodesics like C_Q for quadratic forms Q.

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

- Transforms with modular symmetry.
- Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
- Has possible jump discontinuities along geodesics like C_Q for quadratic forms Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Has polynomial growth at cusps.

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

- Transforms with modular symmetry.
- Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
- Has possible jump discontinuities along geodesics like C_Q for quadratic forms Q.
- Has polynomial growth at cusps.
 - By Stokes' Theorem, to compute $\langle f, f_{k,N,D,D_0} \rangle$, take a "lift" under operator $\xi_{2-k} := 2i \operatorname{Im}(\tau)^{2-k} \overline{\frac{\partial}{\partial \tau}}$.

Definition

A locally harmonic Maass form is a function $f : \mathbb{H} \to \mathbb{C}$ which

- Transforms with modular symmetry.
- Satisfies a special second-order differential equation (is an eigenfunction of a Laplacian).
- Has possible jump discontinuities along geodesics like C_Q for quadratic forms Q.
- Has polynomial growth at cusps.
 - By Stokes' Theorem, to compute $\langle f, f_{k,N,D,D_0} \rangle$, take a "lift" under operator $\xi_{2-k} := 2i \operatorname{Im}(\tau)^{2-k} \overline{\frac{\partial}{\partial \tau}}$.
 - The "natural" lift has discontinuities from local polynomials.

• Non-zero polynomials can't be modular forms.

• Non-zero polynomials can't be modular forms.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• But local polynomials can be.

- Non-zero polynomials can't be modular forms.
- But local polynomials can be.
- For example, in the "discriminant 5 case":

人口 医水黄 医水黄 医水黄素 化甘油

- Non-zero polynomials can't be modular forms.
- But local polynomials can be.
- For example, in the "discriminant 5 case":

• The modular forms of weight -2 which are locally polynomial with "jumps" across the blue semicircles are $(\alpha, \beta \in \mathbb{C})$:

Congruent numbers and local polynomials

Thank You!

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ